
Interval Computations
No 4, 1994

Towards a User Transparent Interval
Arithmetic

Marc Daumas, Christophe Mazenc, and Jean-Michel Muller

The interval arithmetic provides a tool powerful enough to validate many
scientific computations. Yet no implementation standard is available to the
programmers. Testing a code involves getting acquainted with an evolving
non standard interval arithmetic package, modifying the code and running the
new source with the correct extensions. We propose and investigate a self
contained easy to use interval arithmetic package that can eventually be put
in place of the standard floating point arithmetic. The program produces some
guaranteed bounds on the result of the theoretical real value of the numerical
approximation without even recompiling the source code.

На пути к <прозрачной> для
пользователя интервальной

арифметике
М. Дома, К. Мазенк, Ж.-М. Мюллер

Интервальная арифметика представляет собой мощный инструмент, во
многих случаях позволяющий убедиться в достоверности научных вычис-
лений. К сожалению, программисты до сих пор не имеют стандарта на ре-
ализацию этого инструмента. Для тестирования программы часто требу-
ется знакомство с новой реализацией интервальной арифметики, модифи-
кация исходного текста и прогон измененной программы с подключением
соответствующих средств расширения. Нами предлагается и исследуется
законченный, простой в использовании пакет интервальной арифметики,
способный в конечном итоге заменить стандартную арифметику с плаваю-
щей точкой. Программа вычисляет некоторые гарантированные границы
для результата теоретического вещественного значения численного при-
ближения даже без повторной компиляции исходной программы.

c© M. Daumas, Ch. Mazenc, J.-M. Muller, 1994



Towards a User Transparent Interval Arithmetic 47

1 Introduction

The test of any proper scientific code and its validation usually take an
important share of the task of the software development. The techniques
commonly accepted include some numerical error analysis and/or the use of
the interval arithmetic. Yet testing a code with an interval arithmetic tool
requires the programmer’s deep knowledge of the different packages avail-
able. Because no standard is commonly accepted for interval arithmetic each
package offers some different solutions to many problems that are related but
not totally identical.

In Section 1, we propose a number format for the interval arithmetic. The
actual set of the representable intervals follows from the machine encoding.
Our defined compression scheme, presented in the Section 2, holds the place
of the floating point rounding mechanism. In the last section, Section 3, we
review the features of the user transparent interval floating point arithmetic.

The data format specified in this work is compatible with the IEEE stan-
dard type hierarchy: A double precision floating point interval is represented
by an eight byte word. An interval is first represented by a floating point
number called the origin. Integrated to the IEEE standard philosophy, the
shape of the interval depends on the active rounding mode. For the Round
to the Nearest mode, the origin is the center of the interval. In a directed
rounding mode, the canonical bound (upper or lower bound) of the interval
is used as origin.

We have added two fields to the standard floating point encoding: the
width of the interval and a slash field. In [9], Matula et al have proposed
to code the two component of a fractional numbers on one single field with
a shifting separator. The position of the separator is coded in a small addi-
tional field: the slash field. We will see in the last section that coding both
the mantissa of the origin and the width of the interval on two separate fixed
size fields appears quite restrictive: The adapting format exhibits a behavior
very close to the error propagation in floating point operations.

The format handles all the usual arithmetic operations on the inter-
vals by computing the exact interval image of its real or interval operands
and compressing the result to the desired fixed-length interval format; the
same type of mechanism is used in the IEEE standard to round the floating
point number to the fixed-length representation. The external floating point
operands supposed exact are supported by setting the error field length to 0.



48 M. Daumas, Ch. Mazenc, J.-M. Muller

2 Data format

Checking a scientific code with an existing interval arithmetic package is in
the best case a long painstaking process. Assuming the programmer is not
sufficiently aware of the extended list of different tools provided to help him
(including [2]) this process might also be error prone. The external data
format presented here to store an interval is meant to allow a non specialist
user to switch from the IEEE standard [6] floating point operation to the
floating point interval arithmetic in a matter of seconds. Integrated into a
chip the process would not even require recompiling the source code.

2.1 Bit encoding

The proposed length of the interval format is identical to the the length of the
corresponding IEEE format: A double precision interval is represented by
8 bytes (64 bits). No extra space will be required in memory to switch from
one representation (floating point) to the other one (interval). Five fields are
involved in the definition of a floating point interval (see Figure 1). Some
of these fields are common with the IEEE floating point standard, although
their lengths may differ. The position of the different fields is well suited
so a programmer may even decide to read an interval as a floating point
number. In the last section, we present the meaning of such a conversion,
along with the actual cost of the proposed encoding.

