
Supplementary material to “Accelerating
Correctly Rounded Floating-Point Division When

the Divisor is Known in Advance”

Nicolas Brisebarre, Jean-Michel Muller and Saurabh Kumar Raina
Laboratoire LIP, ENSL/CNRS/INRIA Arenaire Project

Ecole Normale Suṕerieure de Lyon
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Appendix: tables, proofs and intermediate lemmas

We will frequently use the two following well-known properties, whose proofs are
straightforward:

Property 5

• Let y ∈ Mn. There existsq ∈ N such that1/y belongs toMq if and only ify is a
power of2.

• If m > n, the exact quotient of twon-bit numbers cannot be anm-bit number.

• Letx, y ∈ Mn. x 6= y ⇒ |x/y − 1| ≥ 2−n.

We call abreakpoint a valuez where the rounding changes, that is, ift1 andt2 are
real numbers satisfyingt1 < z < t2 and◦t is the rounding mode, then◦t(t1) < ◦t(t2).
For “directed” rounding modes (i.e., towards+∞,−∞ or 0), the breakpoints are the FP
numbers. For rounding to the nearest mode, they are the exact middle of two consecutive
FP numbers.

For a ∈ Mn, we definea+ as itssuccessorin Mn, that is,a+ = min{b ∈ Mn, b >
a}, anda− as thepredecessor ofa, that is,a− = max{b ∈ Mn, b < a}.

The next result gives a lower bound on the distance between a breakpoint (in round-
to-nearest mode) and the quotient of two FP numbers.

Property 6 If x, y ∈ Mn, 1 ≤ x, y < 2, then the distance betweenx/y and the middle
of two consecutive FP numbers is lower-bounded by1

y×22n−1 > 1
22n if x ≥ y; and

1
y×22n > 1

22n+1 otherwise. Moreover, if the last mantissa bit ofy is a zero, then the lower
bounds become twice these ones.
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Proof of Property 1. Let x, y ∈ Mn. Without loss of generality, we can assume thatx
andy belong to[1, 2). Since the casesx, y = 1 or 2 are straightforward, we assume that
x andy belong to(1, 2). Thus1/y /∈ Mn. Sincezh = ◦ν(z) andz ∈ (1/2, 1), we have,∣∣∣ 1
y
− zh

∣∣∣ < 2−n−1. Therefore, ∣∣∣∣xy − xzh

∣∣∣∣ < 2−n. (1)

From Property 5 and (1), we cannot havex/y > 1 andxzh < 1 or the converse. So
xz andxzh belong to the same “binade” (i.e., ulp(xzh) = ulp(xz)). Now, there are two
possible cases:

• if x ≥ y, then|xzh − ◦ν(xzh)| ≤ 2−n, so|x/y − ◦ν(xzh)| < 2−n+1 = ulp(x/y).

• if x < y, then |xzh − ◦ν(xzh)| ≤ 2−n−1, so |x/y − ◦ν(xzh)| < 3 × 2−n−1 =
1.5× ulp(x/y).

�

To analyze the behavior of Algorithm 1, we will need the following property.

Property 7 If x < y and1 ≤ x, y < 2, then the naive solution returns a resultq such
that eitherq is within1 ulp fromx/y, or x/y is at least at a distance2

−2n+1

y
+ 2−2n+1 −

2−3n+2

y
from a breakpoint of the round-to-nearest mode.

Proof of Property 7. The proof is similar to that of Property 1. We use the tighter
bounds:

• |1/y − zh| < 2−n−1 − 2−2n/y (this comes from Property 6:1/y is at a distance at
least2−2n/y from a breakpoint);

• x ≤ 2− 2−n+2 (this comes fromx < y < 2, which impliesx ≤ (2−)−).

Combining these bounds gives∣∣∣∣xy − xzh

∣∣∣∣ ≤ 2−n − 2−2n+1

y
− 2−2n+1 +

2−3n+2

y
.

