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Computing Functions cos-1 and sin-’  Using Cordic

Christophe Mazenc, Xavier Merrheim, and Jean-Michel Mullet

Abstract-After briefly  recalling the main properties of the Cordic
algorithm, we show that a slight modification of this algorithm enables
the computation of the functions cos-I,  sin-‘,  m, cash-‘,  sinh-‘,
a n d  m.

Index Terms-Computer arithmetic, Cordic, elementary functions.

I. INTRODUCTION

The Cordic algorithm was introduced in 19.59 by Jack Volder [15].
This algorithm makes it possible to perform rotations (and therefore
to compute sine, cosine, and tan-’ functions) and to multiply or
divide numbers, using only shift-and-add elementary steps. In 1971,
John Walther [16]  generalized Volder’s algorithm in order to compute
hyperbolic functions, logarithms, exponentials, and square roots.
Cordic (or very similar algorithms) has been implemented in pocket
calculators like Hewlett Packard’s HP 35 [4],  and in arithmetic
coprocessors  like the Intel 8087. Several authors have proposed to use
Cordic processors for signal processing applications (DFT or filtering
[9]),  for image processing [3],  or for solving linear systems [l],  [El.

Manuscript received April 19, 1991; revised March 2, 1992.
C. Mazenc and X. Merrheim are with Laboratoire LIP-IMAG, Ecole

Normale Suptrieure  de Lyon, France.
J.-M. Muller  is with CNRS. Laboratoire LIP-IMAG, Ecole Normale

Superieure  de Lyon, France.
IEEE Log Number 9200214.

00189340/93$03.00  0  1993 IEEE



IEEETRANSACTIONS  ON COMPUTERS,VOL.42,NO.  1, JANUARY1993 11 9

In Walther’s version, Cordic consists of the following iteration:

 = x,,  - md,y,2-“(“)

ynt  1  = yn  + &xX”(“)

tn+l  = i, - d,e,(,)

where the results (i.e., the limit values of x~,  yn, and in)  and the
values of d,, m, and a(n) are presented in Fig. 1 and Table I. The
constants e,(;)  are precomputed  and stored.

The function u is an artefact:  in a practical implementation, the
iterations are performed assuming u(n) =  n, and in the hyperbolic
mode (m = -l), the iterations 4, 13, 40;  . . , k, 3k + 1, are repeated.
This repetition is necessary since the sequence e, = tanh-’  22”
does not satisfy the relation of Theorem 1 (see below), while the
sequence e,(,)  obtained from e, by repeating the terms of indexes
4, 13, 40.. . satisfies this relation. li  and K’ are equal to

Ii= fi 1
~=.  cos(tan-’  22”)

=fidiTF
7L=O

= 1.646760258121.. .

= 0.8281593609602.. . .

Cordic is a very useful algorithm, since it allows computation of some
of the most common mathematical functions [16].  For instance, eZ
is obtained by adding cash  .r and sinh x,  In I is obtained using the
relation

while fi is obtained by

G= (3fJ  -(x-i)J
On-line implementations of Cordic have been proposed by several
authors (see for instance [lo],  [ll]). I n order to explain our algorithm,
let us clearly analyze Volder’s version of Cordic in the rotation mode.
First of all, we start from the following theorem (see [13] for proof):

Theorem 1: If (e,) is a decreasing sequence of positive real
numbers such that CrEp=,  e, < +KJ, and if for any integer n,
en I CEn+,  et7 then for any 0 E [- Cr=“=,  en, +  Cr=“=,  e,], the
sequences (0,)  and (d,) defined as

80 =  0

8 ,,+I =  0, +  dnen

satisfy lim,,,  8, = Cz0  dze, = 0.
The sequence (e,) is called a discrete basis, and the previous

algorithm which gives (6’,)  and (d, ) is called the bidirectional
algorithm [13].

Now, let us assume that we want to perform a rotation of angle 8,
i.e., to compute, from an initial two-dimensional vector (~0, yo)‘, a
vector (xm,  yoo)”  defined as

The basic idea of Cordic is to perform this rotation as a sequence
of elementary rotations. Using the bidirectional algorithm and the

discrete basis e, = tan-’ 22”,  6’  is rewritten as a sum 0 =
Crzp=,  &en then the sequence (I~,  yn  )t defined as

= -den) -d,  t a n e ,  x,d 1 >( >Yn

= cos(e,)
1 -d,2-”  x,,

d,2-”  1 >( >Yn
(4

((x”+l.  yn+r )’  is obtained from (.r,,  y,,  )’  by performing a rotation
of angle d,e,),  satisfies

i

s, -+ xx
n + CKa

Yn  + Y==
n + 35.