• The first field contains the sign bit s. Like the IEEE standard floating
point numbers, a floating point interval is stored with a separate sign
information and absolute value.

• The exponent field e is kept unchanged from the IEEE standard—same
size, same encoding, same signification except for the floating point
storage of the value 0. This point is detailed latter in this section.

• The fraction f of the mantissa m = 1.f is stored with the bits not
allocated for the dynamic error field δ.

• The new error field δ stores the relative width of the interval. The
exact interpretation of δ depends on the rounding mode and the value
of the other fields.



Towards a User Transparent Interval Arithmetic 49

Figure 1: Bit coding map of a floating point interval

Precision Length s e (f, δ) lm
(bytes) (bits)

Single 4 1 8 18 5
Double 8 1 11 46 6
Quad 16 1 15 106 7

Figure 2: Proposed standard floating point interval hierarchy

• The slash field lm counts the number of bits allocated to the mantiss.
To limit any possible value for the couple (m, δ) in the 52 bits originally
available for the fraction in the IEEE standard double precision format,
the field lm is 6 bits wide. The bits are automatically allocated and
reclaimed from the fields that store f and δ. The value L is the total
length of the mantissa field and the error field.

2.2 Floating point interval origin

An interval is based on its floating point origin x0. The active rounding
mode and the value of the error field δ define the position and the width
of the interval compared to its origin x0 (see Figure 3). The origin x0 uses
only three of the fields of the floating point. The mantissa m of x0 is formed
with the fraction f ; the value of m is represented by the fractional number
below.

m = 1.f.

The standard manipulations on m involve the quantity of one unit in the
last place (ulp), and the strict usage of the ulp-rounding mechanism. We



50 M. Daumas, Ch. Mazenc, J.-M. Muller

Figure 3: Position of the origin of the interval

adopt in this work the notation proposed in [5]: The integer mantissa M of
x0 is coded with an integer number from the concatenation on words ⊕, as
follows.

M = 1⊕ f.

The two representations m and M of the mantissa of x0 are equivalent.
However in the second case, an ulp is exactly one unity, independently from
the length of M . With the common floating point arithmetic, the concep-
tual distinction between m and M is not so important since the length of
the mantissa is constant. However, for the proposed floating point interval
arithmetic, the length of the mantissa is variable and depends on the relative
size of the interval and more directly on the value of lm. Since the number
is normalized, the mantissa satisfies

2lm ≤M ≤ 2lm+1 − 1.

The field lm stores the length of the mantissa.

lm =

{
blog2Mc+ 1 M 6= 0
0 M = 0

.

According to the proposed format, the length lδ of the error field δ is
conjugated to lm. The combined length L of both fields depends on the
precision format as detailed in Figure 4.

lδ = L− lm or lm + lδ = L

The interpretation of x0 is defined bellow using both conventions. We
shall call the integer mantissa M the mantissa of x0. Still f represents the



Towards a User Transparent Interval Arithmetic 51

Working Precision Value of L
Single 19
Double 47
Quad 107

Figure 4: Conjugate value of lδ and lm

Rounding Mode Interval
RD [x0, x0 + ∆]
RU [x0 −∆, x0]
RN [x0 −∆/2, x0 + ∆/2]

Figure 5: The floating point interval related to the active rounding mode

fractional part of the fractional number 1.f , thus the integer f is called the
fraction of x0.

x0 = (−1)s ×m× 2e (m = 1.f)
= (−1)s ×M × 2e−lm−1 (M = 1⊕ f).

2.3 Interval interpretation

The absolute error is expressed according to the exponent field. We define
the quantity ∆.

∆ = δ × 2e−lm−1.

The IEEE standard specifies four rounding modes. The two letter no-
tation of these modes are RN (Round to Nearest—even), RU (Round Up
towards +∞), RD (Round Down towards −∞) and RZ (Round towards
Zero). The last rounding mode (RZ) is not adapted to the interval compu-
tation, we will focus on the three modes RN, RU and RD. The interval I
relative to any rounding mode is detailed in Figure 5. The semantic inherent
to the rounding mechanism in the IEEE standard arithmetic is still valid in
the choice of the origin x0 of the interval. For example, if the active mode
is RD (Round Down), the floating point origin represents a lower bound on
the interval.