The final bound̀ min is obtained by adding the1/2 ulp bound on|xzh − ◦ν(xzh)|:∣∣∣∣xy − ◦ν(xzh)

∣∣∣∣ ≤ `min = 3× 2−n−1 − 2−2n+1

y
− 2−2n+1 +

2−3n+2

y
.

If ◦ν(xzh) is not within 1 ulp fromx/y, it means thatx/y is at a distance at least1/2 ulp
from the breakpoints that are immediately above or belowq = ◦ν(xzh). And since the
breakpoints that are immediately above◦ν(xzh)

+ or below◦ν(xzh)
− are at a distance

1.5 ulps= 3× 2−n−1 from ◦ν(xzh), x/y is at least at a distance3× 2−n−1 − `min from
these breakpoints. �

Proof of Property 2. We look for the couples(x, y) ∈ Mn such that1 ≤ x < y < 2 and
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|x/y − ◦ν (x ◦ν (1/y))| is as close as possible to
1.5

2n
. To hasten the search, we will look

for couples such that

∣∣∣∣xy − ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≥ 2K + 1

2n+1
, whereK is a real parameter

as close as possible to1. If we write

x

y
− ◦ν

(
x ◦ν

(
1

y

))
=

x

y
− x ◦ν

(
1

y

)
+ x ◦ν

(
1

y

)
− ◦ν

(
x ◦ν

(
1

y

))
,

we see that, as

∣∣∣∣x ◦ν

(
1

y

)
− ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≤ 1

2

1

2n
, we want

x

∣∣∣∣1y − ◦ν

(
1

y

)∣∣∣∣ ≥ K

2n
(2)

Hencex > 2K since

∣∣∣∣1y − ◦ν

(
1

y

)∣∣∣∣ <
1

2n+1
(1/y /∈ Mn). Let us writey =

2n − s

2n−1
andx =

2n − l

2n−1
with 1 ≤ s ≤ b2n(1−K)c − 1 ands + 1 ≤ l ≤ b2n(1−K)c. We have,

2n

y
= 2n−1 +

s

2
+

1

2

s2

2n − s
.

As y > x, (2) implies ∣∣∣∣1y − ◦ν

(
1

y

)∣∣∣∣ >
K

2ny
. (3)

The full proof considers two cases:s is odd ands is even. For reasons of space we only
deal with the case “s odd” here. The other case is very similar (the full proof can be
obtained through an email to one of the authors).

Whens is odd, we only keep thes ∈ [1, b2n(1−K)c − 1] such that

1

2

s2

2n − s
∈

(
0,

1

2
−K

2n−1

2n − s

)
∪

⋃
k∈N\{0}

(
k + K

2n−1

2n − s
− 1

2
, k +

1

2
−K

2n−1

2n − s

)
i.e.,s ∈ [1, b2n(1−K)c − 1] ∩

⋃
k∈N(aodd,k, bodd,k) with

aodd,0 = 0 andaodd,k =
−2k + 1 +

√
(2k − 1)2 + 2n+2(2k − 1 + K)

2
for all k ≥ 1,

bodd,k =
−2k − 1 +

√
(2k + 1)2 + 2n+2(2k + 1−K)

2
for all k.

Let kodd = max {k ∈ N, aodd,k < b2n(1−K)c − 1} . We have

kodd =

⌊
1

2

2n+2(1−K) + 4(b2n(1−K)c − 1)(b2n(1−K)c − 2)

2n+2 − 4b2n(1−K)c+ 4

⌋
.

Finally, whens is odd, we only keep the

s ∈
⋃

0≤k≤kodd−1

(aodd,k, bodd,k) ∪ (aodd,kodd, min (bodd,kodd, b2n(1−K)c)) .
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Let k ∈ N, 0 ≤ k ≤ kodd such thats ∈ (aodd,k, bodd,k). We have2n ◦ν

(
1

y

)
=

2n−1 +
s± 1

2
+ k, with ± = + if s > −k +

√
k2 + 2n+1k and± = − otherwise. Thus,

2nx ◦ν

(
1

y

)
= 2n − l + s± 1 + 2k − l(s± 1 + 2k)

2n
. (4)

Now, recall that we want∣∣∣∣x ◦ν

(
1

y

)
− ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≥ 2K + 1

2n+1
−

∣∣∣∣xy − x ◦ν

(
1

y

)∣∣∣∣ . (5)

This can be written as∣∣∣∣x ◦ν

(
1

y

)
− ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≥ 2K + 1

2n+1
− 2n − l

22n−1

∣∣∣∣12 s2

2n − s
− (2k ± 1)

2

∣∣∣∣ = εs,l,k,K .

