
P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4

Computing Correctly Rounded Integer
Powers in Floating-Point Arithmetic

PETER KORNERUP
Southern Danish University, Odense
and
CHRISTOPH LAUTER, VINCENT LEFÈVRE, NICOLAS LOUVET,
and JEAN-MICHEL MULLER
ENS Lyon

We introduce several algorithms for accurately evaluating powers to a positive integer in floating-
point arithmetic, assuming a fused multiply-add (fma) instruction is available. For bounded, yet
very large values of the exponent, we aim at obtaining correctly rounded results in round-to-nearest
mode, that is, our algorithms return the floating-point number that is nearest the exact value.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Computer arithmetic,
error analysis; G.4 [Mathematical Software]: Algorithm design and analysis, reliability and
robustness

General Terms: Algorithms, Reliability, Performance

Additional Key Words and Phrases: Correct rounding, floating-point arithmetic, integer power
function

ACM Reference Format:
Kornerup, P., Lauter, C., Lefèvre, V., Louvet, N., and Muller, J.-M. 2010. Computing correctly
rounded integer powers in floating-point arithmetic. ACM Trans. Math. Softw. 37, 1, Article 4
(January 2010), 23 pages.
DOI = 10.1145/1644001.1644005 http://doi.acm.org/10.1145/1644001.1644005

This work was partly supported by the French Agence Nationale de la Recherche (ANR), through
the EVA-Flo project.
Author’s current addresses: P. Kornerup, Department of Mathematics & Computer Science,
Southern Danish University, Odense, Campusvej 55, DK-5230 Odense M, Denmark; email: ko-
rnerup@imada.sdu.dk; C. Lauter, Intel Corporation, Software and Services Group, 2111 NE 25th Av-
enue, M/S JF1-13, Hillsboro, OR 97124; email: christoph.lauter@intel.com; V. Lefèvre, INRIA, Lab-
oratoire LIP, ENS Lyon, 46 Allèe d’Italie, 69364 Lyon cedex 07, France; email: vincent@vinc17.net;
N. Louvet, Université Lyon 1, Laboratoire LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon cedex 07,
France; email: Nicolas.Louvet@ens-lyons.fr; J.-M. Muller, CNRS, Laboratoire LIP, ENS Lyon, 46
Allèe d’Italie, 69364 Lyon cedex 07, France; email: jean-michel.muller@ens-lyons.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 0098-3500/2010/01-ART4 $10.00
DOI 10.1145/1644001.1644005 http://doi.acm.org/10.1145/1644001.1644005

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:2 • P. Kornerup et al.

1. INTRODUCTION

We deal with the implementation of the integer power function in floating-point
arithmetic. In the following, we assume a radix-2 floating-point arithmetic that
follows the IEEE-754 standard for floating-point arithmetic. We also assume
that a fused multiply-and-add (fma) operation is available, and that the input
as well as the output values of the power function are not subnormal numbers,
and are below the overflow threshold (so that we can focus on the powering of
the significands only).

An fma instruction allows one to compute ax ± b, where a, x, and b are
floating-point numbers, with one final rounding only. Examples of processors
with an fma are the IBM PowerPC and the Intel/HP Itanium [Cornea et al.
2002].

An important case dealt with in the article is the case when an internal
format, wider than the target format, is available. For instance, to guarantee—
in some cases—correctly rounded integer powers in double-precision arith-
metic using our algorithms based on iterated products, we will have to as-
sume that an extended precision1 is available. The examples will assume that
it has a 64-bit precision, which is the minimum required by the IEEE-754
standard.

The only example of currently available processor with an fma and an
extended-precision format is Intel and HP’s Itanium Processor [Li et al. 2002;
Cornea et al. 2002]. And yet, since the fma operation is now required in the
revised version of the IEEE-754 standard [IEEE 2008], it is very likely that
more processors in the future will offer that combination of features.

The original IEEE-754 standard [American National Standards Institute
and Institute of Electrical and Electronic Engineers 1985] for radix-2 floating-
point arithmetic as well as its follower, the IEEE-854 radix-independent stan-
dard [American National Standards Institute and Institute of Electrical and
Electronic Engineers 1987], and the new revised standard [IEEE 2008] require
that the four arithmetic operations and the square root should be correctly
rounded. In a floating-point system that follows the standard, the user can
choose an active rounding mode from:

—rounding towards −∞: R D(x) is the largest machine number less than or
equal to x;

—rounding towards +∞: RU (x) is the smallest machine number greater than
or equal to x;

—rounding towards 0: R Z (x) is equal to R D(x) if x ≥ 0, and to RU (x) if x < 0;
—rounding to nearest: RN (x) is the machine number that is the closest to x

(with a special convention if x is halfway between two consecutive machine
numbers: the chosen number is the “even” one, that is, the one whose last
significand bit is a zero).2

1It was called “double extended” in the original IEEE-754 standard.
2The new version of the IEEE 754-2008 standard also specifies a “Round ties to Away” mode. We
do not consider it here.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:3

When a ◦ b is computed, where a and b are floating-point numbers and ◦ is
+, −, ×, or ÷, the returned result is what we would get if we computed a ◦ b
exactly, with “infinite” precision, and rounded it according to the active round-
ing mode. The default rounding mode is round-to-nearest. This requirement is
called correct rounding. Among its many interesting properties, one can cite
the following result (due to Dekker [1971]).

THEOREM 1 (FAST2SUM ALGORITHM). Assume the radix r of the floating-point
system being considered is 2 or 3, and that the used arithmetic provides cor-
rect rounding with rounding to nearest. Let a and b be floating-point num-
bers, and assume that the exponent of a is larger than or equal to that of
b. The following algorithm computes two floating-point numbers s and t that
satisfy:

—s + t = a + b exactly;
—s is the floating-point number that is closest to a + b.

Algorithm 1. FAST2SUM

function [s, t] = FastSum(a, b)
s := RN (a + b);
z := RN (s − a);
t := RN (b − z);

Note that the assumption that the exponent of a is larger than or equal to
that of b is ensured if |a| ≥ |b|, which is sufficient for our proofs in the sequel of
the paper. In the case of radix 2, it has been proven in Rump et al. [2005-2008]
that the result still holds under the weaker assumption that a is an integer
multiple of the unit in the last place of b.

If no information on the relative orders of magnitude of a and b is available
a priori, then a comparison and a branch instruction are necessary in the code
to appropriately order a and b before calling Fast2Sum (algorithm 1), which
is costly on most microprocessors. On current pipelined architectures, a wrong
branch prediction causes the instruction pipeline to drain. Moreover, both con-
ditions “the exponent of a is larger or equal to that of b” and “a is a multiple
of the unit in the last place of b” require access to the bit patterns of a and b,
which is also costly and results in a poorly portable code. However, there is an
alternative algorithm due to Knuth [1998] and Møller [1965], called 2Sum (algo-
rithm 2). It requires six operations instead of three for the Fast2Sum algorithm,
but on any modern computer the three additional operations cost significantly
less than a comparison followed by a branching.

The fma instruction allows one to design convenient software algorithms for
correctly rounded division and square root. It also has the following interesting
property. From two input floating-point numbers a and b, Algorithm 3 com-
putes c and d such that c + d = ab, and c is the floating-point number that is
nearest ab.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:4 • P. Kornerup et al.