52 M. Daumas, Ch. Mazenc, J.-M. Muller

Mantissa Width Error Bit Coding
1.101... 20 ...110 (1)101...110
0.000... 0 ...110 (0)000...110

Figure 6: Intervals centered on zero

Intervals centered on zero. In many real applications, the intervals
which have zero as origin are very important. In the RN mode, this repre-
sents a situation where too much cancellation has made impossible to deduce
any information on the sign, yet the absolute value of the result is bounded.
In the directed rounding modes, an interval with origin x0 = 0 delivers some
precious sign information.

According to the previous encoding mechanism, it is not possible to rep-
resent an interval whose origin x0 is 0. In fact, the IEEE standard specifies
that 0 is coded with both machine exponent, so called characteristic in [1],
and fraction field set to zero. For the double precision arithmetic and for a
non extremal value, the exponent is computed from the formula below.

e = Characteristic− (210 − 1).

We can easily extend this notion to the value of zero: It is coded as
0 = 0 × 2−2

10+1. With this first specification, the possible widths of an
interval centered on zero is quite restricted (∆ < 2−2

10+46). The numbers
of bits of the fraction field is stored as lm − 1: An interval with lm = 0
represents an interval where all the bits of the mantissa are lost to the error
field. Even the implicit bit in the first place of the mantissa should not
be considered as a 1 but as a 0. This representation introduces an interval
centered on zero with any valid exponent. We present some examples in the
Figure 6.

3 The compression scheme

In the previous section, we have presented the encoding of the floating point
intervals. For a coherent number system, we detail the operations possible
on this system. The IEEE standard definition relies heavily on the notion
of rounding. Actually, the type hierarchy and the rounding mechanisms



Towards a User Transparent Interval Arithmetic 53

are sufficient to fully describe the IEEE standard number system. The
closure and the exception handling are rather involved in the definition of
the execution model.

The rounding mechanism detailed in the IEEE standard is a compression
scheme: It compresses an arbitrarily long floating point number to a fixed
length representation; the initial number be finite like any value 1 + 2−k or
even non finite, for example 1

3 .
With the compressing scheme of a floating point intervals, any math-

ematical operation is specified as the unique compression of the smallest
interval containing the result of the infinitely precise operation of the real
or interval exact inputs. This definition is totally deterministic and is com-
parable to the IEEE standard.

3.1 Theoretical background

We are interested in the compression of an interval presented as a normalized
triplet (M, δ, e) with the proposed rounding scheme and the active rounding
mode Rx. For any integer i, we build the origin x(i)0 of the interval I(i):

M (i) = Rx
(
M
2i

)
lm

(i) =

{ ⌊
log2M

(i)
⌋

+ 1 M (i) 6= 0
0 M (i) = 0

e(i) = e− lm + lm
(i) + i

x
(i)
0 = (−1)s ×M (i) × 2e

(i)−lm(i)−1.

Proposition 1. For any i, and provided δ(i) satisfies the following condi-
tion, I(i) is a minimal normalized interval with x(i)0 as origin containing I.

R(i) =

{ ∣∣M −M (i) × 2i
∣∣ if Rx = RD or RU

2×
∣∣M −M (i) × 2i

∣∣ if Rx = RN
,

δ(i) =

⌈
δ + R(i)

2i

⌉
.

Proof. We have to prove both that the interval I(i) = [a(i), b(i)] contains
I = [a, b] and that I(i) is the smallest interval with x

(i)
0 ≡ (M (i), e(i)) as



54 M. Daumas, Ch. Mazenc, J.-M. Muller

origin containing I. Without loss of generality we may assume that x0 > 0(
i.e. s ≡ 0 (mod 2)

)
.

Round Down towards −∞. The demonstration is very close from one round-
ing mode to the other although there are some differences; the bounds of
the initial interval I are:

a = M × 2e−lm−1 and b = (M + δ)× 2e−lm−1.

The encoding mechanism implies that:

a(i) = M (i) × 2e
(i)−lm(i)−1 and b(i) =

(
M (i) + δ(i)

)
× 2e

(i)−lm(i)−1.

From the definition of the rounding mechanism

M − 2i + 1 ≤ 2i ×M (i) ≤M.