We get from this condition and (4), that

l(s± 1 + 2k)

2n
∈

⋃
m∈N

(m + 2nεs,l,k,K , m + 1− 2nεs,l,k,K , )

i.e., l ∈ [s + 1, b2n(1−K)c] ∩
⋃

m∈N (codd,m, dodd,m) where

codd,m =
2n(m + K + 1/2)− 2n|s2/(2n − s)− (2k ± 1)|

s± 1 + 2k − |s2/(2n − s)− (2k ± 1)|

anddodd,m =
2n(m−K + 1/2) + 2n|s2/(2n − s)− (2k ± 1)|

s± 1 + 2k + |s2/(2n − s)− (2k ± 1)|
.

Letmodd = min {m ∈ N, s < dodd,m} andModd = max {m ∈ N, codd,m < b2n(1−K)c} .
We easily get an exact expression of these integers. Hence, we look for the

l ∈ (max(codd,modd, s), dodd,modd) ∪
⋃

modd+1≤m≤Modd−1

(codd,m, dodd,m)

∪ (codd,Modd, min(dodd,Modd, b2n(1−K)c)).

Once we have got all these couples(s, l), we end up our research by checking if∣∣∣∣xy − ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ ≥ 2K+1
2n+1 with x = (2n − l)/2n−1 andy = (2n − s)/2n−1.

These remarks lead to an algorithm implemented in GP, the calculator of PARI [5],
that gets faster as the parameterK grows. If K is too large, we won’t find any cou-
ple. But, we know values ofK that are close to1 and associated to a couple(x, y).
These values allow us to get the couples(x, y) ∈ Mn such that1 ≤ x < y < 2 and∣∣∣∣xy − ◦ν

(
x ◦ν

(
1

y

))∣∣∣∣ is as close as possible to
1.5

2n
. More precisely, we now give a

4



sequence(xn, yn)n∈N\{0} such that, for alln ∈ N \ {0}, xn, yn ∈ Mn, 1 ≤ xn < yn < 2

and2n

∣∣∣∣xn

yn

− ◦ν

(
xn ◦ν

(
1

yn

))∣∣∣∣ −→ 3

2
asn −→ +∞. Forn even, we choose

xn =
2n − 2n/2 − 2n/2−1 + 3

2n−1
, yn =

2n/2 − 1

2n/2−1
.

Forn odd, we choose

xn =
2(n+3)/2 − 7

2(n+1)/2
, yn =

2n − 2(n+1)/2 + 1

2n−1
.

Let n = 2p, p ∈ N \ {0}. We have
x2p

y2p

= 2p−1

2p−1

22p − 2p − 2p−1 + 3

22p−1
. After some

calculation, we get, for allp ≥ 2,

22p

∣∣∣∣x2p

y2p

− ◦ν

(
x2p ◦ν

(
1

y2p

))∣∣∣∣ =

∣∣∣∣32 − 5

2

2−p

1− 2−p

∣∣∣∣ −→ 3

2
asp −→ +∞.

Let n = 2p + 1, p ∈ N. We have
x2p+1

y2p+1

= 2p+2−7
2p+1

22p

22p+1−2p+1+1
. After some calcula-

tion, we get, for allp ≥ 2,

22p+1

∣∣∣∣x2p+1

y2p+1

− ◦ν

(
x2p+1 ◦ν

(
1

y2p+1

))∣∣∣∣
=

∣∣∣∣32 − 7 · 2−p−2 − (2−2p−1 − 7 · 2−3p−3)
1

1− 2−p + 2−2p−1

∣∣∣∣ −→ 3

2
asp −→ +∞.