Algorithm 2. 2SUM

function [s, t] = 2Sum(a, b)
s := RN (a + b);
b′ := RN (s − a);
a′ := RN (s − b′);
δb := RN (b − b′);
δa := RN (a − a′);
t := RN (δa + δb);

Performing a similar calculation without a fused multiply-add operation
is possible with an algorithm due to Dekker [1971], but this would re-
quire 17 floating-point operations instead of two. Transformations such as
2Sum, Fast2Sum, and Fast2Mult were called error-free transformations by
Rump [Ogita et al. 2005].

In the sequel of the article, we examine various methods for getting very
accurate (indeed: correctly rounded, in round-to-nearest mode) integer powers.
We first present in Section 2 our results about the hardest-to-round cases for the
power function xn. At the time of writing, we have determined these worst cases
only for n up to 733: as a consequence, we will always assume 3 ≤ n ≤ 733 in this
article. In Section 3, we deal with methods based on repeated multiplications,
where the arithmetic operations are performed with a larger accuracy using
algorithms such as Fast2Sum and Fast2Mult. We then investigate in Section 4
methods based on the identity

xn = 2n log2(x),

using techniques we have developed when building the CRlibm library of cor-
rectly rounded mathematical functions [Daramy-Loirat et al. 2006; de Dinechin
et al. 2007]. We report in Section 5 timings and comparisons for the various pro-
posed methods. In Section 6, we present our conclusions.

2. ON CORRECT ROUNDING OF FUNCTIONS

V. Lefèvre [1999; 2000; 2005] introduced a new method for finding hardest-
to-round cases for evaluating a regular unary function. That method allowed
Lefèvre and Muller [2001] to give such cases for the most familiar elementary
functions. Recently, Lefèvre adapted his software to the case of functions xn,
where n is an integer; this consisted in supporting a parameter n.

Let us briefly summarize Lefèvre’s method. The tested domain is split into
intervals, where the function can be approximated by a polynomial of a quite
small degree and an accuracy of about 90 bits. The approximation does not need

Algorithm 3. FAST2MULT

function [c, d] = Fast2Mult(a, b)
c := RN (ab);
d := RN (ab − c);

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:5

to be very tight, but it must be computed quickly; that is why Taylor’s expansion
is used. For instance, by choosing intervals of length 1/8192 of a binade, the
degree is 3 for n = 3, it is 9 for n = 70, and it is 12 to 13 for n = 500. These
intervals are split into subintervals where the polynomial can be approximated
by polynomials of smaller degrees, down to 1. How intervals are split exactly
depends on the value of n (the parameters can be chosen empirically, thanks to
timing measures). Determining the approximation for the following subinterval
can be done using fixed-point additions in a precision up to a few hundreds
of bits, and multiplications by constants. A filter of sublinear complexity is
applied on each degree-1 polynomial, eliminating most input arguments. The
remaining arguments (e.g., one over 232) are potential worst cases, which need
to be checked in a second step by direct computation in a higher accuracy.

Because of a reduced number of input arguments, the second step is much
faster than the first step and can be run on a single machine. The first step (every
computation up to the filter) is parallelized. The intervals are independent, so
that the following conventional solution has been chosen: a server distributes
intervals to the clients running on a small network of desktop machines.

All approximation errors are carefully bounded, either by interval arithmetic
or by static analysis. Additional checks for missing or corrupt data are also done
in various places. So, the final results are guaranteed (up to undetected software
bugs and errors in paper proofs).3

Concerning the particular case of xn, one has (2x)n = 2nxn. Therefore if two
numbers x and y have the same significand, their images xn and yn also have
the same significand. So only one binade needs to be tested,4 [1, 2) in practice.

For instance, in double-precision arithmetic, the hardest to round case for
function x458 corresponds to

x = 1.0000111100111000110011111010101011001011011100011010,

for which we have

x458 = 1.0001111100001011000010000111011010111010000000100101︸ ︷︷ ︸
53 bits

1

00000000 · · · 00000000︸ ︷︷ ︸
61 zeros

1110 · · · × 238,

which means that xn is extremely close to the exact middle of two consecu-
tive double-precision numbers. There is a run of 61 consecutive zeros after the
rounding bit. This case is the worst case for all values of n between 3 and 733.

This worst case has been obtained by an exhaustive search using the method
described above, after a total of 646,300 hours of computation for the first step
(sum of the times on each CPU core) on a network of processors. The time needed
to test a function xn increases with n, as the error on the approximation by a
degree-1 polynomial on some fixed interval increases. On the current network

3Work has started toward formalized proofs (in the EVA-Flo project, funded by the French Agence
Nationale de la Recherche).
4We did not take subnormals into account, but one can prove that the worst cases in all rounding
modes can also be used to round subnormals correctly.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:6 • P. Kornerup et al.

(when all machines are available), for n) 600, it takes between 7 and 8 h for
each power function. On a reference 2.2-Ghz AMD Opteron machine, one needs
an estimated time of 90 h core to test xn with n = 10, about 280 h for n = 40,
and around 500 h for any n between 200 and 600.

Table I gives the longest runs of identical bits after the rounding bit for
3 ≤ n ≤ 733.

3. ALGORITHMS BASED ON REPEATED MULTIPLICATIONS

3.1 Using a Double-Double Multiplication Algorithm

Algorithms Fast2Sum and Fast2Mult both provide “double-FP” results, namely,
couples (ah, a") of floating-point numbers such that (ah, a") represents ah + a"

and satisfies |a"| ≤ 1
2 ulp(ah). In the following, we need products of numbers

represented in this form. However, we will be satisfied with approximations
to the products, discarding terms of the order of the product of the two low-
order terms. Given two double-FP operands (ah +a") and (bh +b"), the following
algorithm DblMult (Algorithm 3) computes (ch, c") such that (ch + c") = [(ah +
a")(bh + b")](1 + η), where the relative error η is given by Theorem 2 below.

Algorithm 4. DBLMULT

function [c, d] = Dbl Mult(ah, a", bh, b")
[t1h, t1"] := FastMult(ah, bh);
t2 := RN (ahb");
t3 := RN (a"bh + t2);
t4 := RN (t1" + t3);
[ch, c"] := FastSum(t1h, t4);

THEOREM 2. Let ε = 2−p, where p ≥ 3 is the precision of the radix-2 floating-
point system used. If |a"| ≤ 2−p|ah| and |b"| ≤ 2−p|bh| then the returned value
[ch, c"] of function DblMult(ah, a", bh, b") satisfies

ch + c" = (ah + a")(bh + b")(1 + α), with |α| ≤ η,

where η := 7ε2 + 18ε3 + 16ε4 + 6ε5 + ε6.

Notes:

(1) as soon as p ≥ 5, we have η ≤ 8ε2;
(2) in the case of single precision (p = 24), η ≤ 7.000002ε2;
(3) in the case of double precision (p = 53), η ≤ 7.000000000000002ε2;
(4) in the case of extended precision (p ≥ 64), η ≤ 7.0000000000000000002ε2.

Moreover DblMult(1, 0, u, v) = DblMult(u, v, 1, 0) = [u, v], that is, the multi-
plication by [1, 0] is exact.

