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Appendix: tables, proofs and intermediate lemmas

We will frequently use the two following well-known properties, whose proofs are
straightforward:

Property 5

e Lety € M,,. There existg € N such thatl /y belongs taVi, if and only ify is a
power of2.

e If m > n, the exact quotient of twe-bit numbers cannot be an-bit number.
o letz,yeM,.x #y=|z/y—1]>27"

We call abreakpoint a valuez where the rounding changes, that is;iandt, are
real numbers satisfying < z < t, ando, is the rounding mode, then(t;) < o(t2).
For “directed” rounding modes (i.e., towarésc, —oo or 0), the breakpoints are the FP
numbers. For rounding to the nearest mode, they are the exact middle of two consecutive
FP numbers.

Fora € M,,, we definea™ as itssuccessoin M,,, that is,a™ = min{b € M,,,b >
a}, anda~ as thepredecessor ofi, that is,a™ = max{b € M,,,b < a}.

The next result gives a lower bound on the distance between a breakpoint (in round-
to-nearest mode) and the quotient of two FP numbers.

Property 6 If z,y € M,,, 1 < x,y < 2, then the distance betweerly and the middle
of two consecutive FP numbers is Iower-bounded;@%m > 2% if x > y; and

Lw > 22”% otherwise. Moreover, if the last mantissa bitak a zero, then the lower

y><22n

bounds become twice these ones.



Proof of Property 1. Let x,y € M,,. Without loss of generality, we can assume that
andy belong to[1, 2). Since the cases, y = 1 or 2 are straightforward, we assume that
x andy belong to(1, 2). Thusl/y ¢ M,,. Sincez, = o,(z) andz € (1/2,1), we have,

)i — zh’ < 271 Therefore,

<9 (1)

T
— — IZp
Y

From Property 5 and (1), we cannot havg, > 1 andzz, < 1 or the converse. So
xz andzz, belong to the same “binade” (i.e., dlp;,) = ulp(zz)). Now, there are two
possible cases:

o if z >y, then|zz, —o,(z2;)] < 27", s0|x/y — o, (xzy)| < 27" = ulp(z/y).

o if z < y, then|zz, —o,(z2,)] < 27771, s0|x/y — o, (xz,)] < 3 x 27771 =
1.5 x ulp(z/y).

O

To analyze the behavior of Algorithm 1, we will need the following property.

Property 7 If x < y and1 < x,y < 2, then the naive solution returns a resylsuch

that eitherq is within 1 ulp fromz /y, or 2 /y is at least at a distancé_Qy"i 4272t _

—2_3;+2 from a breakpoint of the round-to-nearest mode.

Proof of Property 7. The proof is similar to that of Property 1. We use the tighter
bounds:

o |1/y — z,| <2771 — 2727 /y (this comes from Property 6:/y is at a distance at
least2~2" /y from a breakpoint);

o 1 < 2— 272 (this comes fromx < y < 2, which impliesz < (27)7).

Combining these bounds gives

2—2n+1 2—3n+2
. 2—2n+1 +
Yy Yy

X

——xz| <277 —

The final bound’,,,;,, is obtained by adding the/2 ulp bound onzz;, — o, (zz)|:

I 272n+1 Coni1 273n+2
<lpm=3x2ml_2 9 +
Yy Yy

T
— —o,(xzp)
)

If o, (xz,) is not within 1 ulp fromz /y, it means that /y is at a distance at least2 ulp
from the breakpoints that are immediately above or bejow o, (xz,). And since the
breakpoints that are immediately aboygzz;,)"™ or belowo,(xz,)~ are at a distance
1.5 ulps= 3 x 27"~ fromo,(zz2;), z/y is at least at a distandex 27"~ — £,,;,, from
these breakpoints. d

Proof of Property 2. We look for the coupleér, y) € M, such that < z < y < 2and
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. N ) .
|z/y — o, (z 0, (1/y))| is as close as possible {g-. To hasten the search, we will look

1 2K +1 .
for couples such th tE — o, (a; o, (—))‘ > 5 jl , whereK is a real parameter
y mn

as close as possible to If we write

el ()= ) e () (o ()
we seetnat g, (1) o, (o, (1)

1 1 K
oo (3)|2 5 @
Y y 2"
Hencer > 2K since ! ! < ! (1/y ¢ M,,). Letus writ s and
—— 0y | - n)- == T =
Y Y 2n+1 Y ey 2n—1
2r—1
ST withl1 <s<|2"(1—-K)|—1lands+1<1[<|2"(1— K)|. We have,
A s 1 s?
i 2n—1 < - )
Y + 2 + 22" — s

Asy > z, (2) implies

> £ 3)

)
—_—— OZ/ f—
Y Y 2y
The full proof considers two casesis odd ands is even. For reasons of space we only
deal with the cases*odd” here. The other case is very similar (the full proof can be
obtained through an email to one of the authors).