Then we use our algorithm with the parameterK obtained from this sequence. We
get the values given in Table 1. Note that the couples(x, y) in the table are the couples
(xn, yn) except forn = 64. �

Sketch of a proof for Conjecture 1. Definez = 1/y = zh + zρ, wherezh = ◦ν(z),
with 1 < y < 2. Whenn → ∞, the maximum value of|zρ| is asymptotically equal to
1/2ulp(z), and its average value is asymptotically equal to1/4ulp(z) = 2−n−2. Hence,

for 1 < x < 2, we can write:xz = xzh + ε where the average value of|ε| is
y + 1

2
×

2−n−2 = (y + 1)2−n−3 for x < y and
2 + y

2
× 2−n−2 = (2 + y)2−n−3 for x > y (to

get these figures, we multiply the average value ofε by the average value ofx, which is
y+1
2

for 1 < x < y and 2+y
2

for y < x < 2). The “breakpoints” of the rounding mode1,
are regularly spaced, at distance2−n for x < y, and2−n+1 for x > y. Therefore, the
probability that◦ν(xz) 6= ◦ν(xzh) should asymptotically be the probability that there
should be a breakpoint between these values. That probability is(y + 1)2−n−3/2−n =
y + 1

8
for x < y, and(2 + y)2−n−3/2−n+1 =

y + 2

16
for x > y.

1Since we assume rounding to nearest mode, the breakpoints are the exact middles of two consecutive
machine numbers.
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Therefore, for a giveny, the probability that the naive method should give a result
different from◦ν(x/y) is (y+1)(y−1)

8
+ (y+2)(2−y)

16
= y2

16
+ 1

8
. Therefore, assuming now that

y is variable, the probability that the naive method give an incorrectly rounded result is∫ 2

1

(
y2

16
+

1

8

)
dy =

13

48
≈ 0.27.

�

The following result, due to Markstein, was designed in order to get a correctly
rounded result from an approximation to a quotient obtained using Newton-Raphson or
Goldschmidt iterations. We give it here, since we use it in the proof of Theorem 1.

Theorem 4 (Markstein, 1990 [3, 4]) Assumex, y ∈ Mn. If u ∈ Mn is within 1/2 ulp
of 1/y andq ∈ Mn, q within 1 ulp ofx/y then one application of{

r = ◦ν(x− qy)
q′ = ◦ν(q + ru)

yieldsq′ = ◦ν(x/y).

One would like to use Theorem 4 to get a correctly rounded result from an initial value
q obtained by the naive method, that is, by computing◦ν(xzh), wherezh = ◦ν(1/y).
Unfortunately,q will not always be within one ulp fromx/y (see Property 1), so The-
orem 4 cannot be directly applied. One could get a better initial approximation tox/y
by performing one step of Newton-Raphson iteration fromq. And yet, such an iteration
step is not necessary, as shown by Theorem 1.

Proof of Theorem 1. We assume1 ≤ x, y < 2. First, let us notice that ifx ≥ y,
then (from Property 1),q is within one ulp fromx/y, therefore Theorem 4 applies,
henceq′ = ◦ν(x/y). Let us now focus on the casex < y. Define ε1 = x/y − q
andε2 = 1/y − zh. From Property 1 and the definition of rounding to nearest, we have,
|ε1| < 3×2−n−1 and|ε2| < 2−n−1. The numberρ = x−qy = ε1y is less than3×2−n and
is a multiple of2−2n+1. It therefore can be represented exactly withn + 1 bits of man-
tissa. Hence, the difference between that number andr = ◦ν(x−qy) (i.e.,ρ rounded ton
bits of mantissa) is zero or±2−2n+1. Therefore,r = ε1y + ε3, with ε3 ∈ {0,±2−2n+1}.