PROOF. We assume that p ≥ 3. Exhaustive tests in a limited exponent range
showed that the result still holds for p = 2, and the proof could be completed
for untested cases in this precision, but this is out of the scope of this article.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:7

Table I. Maximal Length k of the Runs of Identical Bits After the Rounding Bit (Assuming the
Target Precision is Double Precision) in the Worst Cases for n from 3 to 733

n k
32 48
76, 81, 85, 200, 259, 314, 330, 381, 456, 481, 514, 584, 598, 668 49
9, 15, 16, 31, 37, 47, 54, 55, 63, 65, 74, 80, 83, 86, 105, 109, 126, 130, 148, 156, 165, 168, 172,
179, 180, 195, 213, 214, 218, 222, 242, 255, 257, 276, 303, 306, 317, 318, 319, 325, 329, 342,
345, 346, 353, 358, 362, 364, 377, 383, 384, 403, 408, 417, 429, 433, 436, 440, 441, 446, 452,
457, 459, 464, 491, 494, 500, 513, 522, 524, 538, 541, 547, 589, 592, 611, 618, 637, 646, 647,
655, 660, 661, 663, 673, 678, 681, 682, 683, 692, 698, 703, 704

50

10, 14, 17, 19, 20, 23, 25, 33, 34, 36, 39, 40, 43, 46, 52, 53, 72, 73, 75, 78, 79, 82, 88, 90, 95,
99, 104, 110, 113, 115, 117, 118, 119, 123, 125, 129, 132, 133, 136, 140, 146, 149, 150, 155,
157, 158, 162, 166, 170, 174, 185, 188, 189, 192, 193, 197, 199, 201, 205, 209, 210, 211, 212,
224, 232, 235, 238, 239, 240, 241, 246, 251, 258, 260, 262, 265, 267, 272, 283, 286, 293, 295,
296, 301, 302, 308, 309, 324, 334, 335, 343, 347, 352, 356, 357, 359, 363, 365, 371, 372, 385,
390, 399, 406, 411, 412, 413, 420, 423, 431, 432, 445, 447, 450, 462, 465, 467, 468, 470, 477,
482, 483, 487, 490, 496, 510, 518, 527, 528, 530, 534, 543, 546, 548, 550, 554, 557, 565, 567,
569, 570, 580, 582, 585, 586, 591, 594, 600, 605, 607, 609, 610, 615, 616, 622, 624, 629, 638,
642, 651, 657, 665, 666, 669, 671, 672, 676, 680, 688, 690, 694, 696, 706, 707, 724, 725, 726,
730

51

3, 5, 7, 8, 22, 26, 27, 29, 38, 42, 45, 48, 57, 60, 62, 64, 68, 69, 71, 77, 92, 93, 94, 96, 98, 108,
111, 116, 120, 121, 124, 127, 128, 131, 134, 139, 141, 152, 154, 161, 163, 164, 173, 175, 181,
182, 183, 184, 186, 196, 202, 206, 207, 215, 216, 217, 219, 220, 221, 223, 225, 227, 229, 245,
253, 256, 263, 266, 271, 277, 288, 290, 291, 292, 294, 298, 299, 305, 307, 321, 322, 323, 326,
332, 349, 351, 354, 366, 367, 369, 370, 373, 375, 378, 379, 380, 382, 392, 397, 398, 404, 414,
416, 430, 437, 438, 443, 448, 461, 471, 474, 475, 484, 485, 486, 489, 492, 498, 505, 507, 508,
519, 525, 537, 540, 544, 551, 552, 553, 556, 563, 564, 568, 572, 575, 583, 593, 595, 597, 601,
603, 613, 619, 620, 625, 627, 630, 631, 633, 636, 640, 641, 648, 650, 652, 654, 662, 667, 670,
679, 684, 686, 687, 702, 705, 709, 710, 716, 720, 721, 727

52

6, 12, 13, 21, 58, 59, 61, 66, 70, 102, 107, 112, 114, 137, 138, 145, 151, 153, 169, 176, 177,
194, 198, 204, 228, 243, 244, 249, 250, 261, 268, 275, 280, 281, 285, 297, 313, 320, 331, 333,
340, 341, 344, 350, 361, 368, 386, 387, 395, 401, 405, 409, 415, 418, 419, 421, 425, 426, 427,
442, 449, 453, 454, 466, 472, 473, 478, 480, 488, 493, 499, 502, 506, 509, 517, 520, 523, 526,
532, 533, 542, 545, 555, 561, 562, 571, 574, 588, 590, 604, 608, 614, 621, 626, 632, 634, 639,
644, 653, 658, 659, 664, 677, 689, 701, 708, 712, 714, 717, 719

53

4, 18, 44, 49, 50, 97, 100, 101, 103, 142, 167, 178, 187, 191, 203, 226, 230, 231, 236, 273, 282,
284, 287, 304, 310, 311, 312, 328, 338, 355, 374, 388, 389, 391, 393, 394, 400, 422, 428, 434,
435, 439, 444, 455, 469, 501, 504, 511, 529, 535, 536, 549, 558, 559, 560, 566, 573, 577, 578,
581, 587, 596, 606, 612, 623, 628, 635, 643, 649, 656, 675, 691, 699, 700, 711, 713, 715, 718,
731, 732

54

24, 28, 30, 41, 56, 67, 87, 122, 135, 143, 147, 159, 160, 190, 208, 248, 252, 264, 269, 270, 279,
289, 300, 315, 339, 376, 396, 402, 410, 460, 479, 497, 515, 516, 521, 539, 579, 599, 602, 617,
674, 685, 693, 723, 729

55

89, 106, 171, 247, 254, 278, 316, 327, 348, 360, 424, 451, 463, 476, 495, 512, 531, 645, 697,
722, 728

56

11, 84, 91, 234, 237, 274, 407, 576, 695 57
35, 144, 233, 337, 733 58
51, 336 59
503 60
458 61

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:8 • P. Kornerup et al.

We will prove that the exponent of t4 is less than or equal to the exponent of
t1h. Thus we have t1h + t1" = ahbh and ch + c" = t1h + t4 (both exactly).

Now, let us analyze the other operations. In the following, the εi ’s are terms
of absolute value less than or equal to ε = 2−p. First, notice that a" = ε1ah
and b" = ε2bh. Since the additions and multiplications are correctly rounded (to
nearest) operations:

(1) t2 = ahb"(1 + ε3);
(2) t1" = ahbhε4 since (t1h, t1") = FastMult(ah, bh);
(3) t3 = (a"bh + t2)(1 + ε5)

= ahb" + a"bh + ahbh(ε1ε5 + ε2ε3 + ε2ε5 + ε2ε3ε5)
= ahb" + a"bh + ahbh(3ε2

6 + ε3
6);

(4) t4 = (t1" + t3)(1 + ε7)
= t1" + ahb" + a"bh + ahbh(ε4ε7 + ε2ε7 + ε1ε7 + (3ε2

6 + ε3
6)(1 + ε7))

= t1" + ahb" + a"bh + ahbh(6ε2
8 + 4ε3

8 + ε4
8).

We also need:
t4 = ahbh(ε4 + ε2 + ε1 + 6ε2

8 + 4ε3
8 + ε4

8) = ahbh(3ε9 + 6ε2
9 + 4ε3

9 + ε4
9),

where

∣∣3ε9 + 6ε2
9 + 4ε3

9 + ε4
9

∣∣ ≤ 1

for p ≥ 3. Thus |t4| ≤ |ahbh| and the exponent of t4 is less than or equal to
the exponent of t1h. From that we deduce the following:

(5) ch + c" = t1h + t4
= ahbh + ahb" + a"bh + ahbh(6ε2

8 + 4ε3
8 + ε4

8)
= ahbh + ahb" + a"bh + a"b" + ahbh(6ε2

8 + 4ε3
8 + ε4

8 − ε1ε2)
= (ah + a")(bh + b") + ahbh(7ε2

10 + 4ε3
10 + ε4

10).