Whens is odd, we only keep the € [1, [2"(1 — K)| — 1] such that

1 s 1 PA P 1 1 2n—t

= €e(0,- - K U kE+ K ——k+-—-K

22" — s ( 2 2”—3) U ( * 2" —s 2 +2 2”—5)
keN\{0}

—2k 4+ 1+ +/(2k — 1)2 +27*2(2k — 1 + K)
2
—2k — 14+ +/(2k +1)2+ 2722k + 1 — K))
2
Let koo = max {k € N, aogqr < |2"(1 — K)| — 1} . We have
- F?”*Q(l - K)+4(12"(1 - K)| - 1)([2"(1 - K)| — Q)J
2 n+2 — 4271 — K)| 4+ 4 '

ogg0 = 0 andaodd,k = forall £ > 1,

for all k.

bodd,k =

Finally, whens is odd, we only keep the

s € U (a0d¢k> bodik) U (&odd,kodm min (bodd,koddv L2n<1 - K)J )) :

0<k<kodda—1
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1
Letk < N, 0 S k S kodd SUCh thatS € (aodd7k,bodd7k). We haVE,‘Qn Oy (—) =
Y

+1 . . .
on—l 4 ST +k,with + = +if s > —k + Vk? + 2"tk and+ = — otherwise. Thus,

1 l(s+ 142k
Y n

)

1 2 (2k+1)
22 — g 2

Now, recall that we want

1 1 2K +1
X Oy - — Oy | T Oy - Z -
Y Y 2n+1

This can be written as

1 1 2K +1 2" —1
T o, ; — 0o, | xo, ; > i1 —22n_1

We get from this condition and (4), that

‘ = Eslk,K-

I(s £ 1+ 2k)

o € U (m+2"eqink,m+1—2"1K,)

meN
ie.,le[s+1,12"(1 - K)]]NU,Len (Cosam> Qogam) Where

L 2(m A K 1/2) - 2s?/(2" —s) — (2k £ 1))
eoam s+ 142k —[s2/(2n — 5) — (2k £ 1)

2" (m — K +1/2) +2"[s*/(2" — s) — (2k £ 1)
sEt1+4+2k+[s2/(2" —s) — (2k £ 1)|
Letmes = min {m € N, s < doyqm } @NdMyq = max {m € N, coqm < [2"(1 — K)]}.
We easily get an exact expression of these integers. Hence, we look for the

anddomm —

l e (maX(Codd,modda 8)7 dodd,modd) U U (Codd,m7 dodd,m)
Modd+1<m<Modg—1

U (Codd Moga> M0IN(dodg Mogg [2" (1 — K)])).

Once we have got all these couplgs!), we end up our research by checking if

1 .
Lo, (a: o, (—)) > 2 with z = (2" — 1)/2" ' andy = (2" — s) /2"
Y Y
These remarks lead to an algorithm implemented in GP, the calculator of PARI [5],
that gets faster as the parameférgrows. If K is too large, we won't find any cou-
ple. But, we know values oK that are close td and associated to a couple, y).
These values allow us to get the couplesy) € M,, such thatl < z < y < 2 and

BNG)

. . 1.5 . .
is as close as possible to—. More precisely, we now give a
2n




sequenceé,, ¥, Jnen oy Such that, for alh € N\ {0}, z,,, y, € M, 1 < 2, <y, < 2

Tn 1 3
and2" |— —o, | 2,0, | — —3 asn — +oo. Forn even, we choose
Yn Yn
on _ 2n/2 _ 2n/2—1 +3 2n/2 -1
Tn = on—T v = et
Forn odd, we choose
2(n+3)/2 -7 on _ 2(n+1)/2 41
Tn = ———F "5 > Yn = .
2(n+1)/2 on—1
2% —p 91 4 3
Letn = 2p, p € N\ {0}. We have™ 2 — 2~ T2 After some

2r—1 22p—1
i y2p
calculation, we get, for ajp > 2,

o (o (o)) 2
— — Oy | T2p Oy | — =15 5 _
y?p y?p 2 21_2}7

X
Letn =2p+1,p € N. We have;p+1 = 2t 221,“32;““. After some calcula-
2p+1

2%

— EaSp—>+oo.

tion, we get, for alp > 2,

Top+1 1
AR Oy («r2p+1 Oy ( )) ‘
Yop+1 Y2p+1
‘3

5 7. 27p72 o (272])71 —7. 273p73)

22p+1

1
1—27 4221

3
— 5 asp — +o0.