Let us now computeq + rzh. We haveq + rzh =
x

y
+

ε3

y
− ε1ε2y − ε2ε3. Hence,∣∣∣∣xy − (q + rzh)

∣∣∣∣ ≤ 2−2n+1

y
+ 3× 2−2n−2y + 2−3n

Defineε = 2−2n+1/y + 3× 2−2n−2y + 2−3n. Now, from Property 7, eitherq was at a
distance less than one ulp fromx/y (but in such a case,q′ = ◦ν(x/y) from Theorem 4),
or x/y is at least at a distance

δ =
2−2n+1

y
+ 2−2n+1 − 2−3n+2

y
.
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from a breakpoint. A straightforward calculation shows that, ifn ≥ 4, thenε < δ.
Therefore there is no breakpoint betweenx/y andq+rzh. Hence◦ν(q+rzh) = ◦ν(x/y).
The casesn < 4 are easily checked through exhaustive testing. �

Proof of Property 3. Without any loss of generality, we assume1 ≤ x, y < 2. Define
K = n + 1 if q < 1 andK = n otherwise. Sincer is a multiple of2−n−K+2 that is less
than2−K+1y, we haver ∈ Mn. Hence, it is computed exactly. �

Proof of Property 4. From Property 3,1− yzh is computed exactly. Thereforeρ is ex-
actlyequal to1−yzh. Hence,ρ/y is equal to1/y−zh. Hence,z` is equal to◦ν(1/y−zh).
�

Proof of Theorem 2. Without loss of generality, we assumex ∈ (1, 2) andy ∈ (1, 2)
(the casesx = 1 or y = 1 are straightforward). This givesz ∈ (1/2, 1), and, from
Property 5, the binary representation ofz is infinite. Hence,zh ∈ [1/2, 1]. The case
zh = 1 is impossible (y > 1 andy ∈ Mn imply y ≥ 1 +2−n+1, thus1/y ≤ 1− 2−n+1 +
2−2n+2 < 1 − 2−n ∈ Mn, thus◦ν(1/y) ≤ 1 − 2−n). Hence, the binary representation
of zh has the form0.z1

hz
2
hz

3
h · · · zn

h . Sincezh is obtained by roundingz to the nearest, we
have:|z − zh| ≤ 1

2
ulp(z) = 2−n−1. Moreover, Property 5 shows that the case|z − zh| =

2−n−1 is impossible. Therefore|z − zh| < 2−n−1. From this, we deduce:|z`| = |◦ν (z−
zh)| ≤ 2−n−1. Again, the case|z`| = 2−n−1 is impossible: if we had|z−zh| < 2−n−1 =
|z`|, this would imply |z − (zh + 2−n−1)| < 2−2n−1 or |z − (zh − 2−n−1)| < 2−2n−1

which would contradict the fact that the binary representation of the reciprocal of ann-
bit number cannot contain more thann − 1 consecutive zeros or ones [1, 2]. Therefore
|z`| < 2−n−1. Thus, from the definition ofz`, |(z − zh)− z`| < 2−2n−2. This implies

|x(z − zh)− xz`| < 2−2n−1, hence,|x(z − zh)− ◦ν(xz`)| < 2−2n−1 +
1

2
ulp(xz`) ≤

2−2n. Therefore,

|xz − ◦ν [xzh + ◦ν(xz`)]| < 2−2n +
1

2
ulp(xzh + ◦ν(xz`)) (6)

Hence, if for a giveny there does not exist anyx such thatx/y = xz is at a distance
less than2−2n from the middle of two consecutive FP numbers, then◦ν [xzh + ◦ν(xz`)]
will always be equal to◦ν(xz), i.e., Algorithm 2 will give a correct result. Therefore,
from Property 6, ifx ≥ y then Algorithm 2 will return a correctly rounded quotient.
Also, if |z`| < 2−n−2 (which corresponds to Condition “|z`| < 2−n−e−2” of the theorem
we are proving) then we get a sharper bound:

|xz − ◦ν [xzh + ◦ν(xz`)]| < 2−2n−1 +
1

2
ulp(xzh + ◦ν(xz`)) (7)

and Property 6 implies that we get a correctly rounded quotient.
Let us now focus on the casex < y. Let q ∈ Mn, 1/2 ≤ q < 1, and define integers

X, Y andQ as {
X = x× 2n−1,
Y = y × 2n−1,
Q = q × 2n.
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If we havex
y

= q + 2−n−1 + ε, with |ε| < 2−2n, then

2n+1X = 2QY + Y + 2n+1εY, with |ε| < 2−2n. (8)

But:

• Equation (8) implies thatR′ = 2n+1εY should be an integer.