Now, from ah = (ah + a")(1 + ε11) and bh = (bh + b")(1 + ε12), we get

ahbh = (ah + a")(bh + b")(1 + ε11 + ε12 + ε11ε12),

from which we deduce

ch + c" = (ah + a")(bh + b")(1 + 7ε2
13 + 18ε3

13 + 16ε4
13 + 6ε5

13 + ε6
13).

3.2 The IteratedProductPower Algorithm

Algorithm 5 below is our algorithm to compute an approximation to xn (for
n ≥ 1) using repeated multiplications with DblMult. The number of floating-
point operations used by the IteratedProductPower algorithm is between 8(1 +⌊
log2(n)

⌋
) and 8(1 + 2

⌊
log2(n)

⌋
).

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:9

Algorithm 5. ITERATEDPRODUCTPOWER

function [h, "] = Iterated Product Power(x, n)
i := n;
[h, "] := [1, 0];
[u, v] := [x, 0];
while i > 1 do

if (i mod 2) = 1 then
[h, "] := DblMult(h, ", u, v);

end;
[u, v] := DblMult(u, v, u, v);
i := *i/2+;

end do;
[h, "] := DblMult(h, ", u, v);

Due to the approximations performed in algorithm DblMult, terms corre-
sponding to the product of low-order terms are not included. A thorough error
analysis is performed below.

3.3 Error of Algorithm IteratedProductPower

THEOREM 3. The values h and " returned by algorithm IteratedProduct-
Power satisfy

h + " = xn(1 + α), with |α| ≤ (1 + η)n−1 − 1,

where η = 7ε2 + 18ε3 + 16ε4 + 6ε5 + ε6 is the same value as in Theorem 2.

PROOF. Algorithm 3, IteratedProductPower, computes approximations to pow-
ers of x, using xi+ j = xix j . By induction, one easily shows that, for k ≥ 1,
the approximation to xk is of the form xk(1 + αk), where |αk| ≤ (1 + η)k−1 − 1.
Indeed, the multiplication by [1, 0] is exact, and if we call β the relative error
(whose absolute value is bounded by η according to Theorem 2) when multiply-
ing together the approximations to xi and x j for i ≥ 1 and j ≥ 1, the induction
follows from

xix j (1 + αi)(1 + α j)(1 + β) = xi+ j (1 + αi+ j)

and

|αi+ j | = |(1 + αi)(1 + α j)(1 + β) − 1| ≤ (1 + |αi|)(1 + |α j |)(1 + |β|) − 1

≤ (1 + η)i+ j−1 − 1.

Let αmax := (1 + η)n−1 − 1 be the upper bound on the accuracy of the approx-
imation to xn computed by IteratedProductPower. Note that the bound is an
increasing value of n. Table II gives lower bounds on − log2(αmax) for several
values of n.

Define the significand of a nonzero real number u to be u/2*log2 |u|+. From
h + " = xn(1 + α), with |α| ≤ αmax, we deduce that (h + ")/2*log2 |xn|+ is within
2αmax from the significand of xn. From the results given in Table II, we deduce
that, for all practical values of n, (h + ")/2*log2 |xn|+ is within much less than
2−54 from the significand of xn (indeed, to get 2αmax larger than 2−54, we need

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:10 • P. Kornerup et al.

Table II. Binary Logarithm of the
Relative Accuracy − log2(αmax), for

Various Values of n, Assuming
Algorithm IteratedProductPower Is

Used in Double Precision

n − log2(αmax)
3 102.19

10 100.02
100 96.56

1000 93.22
10000 89.90

Table III. Binary Logarithm of the
Relative Accuracy − log2(αmax), for

Various Values of n, Assuming
Algorithm IteratedProductPower Is
Implemented in Extended Precision

n − log2(αmax)
3 124.19

10 122.02
100 118.56
458 116.35
733 115.67

1000 115.22
10000 111.90

n > 248). This means that RN (h + ") is within less than one ulp from xn, or,
more precisely:

THEOREM 4. If algorithm IteratedProductPower is implemented in double
precision, then RN (h + ") is a faithful rounding of xn, as long as n ≤ 248.

Moreover, for n ≤ 108, RN (h + ") is within 0.50000008 ulps from the exact
value: we are very close to correct rounding (indeed, we almost always return
a correctly rounded result), yet we cannot guarantee correct rounding, even
for the smallest values of n. This requires a much better accuracy, as shown
in Section 3.4. To guarantee a correctly rounded result in double precision, we
will need to run algorithm IteratedProductPower in extended precision.

3.4 Getting Correctly Rounded Values with IteratedProductPower

We are interested in getting correctly rounded results in double precision. To
achieve this, we assume that algorithm IteratedProductPower is executed in
extended precision. The algorithm returns two extended-precision numbers h
and " such that h + " = xn(1 + α), with |α| ≤ αmax. Table III gives lower bounds
on − log2(αmax) for several values of n, assuming the algorithm is realized in
extended precision. As expected, we are 22 bits more accurate. In the follow-
ing, double-FP numbers based on the extended-precision formats will be called
extended-extended.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:11

Fig. 1. Position of the hardest to round case y = x458 within rounding interval [a2−52; (a +1)2−52]
with breakpoint µ = (a + 1

2)2−52, for significand defined by integer a.

In the following, we shall distinguish two roundings: RNe means round-to-
nearest in extended precision and RNd is round-to-nearest in double precision.

Define a breakpoint as the exact midpoint of two consecutive double-precision
numbers. RNd (h + ") will be equal to RNd (xn) if and only if there are no break-
points between xn and h + ".

For n ≤ 733, Table I shows that, in the worst case, a run of 61 zeros or ones
follows the rounding bit in the binary expansion of xn, this worst case being
obtained for n = 458. As a consequence, the significand of xn is always at a
distance larger than 2−(53+61+1) = 2−115 from the breakpoint µ (see Figure 1).
On the other hand, we know that (h + ")/2*log2(xn)+ is within 2αmax of xn, with
bounds on αmax given in Table III: the best bound we can state for all values of
n less than or equal to 733 is 2αmax ≤ 2−114.67. Therefore, we have to distinguish
two cases to conclude about correct rounding:

—if n = 458 then, from Table III, we have 2αmax ≤ 2−115.35;
—if n ,= 458 then, from the worst cases reported in Table I, we know that the

significand xn is always at a distance larger than 2−(53+60+1) = 2−114 from the
breakpoint µ. Moreover, in this case, 2αmax ≤ 2−114.67.

As a consequence, in both cases RNd (h + ") = RNd (xn), which means that the
following result holds.

THEOREM 5. If algorithm IteratedProductPower is performed in extended
precision, and if 3 ≤ n ≤ 733, then RNd (h + ") = RNd (xn): hence by round-
ing h + " to the nearest double-precision number, we get a correctly rounded
result.

Now, two important remarks:

—We do not have the worst cases for n > 733, but from probabilistic arguments,
we strongly believe that the lengths of the largest runs of consecutive bits
after the rounding bit will be of the same order of magnitude for some range
of n above 733. However, it is unlikely that we will be able to show correct
rounding in double precision using the same techniques as above for larger
values of n.

—On an Intel Itanium processor, it is possible to directly add two extended-
precision numbers and round the result to double precision without a “double
rounding” (i.e., without having an intermediate sum rounded to extended
precision). Hence Theorem 5 can directly be used. Notice that the revised
standard IEEE Std. 754tm-2008 [IEEE 2008] includes the fma as well as
rounding to any specific destination format, independent of operand formats.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:12 • P. Kornerup et al.