Then we use our algorithm with the paramekéiobtained from this sequence. We
get the values given in Table 1. Note that the coupleg) in the table are the couples
(n, yn) €XCEpt forn = 64. O

Sketch of a proof for Conjecture 1. Definez = 1/y = 2, + 2,, wherez, = o,(z),
with 1 < y < 2. Whenn — oo, the maximum value ofz,| is asymptotically equal to
1/2ulp(z), and its average value is asymptotically equal téulp(z) = 27"~2. Hence,
y+1

for 1 < x < 2, we can write:xz = zz, + € where the average value fof is X

2
2772 = (y+ 127" forz < y and Y g (2+y)27" 3 forxz > y (to

get these figures, we multiply the average value lo§ the average value of, which is
y—;l forl<z<y andHTy for y < x < 2). The “breakpoints” of the rounding mote
are regularly spaced, at distarze® for z < y, and2="*! for z > y. Therefore, the
probability thato, (zz) # o,(xz,) should asymptotically be the probability that there

should be a breakpoint between these values. That probabiligy-is1 )23 /27" =

1 2
% forz <y, and(2 +y)2-" /27"t = % forz > y.

1Since we assume rounding to nearest mode, the breakpoints are the exact middles of two consecutive
machine numbers.



Therefore, for a giveny, the probability that the naive method should give a result
different fromo, (/) is =Y 4 2@ _ 2 | 1 Therefore, assuming now that
y is variable, the probability that the naive method give an incorrectly rounded result is

2 2
Y 1 13
Y2 ay =2 ~ 027,
/1 (16+8> Y78

O

The following result, due to Markstein, was designed in order to get a correctly
rounded result from an approximation to a quotient obtained using Newton-Raphson or
Goldschmidt iterations. We give it here, since we use it in the proof of Theorem 1.

Theorem 4 (Markstein, 1990 [3, 4]) Assumer,y € M,,. If u € M,, is within 1/2 ulp
of 1/y andq € M,,, ¢ within 1 ulp of z/y then one application of

{r = o,(r — qy)

/

¢ = o,qg+ru)

yieldsq' = o, (x/y).

One would like to use Theorem 4 to get a correctly rounded result from an initial value
q obtained by the naive method, that is, by computingrz;), wherez, = o,(1/y).
Unfortunately,q will not always be within one ulp from/y (see Property 1), so The-
orem 4 cannot be directly applied. One could get a better initial approximatiofyto

by performing one step of Newton-Raphson iteration figprAnd yet, such an iteration
step is not necessary, as shown by Theorem 1.

Proof of Theorem 1. We assumd < x,y < 2. First, let us notice that it > v,
then (from Property 1)¢ is within one ulp fromz/y, therefore Theorem 4 applies,
hence¢’ = o,(z/y). Let us now focus on the case < y. Definee; = z/y — ¢
ande, = 1/y — z,. From Property 1 and the definition of rounding to nearest, we have,
le1] < 3x27" T and|e;| < 27"t The numbep = z—qy = ¢ yislessthardx2~" and

is a multiple of2~2"*!, It therefore can be represented exactly with 1 bits of man-
tissa. Hence, the difference between that numberaad, (x—qy) (i.e.,p rounded to

bits of mantissa) is zero ak2-2"*!. Therefore;y = €19 - 65, with €3 € {0, £2727 1},

Let us now compute + rz,. We havey + rz, = — + — — €162y — €2€3. Hence,
y oy

—2n+1

S _|_ 3 X 2—2n—2y _|_ 2—371

E —(q+rz)

Definee = 2721 /y + 3 x 27272y 4+ 273" Now, from Property 7, either was at a
distance less than one ulp fromiy (but in such a case, = o, (z/y) from Theorem 4),
or xz/y is at least at a distance

2—2n+1 2—3n+2

492l _
Y Y

6
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from a breakpoint. A straightforward calculation shows that; it 4, thene < 6.
Therefore there is no breakpoint betweety andg+rz;,. Henceo, (¢+rzp,) = o, (x/y).
The cases < 4 are easily checked through exhaustive testing. O

Proof of Property 3. Without any loss of generality, we assumme< =,y < 2. Define
K =n+1if ¢ < 1andK = n otherwise. Since is a multiple of2="~%+2 that is less
than2-%*1y, we haver ¢ M,,. Hence, it is computed exactly. O