Hence a(i) ≤ a. Substituting e(i) and M (i) by their value in the expression
of b(i), it follows that after simplification:

b(i) =

(
2iM (i) + 2i

⌈
δ + R(i)

2i

⌉)
2e−lm−1.

From the definition of R(i)

b(i) =

(
M − R(i) + 2i

⌈
δ + R(i)

2i

⌉)
2e−lm−1.

However,
⌈
δ+R(i)

2i

⌉
satisfies

e+ R(i) ≤ 2i

⌈
δ + R(i)

2i

⌉
< e+ R(i) + 2i − 1.

From the first part of the last inequality, we deduce the following property
and finally that I(i) contains I.

b(i) ≥
(
M − R(i) + δ + R(i)

)
2e−lm−1.



Towards a User Transparent Interval Arithmetic 55

We next build an interval I ′(i) = [a′(i), b′(i)] with the same origin
(M (i), lm

(i), e(i)) but with the error field set to δ′(i) = δ(i) − 1. b′(i) is de-
fined as follows.

b(i) =
(
M (i) + (δ(i) − 1)

)
× 2e

(i)−lm(i)−1.

With a substitution comparable to the one presented earlier,

b′(i) =

(
M − R(i) + 2i

⌈
δ + R(i)

2i

⌉
− 2i

)
2e−lm−1.

From the second part of the inequality on
⌈
δ+R(i)

2i

⌉
we deduce that

b(i) <
(
M − R(i) + δ + R(i)

)
2e−lm−1.

Round Up towards +∞. The mechanism of the proof is very close to the
one just presented, although it is based on a(i). Since R(i) is the absolute
value of the rounding error involved in the division of M (i), the property
used for the Round Down mode on b(i) holds for a(i).
Round to Nearest. The Round to Nearest mode is something different from
the two other ones. The critical bound is not know for any value of M .
Depending on the sign ofM −2(i)M (i), we must consider a(i) or b(i) to prove
that the error field δ(i) is minimal.

a =

(
M − δ + 1

2

)
× 2e−lm−1 and b =

(
M +

δ + 1

2

)
× 2e−lm−1.

By a substitution close to the ones used earlier, we obtain

a(i) =

(
2i ×M (i) + 2i−1

⌈
δ + R(i)

2i

⌉)
2e−lm−1

and

b(i) =

(
2i ×M (i) − 2i−1

⌈
δ + R(i)

2i

⌉)
2e−lm−1.

Without loss of generality, we suppose that M ≥ 2iM (i); it means that
M was rounded by default and we must verify that b(i) ≥ b.

b(i) ≥
(
M − R(i)

2
+
δ +R(i)

2

)
2e−lm = b.



56 M. Daumas, Ch. Mazenc, J.-M. Muller

Last, we verify that the interval
[
a′(i), b′(i)

]
whose center is x(i)0 and radius

is δ(i) − 1 does not contain the interval [a, b]:

b′(i) =

(
2iM (i) + 2i−1

⌈
δ + R(i)

2i

⌉
− 2i−1

)
2e−lm−1

<

(
M − R(i)

2
+
δ +R(i)

2
− 2i−1

)
2e−lm−1

<

(
M +

δ

2

)
2e−lm−1 < b.

2

3.2 Optimality

Intuitively, if there is a value of i where the lengths of M (i) and δ(i) are
optimal, this is the compressed value of I. This property still hold if no
couple (M (i), δ(i)) exactly matches the length of the interval.

Conjecture 1. For any length L, and given the minimal integer i such
that the normalized interval I(i) ≡ (M (i), δ(i), e(i)) whose mantissa is coded
with L bits (i.e. lm(i) + lδ

(i) ≤ L); any normalized interval I ′ ≡ (M ′, δ′, e′)
containing I and satisfying lm′ + lδ

′ ≤ l is larger than I(i).

This property may not hold only when the active mode is Round to
Nearest and the center of the interval M (i) is an exact power of 2 (i.e.
M (i) = ±2k).

We shall present a counter-example for the Round to Nearest mode (see
Figure 7): The value of M is 1111000b and the value of δ is 11010b ; e
can be set to 0. We are interested in having only 3 bits of mantissa. The
compression scheme returns for i = 5 the rounded value M (i) = 100b and
an error of δ = 10 with e(i) = 1. The solution M = 111b, with e′ = 0 and
not 1 induces a minimal δ′ = 11b. With the correct exponent range, the
interval I ′ is smaller than I(i).