• The boundsY < 2n and|ε| < 2−2n imply |R′| < 2.

• Property 5 impliesR′ 6= 0.

Hence, the only possibility isR′ = ±1. Therefore, to find valuesy for which for anyx
Algorithm 2 gives a correct result, we have to examine the possible integer solutions to

2n+1X = (2Q + 1)Y ± 1,
2n−1 ≤ X ≤ 2n − 1,
2n−1 ≤ Y ≤ 2n − 1,
2n−1 ≤ Q ≤ 2n − 1.

(9)

There are no solutions to (9) for whichY is even. This shows that if the last mantissa
bit of y is a zero, then Algorithm 2 always returns a correctly rounded result. Now,
if Y is odd then it has a reciprocal modulo2n+1. DefineP− = (1/Y ) mod2n+1 and
P+ = (−1/Y ) mod2n+1, Q− = (P− − 1)/2 and Q+ = (P+ − 1)/2. From 0 <
P−, P+ ≤ 2n+1 − 1 andP− + P+ = 0 mod2n+1, we easily findP− + P+ = 2n+1. From
this, we deduce,

0 ≤ Q−, Q+ ≤ 2n − 1,
Q− + Q+ = 2n − 1.

(10)

Define X− = P−×Y−1
2n+1 and X+ = P+×Y +1

2n+1 . From (10) we easily deduce that either
Q− ≥ 2n−1 or Q+ ≥ 2n−1, but both are impossible. Hence, either(Y,X+, Q+) or
(Y,X−, Q−) can be solution to Eq. (9), but both are impossible. Algorithm 3 checks
these two possible solutions. This explains the last condition of the theorem. �

Proof of Theorem 3.
As previously, we can assumex ∈ (1/2, 1). The proof of Theorem 2 is immedi-

ately adapted ifx ≥ y, so that we focus on the casex < y. Using exactly the same
computations as in the proof of Theorem 2, we can show that

|xz − ◦ν (xzh + ◦ν:+1(xz`))| < 2−2n−1 +
1

2
ulp (xzh + ◦ν:+1(xz`)) .

and Property 6 implies that we get a correctly rounded quotient.
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Table 1: Maximal errors (in ulps) of the naive solution for various values ofn.

n x y Error (in ulps)>

32 4294868995
2147483648

65535
32768

1.4999618524452582589456

53 268435449
134217728

9007199120523265
4503599627370496

1.4999999739229677997443

64 18446744066117050369
9223372036854775808

18446744067635550617
9223372036854775808

1.4999999994316597271551

113 288230376151711737
144115188075855872

10384593717069655112945804582584321
5192296858534827628530496329220096

1.4999999999999999757138

Table 2: Then-bit numbersy between1 and 2 for which, for anyn-bit numberx,
◦ν(x× ◦ν(1/y)) equals◦ν(x/y).

n

7 1 105
64

8 1 151
128

163
128

183
128

9 1 307
256

10 1

11 1 1705
1024

12 1

13 1 4411
4096

4551
4096

4915
4096
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Table 3: Numberγ(n) and percentage100γ(n)/2n−1 of values ofy for which Algo-
rithm 2 returns a correctly rounded quotient for all values ofx. Forn ≤ 7, the algorithm
always works.

n γ(n) percentage

7 64 100

8 127 99.218

9 254 99.218

10 510 99.609

11 1011 98.730

12 2022 98.730

13 4045 98.754

14 8097 98.840

15 16175 98.724

16 32360 98.754

17 64686 98.703

18 129419 98.738

19 258953 98.782

20 517591 98.722

21 1035255 98.729

22 2070463 98.727

23 4140543 98.718

24 8281846 98.727

25 16563692 98.727

26 33126395 98.724

27 66254485 98.726

28 132509483 98.727

29 265016794 98.726
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