Table IV. Binary Logarithm of the
Relative Accuracy − log2 αmax in

Theorem 6

n − log2(αmax)
3 62.99

10 60.83
32 59.04

100 57.37
512 55.00
513 54.99

1000 54.03
10000 50.71

3.5 Two-Step Algorithm Using Extended Precision

Now we suggest another approach: first compute an approximation to xn using
extended precision and a straightforward, very fast, algorithm (Algorithm 6).
Then check if this approximation suffices to get RN (xn). If it does not, use the
IteratedProductPower algorithm presented above.

Let us first give the algorithm. All operations are done in extended precision.

Algorithm 6. DBLEXTENDEDPOWER

function pow = DbleX tended Power(x, n)
i := n;
pow := 1;
u := x;
while i > 1 do

if (i mod 2) = 1 then
pow := RN e(pow · u);

end;
u := RN e(u · u);
i := *i/2+;

end do;
pow := RN e(pow · u);

Using the very same proof as for Theorem 3, one easily shows the following
result.

THEOREM 6. The final result pow of algorithm DbleXtendedPower satisfies

pow = xn(1 + α), with |α| ≤ αmax,

where αmax = (1 + 2−64)n−1 − 1.

Table IV could be used to show that, up to n = 512, Algorithm 4 (run in
extended precision) can be used to guarantee faithful rounding (in double pre-
cision).

But what is of interest here is correct rounding. For example, if n ≤ 32 then
from Table IV, it follows that |α| < 2−59, which means that the final result
pow of algorithm DbleXtendedPower is within 253 × 2−59 = 1/64 ulp from xn.
This means that, if the bits 54 to 59 of pow are not 100000 or 011111, then

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:13

rounding pow to the nearest floating-point number will be equivalent to round-
ing xn. Otherwise, if the bits 54 to 59 of pow are 100000 or 011111 (which may
occur with probability 1/32), we will have to run a more accurate but slower
algorithm, such as algorithm IteratedProductPower. We implemented this ap-
proach to check whether correct rounding is already possible from the evalu-
ation with DbleXtendedPower thanks to a well-known and efficient test [Ziv
1991; Daramy-Loirat et al. 2006].

3.6 When n Is a Constant

Frequently n is a constant, that is, n is known at compile-time. In such a case,
it is possible to simplify the iterated product algorithm, as well as the two-
step algorithm (that uses algorithm DbleXtendedPower first, and the other
algorithm only if the extended-precision result does not make it possible to
deduce a correctly rounded value). The possible simplifications are as follows:

—the loops can be unrolled, there is no longer any need to perform the compu-
tations “i := *i/2+”, nor to do tests on variable i;

—moreover, for the first values of n, addition chains to obtain the minimal
number of multiplications needed to compute a power are known. This can
be used for optimizing the algorithm. For instance, for n up to 10001, such
addition chains can be obtained online.5

Since all the branches are resolved a priori, some obvious optimizations can
also be performed without any (possibly costly) additional branch in the code.
For instance, at the first iteration of the loop in Algorithm 5, since we know
that v = 0, the statement [u, v] := DblMult(u, v, u, v) is replaced by [u, v] :=
FastMult(u, u).

4. AN ALGORITHM BASED ON LOGARITHMS AND EXPONENTIALS

With binary asymptotic complexity in mind [Brent 1976], it might seem silly to
compute xn by

xn = 2n·log2 x .

However, in this section, we are going to show that, on actual superscalar and
pipelined hardware, if n is large enough, the situation is different. For that
purpose, we consider an implementation on the Itanium architecture. Itanium
offers both extended precision and the fma instruction, as well as some other
useful operations. These features permit achieving high performance: in the
timings reported in Section 5, the measured average evaluation time for xn is
equivalent to about 21 sequential multiplications on Itanium 2.

4.1 Basic Layout of the Algorithm

We combine the scheme for xn based on logarithms and exponentials with a
two-step approximation approach. This approach has already been proven effi-
cient for common correctly rounded elementary functions [Gal 1986; Ziv 1991;

5http://www.research.att.com/ njas/sequences/b003313.txt.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:14 • P. Kornerup et al.

Fig. 2. Two-step exponential of logarithm approach.

de Dinechin et al. 2005]. It is motivated by the rarity of hard-to-round cases.
In most cases, an approximation which is just slightly more accurate than the
final precision suffices to ensure correct rounding. Only in rare cases, the re-
sult of the function must be approximated up to the accuracy demanded by the
worst cases [Gal 1986; Ziv 1991; de Dinechin et al. 2005]. There is a well-known
and efficient test whether correct rounding is already possible with small ac-
curacy [Ziv 1991; Daramy-Loirat et al. 2006]. We prove in the sequel that our
scheme computes xn correctly rounded for n up to 733.

The proposed scheme is shown in Figure 2. The function 2n·log2(x) is first
approximated with an accuracy of 2−59.17. These 6.17 guard bits with respect

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:15

to double precision make the hard-to-round-case probability as small as about
2 · 2−6.17 ≈ 2.8%, which means that the first step is successful with probability
97.2%. If rounding is not possible, correct rounding is ensured by the second
step, which provides an accuracy of 2−116.

We have designed the second step to take advantage of the superscalar
capabilities of the Itanium processor. Indeed, as the approximate logarithm
" = log2(x) + δ computed at the first step is already available, it is possible to
perform in parallel the computation of the more accurate logarithm and expo-
nential. For this purpose, we write

xn = 2n log2(x) = 2n"2−nδ,

where δ denotes as before the error in the approximation " to log2(x) computed
at the first step. In the second step, a new approximation to 2n" is computed
with a relative error bounded by 2−117. In parallel, log2(x) is computed with a
corresponding accuracy, and an approximate δ is deduced. The multiplication of
2n" by 2−nδ is then approximated using the first-order expansion 2−nδ = 1−cnδ.
After this final correction step, the relative error in the computed value of xn is
bounded by 2−116, which is sufficient to ensure correct rounding for n up to 773
according to the worst cases reported in Table I.

The logarithm and the exponential approximation subalgorithms follow the
well-known principles of table lookup and polynomial approximation, both in
the first and the second step. The algorithms implemented are variants of the
techniques presented in [Wong and Goto 1994; Cornea et al. 2002; Lauter 2003;
de Dinechin et al. 2007]. Our implementation uses about 8 kbytes of tables. The
approximation polynomials have optimized floating-point coefficients [Brise-
barre and Chevillard 2007].

In the sequel of the section, we give details on the implementation of the
logarithm and the exponential, and a sketch of the error analysis to bound the
error in the computed value of xn.

4.2 Implementation of the Logarithm

Both in the first and in the second step, the logarithm log2 x is based on the
following argument reduction:

log2 x = log2
(
2E · m

)

= E + log2 (m · r) − log2 r
= E + log2

(
1 +

(
m · r − 1

))
− log2 r

= E + log2
(
1 + z

)
+ log2 r

= E + p(z) + logtblr[m] + δ.

In this argument reduction, the decomposition of x into E and m can be per-
formed using Itanium’s getf and fmerge instructions [Cornea et al. 2002].

The value r is produced by Itanium’s frcpa instruction. This instruction gives
an approximate to the reciprocal of m with at least 8.886 valid bits [Cornea et al.
2002]. The instruction is based on a small table indexed by the first 8 bits of
the significand (excluding the leading 1) of x. This makes it possible to tabulate

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:16 • P. Kornerup et al.

the values of log2 r in a table indexed by these first 8 bits of the significand
of m.

The reduced argument z can exactly be computed with an fma:

z = RN e
(
m · r − 1

)
.