Towards a User Transparent Interval Arithmetic 57

Original Rounded Truncated
Center 1.111000e0 1.00/00000e1 1.11/1000e0
Error 11010e0 1/00000e1 11/0000e0
Upper Bound 10.010010e0 1.01/00000e1 10.01/0000e0
Lower Bound 1.011110e0 0.10/00000e1 1.00/0000e0

Figure 7: Counter-example for the Conjecture 1

3.3 Practical implementation

To develop a chip, we may have to compute both bounds of the interval;
from the bounds, we deduce the normalized triplet (M, e, δ). Depending on
the length of M and δ, we can deduce one unique value i0. Let

k =

⌈
lm + lδ − l

2

⌉

i0 =

 k, lm > k, lδ > k
lm − l, lδ < k
lδ − l, lm < k

Either I(i0) or I(i0+1) is the optimal rounding interval. We have detailed
the three possible rounding situations in the Figure 8. It presents in a
shadow box the possible carry ripple due to the rounding of M (i) and δ(i).
This is the reason why i0 + 1 might be useful; if no ripple occurs I(i0) fits
the format and is optimal. If the exponent e(i0) of the result overflows the
format, the result is stored as ±∞.

4 Interval computation

4.1 Cost of the interval arithmetic

The bits used for the slash encoding field (6 bits) are actually lost compared
to standard floating point computation. However, this means a loss of pre-
cision of 2−44 ≈ 5.68×10−14 or roughly 10% of the mantissa length. On the
other hand, the bits used to store the error fields δ are not really lost. In the
standard floating point operation the least significant bits of the result will



58 M. Daumas, Ch. Mazenc, J.-M. Muller

Figure 8: Compression scheme



Towards a User Transparent Interval Arithmetic 59

most certainly hold some un-validated value. During a compound operation,
the rounding errors are introduced into the partial results; these errors are
growing and are propagated: The last bits of the results are not valid.

The encoding of the error field of the floating point interval simulates
this behavior. Due to carry ripple at most one bit is lost compared to the
precision we would expect from validated floating point operation.

• After a floating point addition the last bit of the result is not correct;
the error field of the floating point interval is one bit wide.

• With a floating point number, if a cancellation occurs, some zeros are
inserted at the end of the word to normalize it; although the floating
point addition is exact, the zeros inserted cannot be validated. In the
floating point interval, no zeros are inserted, but the error field grows
exactly by the same number of bits as the number of zeros that should
have been inserted.

The interval arithmetic is known as too pessimistic: In a common ap-
plication, the errors cancel and the final error is almost always far from the
maximal theoretical error. This is the reason why a programmer accepts to
work with the standard un-validated arithmetic. This is inherent to interval
arithmetic and not to the special encoding proposed here.

4.2 Computing with an interval

As long as the hardware support is provided to the user, the interval arith-
metic can be used in any place where the standard floating point arithmetic
is used. Performing a computation with the interval arithmetic rather than
the floating point arithmetic does not make any difference, except for the
comparisons: a = b, a < b, a ≤ b, . . . When the two intervals a and b are
disjoint, it is possible to answer the comparison. But as soon as the two
intervals share some values as presented in Figure 9, the answer cannot be
returned safely. In this situation, we shall adopt a behavior comparable to
the IEEE standard.

By implementing an exception mechanism rather then a fixed process
for the division by zero for example, the IEEE standard allows a program-
mer to change the behavior of the machine depending on the nature of his



60 M. Daumas, Ch. Mazenc, J.-M. Muller

Figure 9: Comparing two intervals

computation. Whenever a dangerous comparison is intended the hardware
module should only raise a user-defined exception. Here are some of the
options that can be used in the case of a comparison exception.

• In the event of an exception, the computer should stop the execution
and ask the operator for the real solution of the comparison. This
approach would point sharply at the critical values.

• The comparison can be solved by comparing the origins. This allows
the program to terminate without error. However, to get the certified
result, a trace should be maintained. Each decision of the trace should
be validated trough an experimental method.

• In the usual case, there are some valid assumption on the distribution
of the values in the interval; statistically, the values close to the middle
of the interval are more likely to be the correct result. Assuming the
interval follows a Gaussian distribution, and if the programmer is able
to evaluate the standard deviation, the computer would be able to
evaluate the probability of the comparison to hold true.