Proof of Property 4. From Property 3] — yz;, is computed exactly. Therefogeis ex-
actlyequal tol —yz,. Hencep/y is equal tol /y—z,. Hencez, is equal too,, (1/y—zy,).
O

Proof of Theorem 2. Without loss of generality, we assumec (1,2) andy € (1,2)
(the casexs = 1 ory = 1 are straightforward). This gives € (1/2,1), and, from
Property 5, the binary representation:ofs infinite. Hencez;, € [1/2,1]. The case
2, = lisimpossible ¢ > 1 andy € M,, imply y > 1 +27""! thusl/y <1-—27"" +
272 < 1 — 27" € M, thuso,(1/y) < 1 —27"). Hence, the binary representation
of z;, has the forn0.z} 2z} - - - 2. Sincez, is obtained by rounding to the nearest, we
have:|z — z,| < sulp(z) = 27"~'. Moreover, Property 5 shows that the case- z,| =
27"~ lisimpossible. Therefore — z;,| < 27"~!. From this, we deducez,| = |o, (z —
z,)| < 27771, Again, the caséy,| = 27! isimpossible: if we hadk — ;| < 27! =
|24, this would imply |z — (z;, + 277" < 272 L or |z — (2, — 27| < 2721
which would contradict the fact that the binary representation of the reciprocalof an
bit number cannot contain more than- 1 consecutive zeros or ones [1, 2]. Therefore
|ze] < 27"~ Thus, from the definition of,, |(z — z,) — 2¢| < 272"~2. This implies

1
|z(2 — 21) — 22| < 272771 hence,|z(z — 2,) — o, (z2)| < 272! + §ulp(ng) <
27%". Therefore,

1
|xz — o [xz) + 0, (x20)]] < 272 4 §qu (xzn + o, (x20)) (6)

Hence, if for a givery there does not exist anysuch thatr/y = zz is at a distance
less thar2—2" from the middle of two consecutive FP numbers, thgjrz;, + o, (xz)]
will always be equal t®,(xz), i.e., Algorithm 2 will give a correct result. Therefore,
from Property 6, ifxr > y then Algorithm 2 will return a correctly rounded quotient.
Also, if |z,| < 27"~% (which corresponds to Conditionz;| < 27"~*~2" of the theorem
we are proving) then we get a sharper bound:

1
|z — o [z 4 o, (x20)]| < 92n=1 4 §U|p($2’h + o, (z2)) (7)

and Property 6 implies that we get a correctly rounded quotient.
Let us now focus on the case< y. Letq € M, 1/2 < ¢ < 1, and define integers
X, YandQ@ as

X = zx2nh
Y = yx2vh
Q = qx2".

7



If we have? = ¢ + 27"~ + ¢, with |¢] < 27%", then
2"LX = 2QY + Y + 2"MeY, with || < 272" (8)
But:
e Equation (8) implies thak’ = 2"*1¢Y” should be an integer.

e The bound¥” < 2" and|e| < 272" imply |R'| < 2.
e Property 5 implieg?’ # 0.

Hence, the only possibility i® = +1. Therefore, to find valueg for which for anyx
Algorithm 2 gives a correct result, we have to examine the possible integer solutions to

LY = (2Q + 1)Y + 1,

b <X <om 1, 9
2n—1§Y§2n_1’ ()
-l < <am— 1.

There are no solutions to (9) for whigh is even. This shows that if the last mantissa
bit of y is a zero, then Algorithm 2 always returns a correctly rounded result. Now,
if Y is odd then it has a reciprocal modut*!. DefineP_ = (1/Y) mod2"*! and
P, = (-1/Y)mod2"*, Q_ = (P_ —1)/2andQ, = (P, —1)/2. From0 <
P P, <2 —1andP_+ P, = 0 mod2"™!, we easily findP_ + P, = 2""!, From
this, we deduce,
0§Q—7Q+ S 2n_17
Q_ + Q+ - 2” - 1

Define X_ = 55971 and X, = =57 From (10) we easily deduce that either
Q_ > 2"tor@, > 2", but both are impossible. Hence, eith@f X, Q) or

(Y, X_,@Q_) can be solution to Eqg. (9), but both are impossible. Algorithm 3 checks
these two possible solutions. This explains the last condition of the theorem. [

(10)

Proof of Theorem 3

As previously, we can assumec (1/2,1). The proof of Theorem 2 is immedi-
ately adapted if: > y, so that we focus on the case< y. Using exactly the same
computations as in the proof of Theorem 2, we can show that

1
|zz — o, (zz, + opgr(z20))] < 27271 + §ulp (wzp + opqr(wzg)) -

and Property 6 implies that we get a correctly rounded quotient.
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