Indeed, as can easily be verified on the 256 possible cases, the frcpa instruc-
tion [Cornea et al. 2002] returns its result r on floating-point numbers with at
most 11 leading nonzero significand bits. Since x is a double-precision number,
x · r holds on 53 + 11 = 64 bits, and hence is an extended-precision number. No
rounding occurs on the subtraction x · r − 1 as per Sterbenz’ lemma [Sterbenz
1974].

The exactness of the reduced argument z makes it possible to reuse it in
the second, more accurate step of the algorithm. It is worth to remark that
the latency for obtaining the reduced argument is small. It is produced by only
three depending operations: fmerge, frcpa, and fms.

The tabulated values logtbl [m] for log2 r are stored as a sum of two extended-
precision numbers: logtblrhi[m] + logtblrlo[m]. The absolute error of the en-
tries with respect to the exact value log2 r is bounded by 2−130. Both extended-
precision numbers of an entry are read in the first step of the algorithm. The
second step can reuse the values directly.

The magnitude of the reduced argument z is bounded as follows: we have
r = 1

m ·
(
1 + εr

)
with |εr | ≤ 2−8.886. Hence

z = m · r − 1 = 1
m

·
(
1 + εr

)
· m − 1 = εr

is bounded by 2−8.886.
The function log2

(
1 + z

)
is approximated using a polynomial of degree 6

for the first step and of degree 12 for the second step. The corresponding ab-
solute approximation errors are bounded by 2−69.49 respectively 2−129.5. The
polynomials have optimized floating-point coefficients. We minimize the num-
ber of extended-precision and double-precision coefficients as follows: double-
precision numbers are preferred to extended-precision numbers and single-
precision numbers are preferred to double-precision numbers. The reason is
that memory load times on Itanium increase with increasing precision of the
constants loaded. For instance, double-precision numbers can be loaded twice
as fast as extended-precision numbers [Cornea et al. 2002; Markstein 2000].

The approximation polynomials are evaluated using a mixture of Estrin and
Horner scheme [Cornea et al. 2002; Muller 2006; de Dinechin et al. 2007; Revy
2006]. In the first step, extended precision is sufficient for obtaining an absolute
roundoff error less than 2−70. In the second, accurate step, extended-extended
arithmetic is used: each number is represented as a pair of extended-precision
floating-point numbers, and variants of the DblMult algorithm are used for
the aritmetic operations. This yields an absolute roundoff error less than
2−130.

Reconstruction of the value of log2 out of the polynomial approximation and
the table values is performed in extended-extended arithmetic in both steps.
The value of log2 x is returned in three registers E, "hi and "lo. In the first step,

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:17

a modified version of the Fast2Sum algorithm is used that ensures that "hi is
written only on 53 bits (double precision).

4.3 Implementation of the Exponential

The following argument reduction is used for the exponential function 2t :

2t = 2M · 2t−M

= 2M · 2i1·2−7 · 2i2·2−14 · 2t−(M+i1·2−7+i2·2−14)

= 2M · 2i1·2−7 · 2i2·2−14 · 2u−'

= 2M · exptbl1[i1] ·
(
1 + exptbl2[i2]

)
· q(u) ·

(
1 + ε

)
.

Here the values M , i1 and i2 are integers. They are computed from

t = n · E + n · "hi + n · "lo

using the fma, shifts, and Itanium’s getf instruction giving the significand of
a number as follows:

s = RN e

(
n · "hi +

(
249 + 248

))
,

a = RN e

(
s −

(
249 + 248

))
=

⌊
n · "hi · 214

⌉
,

b = RN e (n · "hi − a) ,
u = RN e (n · "lo + b) ,
k = getf(s),

M = k ÷ 214,

i1 =
(
k ÷ 27

)
mod 27,

i2 = k mod 27.

In this sequence, all floating-point operations except those producing s and u
are exact by Sterbenz’ lemma [Sterbenz 1974]. The error in s is compensated
in the following operations; actually, it is b. The absolute error ' the value u is
affected of is bounded by 2−78 because u is upper-bounded by 2−15.

For approximating 2u for u ∈
[
−2−15; 2−15], a polynomial of degree 3 is used

in the first step and a polynomial of degree 6 is the second, accurate step. The
polynomials provide a relative accuracy of 2−62.08 respectively 2−118.5.

The table values exptbl1[i1] and exptbl2[i2] are all stored as extended-
extended numbers. Only the higher parts are read in the first step. The second
step reuses these higher parts and reads the lower parts. The reconstruction
is performed with extended-precision multiplications in the first step and with
DblMult in the second step.

The first step delivers the final result 2n·log2 x ·
(
1 + ε1

)
as two floating-point

numbers rhi and rlo. The value rhi is a double-precision number; hence rlo is a
roundoff error estimate of rounding xn to double precision.

In the second step, the exponential 2n·" is corrected by

2δ′′ = 2n·(E+i1·27+i2·214+u)−n·(E+"′) = 2δ−',

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:18 • P. Kornerup et al.

where "′ is an accurate approximation to the logarithm. The correction first
approximates δ′′ = n ·

(
E + i1 · 27 + i2 · 214 + u

)
− n ·

(
E + "′) up to 58 bits and

then uses a polynomial of degree 1 for approximating the correction 2δ′′ . The
final result is delivered as an extended-extended value.

The function xn has some arguments for which it is equal to the midpoint
of two consecutive double-precision numbers, an example is 917. For rounding
correctly in that case, the tie-to-even rule must be followed. The final rounding
after the second accurate approximation step must hence distinguish the two
cases. The separation is easy because the worst cases of the function are known:
if and only if the approximation is nearer to a midpoint than the worst case of
the function, the infinitely exact value of the function is a midpoint. See Lauter
and Lefvre [2009] for details on the technique.

4.4 Complete Error Bounds

A complete, perhaps formal proof of the error bounds for the two steps of the
algorithm goes beyond the scope of this article. Following the approach pre-
sented in de Dinechin, Lauter, and Melquiond [2006] and Daramy-Loirat, De-
four, de Dinechin, Gallet, Gast, Lauter, and Muller [2006], the Gappa tool can
be used for this task. Bounds on approximation errors can safely be certified
using approaches found in Chevillard and Lauter [2007]. Let us give just the
general scheme of the error bound computation and proof for the first step of
the presented algorithm.

We are going to use the following notations:

—E + " = E + "hi + "lo stands for the approximation to the logarithm, log2 x,
—δ is the associated total absolute error;
—δtable, δapprox , δeval , and δreconstr are the absolute errors of the tables, the ap-

proximation, the evaluation and reconstruction of the logarithm;
—rhi + rlo stands for the approximation to xn = 2n·log2 x ;
—ε f irststep is the associated total relative error;
—ε1 is the total relative error due only to the approximation to the exponential

without the error of the logarithm;
—εtable, εapprox , εeval , and εreconstr are the relative errors of the tables, the ap-

proximation, the evaluation, and reconstruction of the exponential, and
—' stands for the absolute error the reduced argument u of the exponential is

affected with.

The following error bound can hence be given:

rhi + rlo = 2M · 2i1·2−7 · 2i2·2−14 · p(u) ·
·(1 + εreconstr) · (1 + εtable) · (1 + εeval)

= 2M · 2i1·2−7 · 2i2·2−14 · 2u−'

·2' · (1 + εreconstr) · (1 + εtable) · (1 + εeval) · (1 + εapprox)

= 2n·(E+"hi+"lo) · (1 + ε1),

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:19

where ε1 is bounded by

|ε1| ≤ εreconstr + εtable + εeval + εapprox + 2 · ' + O(ε2).