• Proceeding with very high precision input, the computer should
branch to a more precise process to compute both the two intervals
of the comparison in order to get a better result. This is only true if
the width of the intervals is due to accumulated rounding error rather
than lack of precision from the input.



Towards a User Transparent Interval Arithmetic 61

4.3 Floating point numbers and intervals

The proposed format for the floating point intervals is very close to the
IEEE standard format for the floating point numbers. This allows the user
to switch quickly form one format to the other. For example, the data
structure (arrays, pointers,. . . ) would not need any modification. After a
computation, the program returns a floating point result and some indication
on the precision. We should add some new functionalities to retrieve the
information contained in the floating point interval:

Lower returns the lower bound of the interval, this is a floating point in-
terval of length 0;

Upper identically returns the upper bound;

Width computes the absolute width of the interval.

We should also include conversion from floating point number to interval
based on the two bounds of the interval, or on the origin and the relative or
absolute error.

It is possible for an un-experimented user to use an interval in place
of a floating point number without conversion. The floating point num-
ber obtained by ignoring the difference between the two formats is a valid
representative of the interval.

Conclusion

We have presented an encoding system that allows any user to quickly switch
from the standard floating point operation to the interval arithmetic. This
operation does not even require recompiling the source code. A compression
scheme applies to the high precision intervals and takes the place of the
rounding scheme for the IEEE floating point operation. Hence the four
arithmetic operations required by the IEEE standard for the floating point
operation can be implemented with the interval arithmetic. Compared to
the standard operation, the interval arithmetic only requires 6 bits out of the
53 bits of the mantissa fields in the precision. Yet at the end of a program,
the user is guaranteed a mathematical bound on its result or is strongly
pointed to the unstable quantities.



62 M. Daumas, Ch. Mazenc, J.-M. Muller

In the proposed format, the interpretation of an interval is changed when
the active rounding mode is changed. If the user changes the rounding mode
during a compound operation, the result is not valid. Yet, if the user needs
to have access to the RD or the RU mode of the IEEE standard, he is per-
forming explicit interval arithmetic, and might not switch to the transparent
interval arithmetic. The interval arithmetic might require some important
change in the habit of the programmers to be exploited with a large success:
For example, the notion of equality should be replaced by the inclusion.
With the major development of the technologies, we should not any more
consider the interval arithmetic as a time and space over-expensive solution
only useful for precision critical programs. This work contains some new
directions to integrate the interval arithmetic into the mainstream comput-
ing. We are now investigating some optimized algorithms for the elementary
functions.

References

[1] Anderson, S. F., Earle, J. G., Goldschmidt, R. E., and Powers, D. M.
The IBM system/360 model 91: floating point execution unit. IBM
Journal of Research and Development 11 (1967), pp. 34–53.

[2] Bleher, H., Kulisch, U., Metzger, M., Rump, S. M., Ullrich, C., and
Walter, W. Fortran-SC. Computing 39 (1987), pp. 93–110.

[3] Bohlender, G. What do we need beyond IEEE arithmetic? In: “Com-
puter Arithmetic and Self Validating Numerical Methods”, Academic
Press, 1990, pp. 1–32.

[4] Cody, W. J. Analysis of proposals for the floating point standard. IEEE
Computer 20 (3) (1987), pp. 63–68.

[5] Gosling, J. B. Design of large high speed floating point arithmetic units.
Institution of Electrical Engineers, Proceeding 118 (1971), pp. 493–498.

[6] IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std
754–1985. The Institute of Electrical Engineering and Electronics En-
gineers, New York, 1985.



Towards a User Transparent Interval Arithmetic 63

[7] Kuck, D. J., Parker Jr., D. S., and Sameh, A. H. Analysis of rounding
methods in floating point arithmetic. IEEE Transactions on Computers
C26 (1977), pp. 643–650.

[8] Kulisch, U. and Miranker, W. L. Computer arithmetic in theory and
practice. Academic Press, 1981.

[9] Matula, D. W. and Kornerup, P. Finite precision rational arithmetic:
slash number systems. IEEE Transactions on Computers C34 (1)
(1985), pp. 3–18.

Received: November 17, 1993
Revised version: July 4, 1994

Laboratoire de l’Informatique
du Parallélisme
École Normale Supérieure de Lyon
Lyon, France 69364