With |εreconstr | ≤ 3 · 2−64, |εtable| ≤ 3 · 2−64, |εeval | ≤ 4 · 2−64,
∣∣εapprox

∣∣ ≤ 2−62.08,
and |'| ≤ 2−78, this gives

|ε1| ≤ 2−60.5.

Additionally, we obtain for E + "hi + "lo:

E + "hi + "lo = E + logtblrhi[m] + logtblrlo[m] + p(z) + δeval + δreconstr

= E + log2(r) + log2(1 + z) + δtable + δapprox + δeval + δreconstr

= log2(x) + δtable + δapprox + δeval + δreconstr

= log2(x) + δ.

Since
∣∣δapprox

∣∣ ≤ 2−69.49, |δeval | ≤ − log2
(
1 − 2−8.886) · 3 · 2−64 ≤ 2−70.7, |δtable| ≤

2−128, and |δreconstr | ≤ 2−117, we get

|δ| ≤ 2−68.9.

These bounds eventually yields

rhi + rlo = 2n·("hi+"lo) ·
(
1 + ε1

)

= 2n·log2(x) · 2n·δ ·
(
1 + ε1

)

= xn ·
(
1 + ε f irststep

)
.

With n ≤ 733, this gives
∣∣ε f irststep

∣∣ ≤ 2733·2−68.9 ·
(
1 + 2−60.5

)
− 1 ≤ 2−59.17.

For the second step, a similar error bound computation can be performed.
One deduces that the overall relative error ε2 of the second step is bounded
by |ε2| ≤ 2−116. This is sufficient for guaranteeing correct rounding for n up to
733.

5. COMPARISONS AND TESTS

In this section, we report timings for the various algorithms described above.
The algorithms have been implemented on the Intel/HP Itanium architecture,
using the Intel ICC compiler.6 We compared the following programs:

—IteratedProductPower: our implementation follows Algorithm 5 strictly.
—Two-step IteratedProductPower: for the first, “fast” step we use Algorithm 4,

and if needed, for the “accurate” step we use Algorithm 5 (see Section 3.5).
—IteratedProductPower and two-step IteratedProductPower with constant n:

these implementations are the same as the two previous ones, except that
the exponent n is fixed a priori (see Subsection 3.6). To take this information
into account, a different function has been implemented for each exponent n
considered. In the experiments reported hereafter, we consider exponents n

6We used ICC v10.1, on an Itanium 2-based computer.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:20 • P. Kornerup et al.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

A
ve

ra
ge

 ti
m

in
g

(in
 c

lo
ck

 c
yc

le
s)

Exponent n

IteratedProductPower
IteratedProductPower, n constant

Log-exp algorithm
IteratedProductPower, two-step

IteratedProductPower, two-step, n constant 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 130 180 230 280 330 380 430 480 530 580
Exponent n

IteratedProductPower
IteratedProductPower, n constant

Log-exp algorithm
IteratedProductPower, two-step

IteratedProductPower, two-step, n constant

Fig. 3. Average-case timings.

 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

A
ve

ra
ge

 ti
m

in
g

(in
 c

lo
ck

 c
yc

le
s)

Exponent n

Log-exp algorithm
IteratedProductPower, two-step

IteratedProductPower
IteratedProductPower, n constant

IteratedProductPower, two-step, n constant 0
 25
 50
 75

 100
 125
 150
 175
 200
 225
 250
 275
 300
 325
 350

 130 180 230 280 330 380 430 480 530 580
Exponent n

Log-exp algorithm
IteratedProductPower, two-step

IteratedProductPower
IteratedProductPower, n constant

IteratedProductPower, two-step, n constant

Fig. 4. Worst-case timings.

ranging from 3 to 600: we have used an automated code generator to produce
C code for each of these functions.

—Log-exp algorithm described in Section 4: let us underline that this imple-
mentation, in contrast to the others, checks for special cases in input, such
as ±∞ or NaN; subnormal rounding is also supported. This slightly favors
the other implementations in the timings.

First we consider the average timings for computing xn rounded to the near-
est floating-point value. For each n from 3 to 600, we compute the average ex-
ecution time for 16384 double-precision arguments randomly generated in the
interval [1, 2]. We report in Figure 3 the average timings over these arguments
with respect to n.

We also report in Figure 4 the worst-case timings. For a function based
on the two-step approach, the worst-case timing is the timing of a call to
this function with an input x that causes the second step to be executed
(the input x need not be a worst case as defined in Section 2 for this). We
also recall in Figure 4 the timings for the other functions for comparison
purposes.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:21

Table V. Timings (in Clock Cycles) for Tested Functions

Iterated Two-step iterated Log-exp Two-step iterated (n fixed)
product

n power Average Worst Average Worst Iterated (n fixed) Average Worst
3 53 25.3 73 80.1 326 28 17.1 27
4 77 29.5 101 79.5 326 32 21.1 33
5 77 29.6 101 79.4 326 48 22.2 49
6 77 29.7 101 80.0 326 56 21.3 57
7 77 29.6 101 79.7 326 56 22.3 57
8 101 35.7 130 80.2 326 56 26.5 57
9 101 35.5 130 79.7 326 72 26.8 73

10 101 35.4 130 79.6 326 80 26.8 81
15 101 35.5 130 79.7 326 80 26.9 81
16 125 43.8 160 79.9 326 80 31.6 81
17 125 43.8 160 79.6 326 96 32.1 97
18 125 43.7 160 79.5 326 104 32.3 105
31 125 44.0 160 80.0 326 104 32.5 105
32 149 55.8 191 79.7 326 104 37.4 105
33 149 55.9 191 80.0 326 120 39.4 121
34 149 56.0 191 79.4 326 128 39.0 129
63 149 56.1 191 80.0 326 128 40.0 129
64 177 78.0 229 80.0 326 128 48.7 129
65 177 77.4 229 80.2 326 144 51.2 145
66 177 77.9 229 80.3 326 152 51.7 153

127 177 77.3 231 79.4 326 152 52.2 154
128 201 109.1 257 79.6 326 152 68.9 154
129 201 109.3 257 79.8 326 168 73.8 169
130 201 109.6 257 79.8 326 176 75.2 177
255 201 109.8 257 79.6 326 176 76.1 178
256 225 119.5 285 79.4 326 176 78.2 178
257 225 225.0 285 79.8 326 192 192.0 192
258 225 225.0 285 80.1 326 200 200.0 200
511 225 225.0 285 79.4 326 200 199.0 200
512 249 249.0 285 79.8 326 200 200.0 200
513 249 249.0 285 79.9 326 216 216.0 216
514 249 249.0 285 80.3 326 224 224.0 224
600 249 249.0 285 79.6 326 224 224.0 224

Finally, the timings for some typical values of the exponent n are reported in
Table V: the timings for each “step” observed in the graphics of Figures 3 and 4
can be read in this table.

From these timings, we can see that, in the worst cases, the implementations
based on iterated products are always more efficient than the one based on the
log-exp. Moreover, if we consider the average timings reported in Figure 3 and
in Table V, we can make the following observations:

—The average, and worst-case timings for the log-exp implementation are con-
stant with respect to n, with an average execution time of about 80 clock
cycles and a worst case execution time of 236 cycles.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

4:22 • P. Kornerup et al.

—The straightforward (one-step) IteratedProductPower algorithm is more ef-
ficient on average than the log-exp only for n ≤ 9.

—The implementations of the two-step IteratedProductPower algorithm with
n fixed are significantly more efficient than the log-exp approach as long as
n ≤ 128.

6. CONCLUSIONS

We have introduced several algorithms for computing xn, where x is a double-
precision floating-point number, and n is an integer, 3 ≤ n ≤ 733. Our
multiplication-based algorithms require the availability of a fused multiply-add
(fma) instruction, and an extended-precision format for intermediate calcula-
tions.

According to our experiments, the best choice depends on the order of mag-
nitude of the exponent n, on whether n is known at compile-time or not, and on
whether one is interested in the best:

—Worst-case performance. Then Algorithm 5 (IteratedProductPower) is prefer-
able (at least, up to n = 733, since we do not have a proof that our algorithms
work for larger values);

—Average-case performance and n is not a constant. Then the two-step Iterat-
edProductPower algorithm should be used for n less than around 60, and the
log-exp algorithm should be used for larger values of n;

—Average-case performance and n is a constant. Then the “specialized” two-
step IteratedProductPower algorithm should be used for n less than around
250, and the log-exp algorithm should be used for larger values of n.

REFERENCES

AMERICAN NATIONAL STANDARDS INSTITUTE AND INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS.
1985. IEEE Standard for Binary Floating-Point Arithmetic, (ANSI/IEEE Standard 754-1985).
ANSI/IEEE, New York, NY.

AMERICAN NATIONAL STANDARDS INSTITUTE AND INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS.
1987. IEEE Standard for Radix Independent Floating-Point Arithmetic, (ANSI/IEEE Standard
854-1987). ANSI/IEEE, New York, NY.

BRENT, R. P. 1976. Fast multiple-precision evaluation of elementary functions. J. ACM 23, 2,
242–251.

BRISEBARRE, N. AND CHEVILLARD, S. 2007. Efficient polynomial L∞ approximations. In Proceedings
of the 18th IEEE Symposium on Computer Arithmetic (ARITH18). IEEE Computer Society Press,
Los Alamitos, CA, 169–176.

CHEVILLARD, S. AND LAUTER, C. 2007. A certified infinite norm for the implementation of elemen-
tary functions. In Proceedings of the 7th International Conference on Quality Software. IEEE
Computer Society Press, Los Alamitos, CA, 153–160.

CORNEA, M., HARRISON, J., AND TANG, P. T. P. 2002. Scientific Computing on Itanium-Based Systems.
Intel Press, Hillsboro, OR.

DARAMY-LOIRAT, C., DEFOUR, D., DE DINECHIN, F., GALLET, M., GAST, N., LAUTER, C. Q., AND MULLER, J.-M.
2006. Cr-libm, a library of correctly-rounded elementary functions in double-precision. Tech.
rep. Arenaire team, LIP Laboratory, ENS Lyon, Lyon, France. https://lipforge.ens-lyon.fr/
frs/download.php/99/crlibm-0.18beta1.pdf. Dec.

DE DINECHIN, F., ERSHOV, A., AND GAST, N. 2005. Towards the post-ultimate libm. In Proceedings of
the 17th IEEE Symposium on Computer Arithmetic (ARITH17). IEEE Computer Society Press,
Los Alamitos, CA.

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

P1: xxx
TOMS3701-04 ACM-TRANSACTION December 18, 2009 6:8

Computing Correctly Rounded Integer Powers • 4:23

DE DINECHIN, F., LAUTER, C. Q., AND MELQUIOND, G. 2006. Assisted verification of elementary func-
tions using Gappa. In Proceedings of the 21st Annual ACM Symposium on Applied Computing—
MCMS Track, P. Langlois and S. Rump, Eds. Vol. 2. (ACM) Press, New York, NY, 1318–1322.

DE DINECHIN, F., LAUTER, C. Q., AND MULLER, J.-M. 2007. Fast and correctly rounded logarithms in
double-precision. RAIRO, Theoret. Informat. and Appl. 41, 85–102.

DEKKER, T. J. 1971. A floating-point technique for extending the available precision. Numer. Math.
18, 224–242.

GAL, S. 1986. Computing elementary functions: A new approach for achieving high accuracy
and good performance. In Accurate Scientific Computations. Lecture Notes in Computer Science,
vol. 235. Springer, Berlin, Germany, 1–16.

IEEE. 2008. IEEE Standard for Floating-Point Arithmetic. (IEEE Standard 754TM-2008). IEEE,
New York, NY.

KNUTH, D. 1998. The Art of Computer Programming, 3rd ed. Vol. 2. Addison-Wesley, Reading,
MA.

LAUTER, C. 2003. A correctly rounded implementation of the exponential function on the Intel
Itanium architecture. Tech. Rep. RR-5024, INRIA. Nov. http://www.inria.fr/rrrt/rr-5024.html.

LAUTER, C. AND LEFVRE, V. 2009. An efficient rounding boundary test for pow(x,y) in double
precision. IEEE Trans. on Comput. 58, 2 (Feb.), 197–207.

LEFÈVRE, V. 1999. Developments in Reliable Computing. Kluwer Academic Publishers, Dordrecht,
The Netherlands. Chapter “An Algorithm That Computes a Lower Bound on the Distance Be-
tween a Segment and Z2,” 203–212.

LEFÈVRE, V. 2000. Moyens arithmétiques pour un calcul fiable. Ph.D. dessertation. École Normale
Supérieure de Lyon, Lyon, France.

LEFÈVRE, V. 2005. New results on the distance between a segment and Z2. Application to the exact
rounding. In Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH17). IEEE
Computer Society Press, Los Alamitos, CA, 68–75.

LEFÈVRE, V. AND MULLER, J.-M. 2001. Worst cases for correct rounding of the elementary func-
tions in double precision. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH15). IEEE Computer Society Press, Los Alamitos, CA.

LI, R.-C., MARKSTEIN, P., OKADA, J., AND THOMAS, J. 2002. The libm library and floating-point arith-
metic in hp-ux for itanium 2. Tech. rep. Hewlett-Packard, Palo Alto, CA. http://h21007.www2.
hp.com/dspp/files/unprotected/libm.pdf.

MARKSTEIN, P. 2000. IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard
Professional Books. Prentice Hall, Englewood Cliffs, NJ.

MøLLER, O. 1965. Quasi double-precision in floating-point addition. BIT 5, 37–50.
MULLER, J.-M. 2006. Elementary Functions, Algorithms and Implementation, 2nd ed. Birkhäuser

Boston, MA.
OGITA, T., RUMP, S. M., AND OISHI, S. 2005. Accurate sum and dot product. SIAM J. Sci. Comput.

26, 6, 1955–1988.
REVY, G. 2006. Analyse et implantation d’algorithmes rapides pour l’évaluation polynomiale sur

les nombres flottants. M.S. dessertation. École Normale Supérieure de Lyon, Lyon, France.
RUMP, S. M., OGITA, T., AND OISHI, S. 2005–2008. Accurate floating-point summation part I: Faith-

ful rounding. SIAM J. Sci. Comput.. To appear.
STERBENZ, P. H. 1974. Floating Point Computation. Prentice-Hall, Englewood Cliffs, NJ.
WONG, W. F. AND GOTO, E. 1994. Fast hardware-based algorithms for elementary function com-

putations using rectangular multipliers. IEEE Trans. Comput. 43, 3 (Mar.), 278–294.
ZIV, A. 1991. Fast evaluation of elementary mathematical functions with correctly rounded last

bit. ACM Trans. Math. Softw. 17, 3 (Sep.), 410–423.

Received May 2008; revised January 2009; accepted May 2009

ACM Transactions on Mathematical Software, Vol. 37, No. 1, Article 4, Publication date: January 2010.