In relation (A), there is only one “true” multiplication (i.e., a
multiplication which cannot be reduced to a very small number of
additions and shifts), since in radix 2 a multiplication by 22”  may be
reduced to a shift. This “true” multiplication cannot be avoided: there
is no nontrivial choice of e, which enables one to perform a rotation
of angle e, with only a finite number of shifts (see [lo]  for proof).
Since rotations cannot be performed without “true” multiplications,
instead of (A), we perform:

(;:I:) = (d,,;-” -“y-y (.;I)
which is the basic Cordic step: it is not a rotation of angle e,,  but
a similarity of angle e, and factor l/  cos e,.  Hence, the final result
of the iterations is no longer a rotation of angle 0,  but a similarity
of angle 8 and factor li  =  flzo l/cos(e,)  =  nzo(l  +  2-2”)‘/2.
We then deduce:

The resulting algorithm is called the rotation mode of Cordic. If we
define a sequence z,, as 8 - B,,  the algorithm becomes

-0  = I9

x,1+1  = XII - d,y,2-”

yn+l  =  yn  +  dnxn2-n

;,,+I = I,,  - d, tan-’ 22”

d,  =

{

1 if zn  2  0
- 1  i f  2” <O’

For instance, the sine and cosine functions are computed by taking
xo  = l/ii  and yo = 0. It may be shown that the error obtained
if we approximate sin 8 by y,,  and cos B by x,,  is roughly equal
to 22”.  This algorithm yields a correct result if and only if @  E
[- Cr=“=,  e,,  +  C~Io e,]  cz [-1.743, +1.743].

II. COMPUTATION OF cos-1  AND sin-’ FUNCTIONS

Now, assume that we want to compute 0 = cos-1  (t),  t E [0, 11 .
When we perform a rotation of angle 0 of the point (1,O)r using
Cordic, we perform:

Bo  = 0, x0  = 1, yo =  0

d, = 1 if 0,  5  8 else - 1

(;::::) = (d,:-”  -“f-“)  (;:)

0 “+I = 0,  +  d, tan-’ 22”. (B)
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TABLE I
VALUES  O F  U(n)  A N D  e, IN FIG. 1

m = 1 (circular mode)

m = -1 (hyperbolic mode)

m = 0 (linear mode)

\ I .
o n  =n e, = t a n - ’  2 - n
o(n)  = 1,2,3,4,4,5,6,. ,
12,13,13,14,15,~~  .,39,40,40 e, = tanh-’  2-”

a ( n )  =  n e, = 2 - n

dn =  sign (zn) d n  =  - s i g n  ( y n )
(rotation mode) (vecmring  mode)

Fig. 1. Different functions computable using Cordic.

And the sequence 8,  goes to 0 as n goes to infinity (this is a
consequence of Theorem 1). Since the value of t9 is not known (it
is the value we want to compute !),  we cannot perform the test (B)
indicated above. However, (B) is equivalent to “d, = sign(y,  ) if
cos 0,  cos f3 else -sign (yn )“,  where sign(y,  ) = 1 if yn  > 0, else
-1. Thus, since the variables s,  and y/n  obtained in step n satisfy

1 xn = Ii, costi,

yn  =  I i ,  s i n  0,

with Ii,  = nyg,i  l/cos(e;)  = fl:ri(l  +  2--22)1/2,  (B) is equiv-
alent to “d, = sign(y,)  if T, 2  li,t  else -sign(y,).”  Assume
momentarily that the terms t,  = Tint are known, the algorithm

--Icos .l

00 = 0, X0 = 1, yo  = 0

d, = sign (yn) if z, >_ t,  else - sign (y,)

(;,I:)  = (d,,:-” -“;“-”  ) (;:  )

t9n+l = 8,  + d,  tan-’ 2-”

gives  8 ,  + cos -’ t.  In a very similar way, the algorithm
R-+03

--Isin .l

00 = 0,x0  = 1,310 =  0

d, = sign (2”)  if yn  5  t,  else - sign (2,)

(;:I:)  = (d,;-- -“;‘-“)  (;:  )

8 ,,+I = 0,  + d,  tan-’ 2-”

g i v e s  On + sin-’ t.
n+ca

Obviously, the main drawback of these algorithms is the evaluation
of t,.  The iterative relation t,+l =  t,,/ cos(tan-’ 2-“)  =
t,  dw cannot be used since it involves a “true” multiplication.
In order to avoid this drawback, we shall perform “double” Cordic
iterations: we shall use the bidirectional algorithm with the discrete
basis  e,,  = 2 tan-’ 2-” instead of the discrete basis e, =
tan-’ 22”.  Therefore, at step n of the algorithm, we shall perform
two similarities of angle tail -’  2-“.  Double Cordic iterations have
already been used by Takagi, Asada,  and Yajima [14],  and by
Delosme [6],  [7] in quite a different context: the purpose of Takagi,
Asada,  and Yajima was to keep a constant scaling factor li  when
quickly performing Cordic iterations using a redundant number
system. The purpose of Delosme was to obtain simpler scaling
factors. The main advantage of doubling iterations is that in step
R,  the factor of the similarity becomes 1/  cos’(tart-’  2F’ ) =
1 + 2-2”:  now, a multiplication by this term reduces to an
addition and a shift. Another advantage is that the convergence
domain of the algorithm becomes larger: it gives a correct
result for 8 E [-2 Cr=“=,  t,an-’  2-“,  +2  Cr=“=,  tan-i  22”1 Z
[-3.48657. +3.48657],  therefore, we can compute cos-1  t and
sin -’ f for any f E [-1. 11 .  The algorithm for computing cos-1  f

--I
cos  .2

00 = 0.1‘0 = 1. yo = 0. to  = f

d,  = sign (yn) if sn 2  f,  else - sign (y/n

(:,+:  ) = (d,,;-” -y*  >‘(  a;:)

B ,,+I = 8,  + 2d,  t,ani’  2-”

f,+1  = t,  + f”2P”

it gives: 0,  -+ cos-1 f.  In a very similar way, the algorithm

-1s/n  .2

00 = 0,ro  = 1,yo = O,fo  = f

d,  = sign (z,) if yn  5  f,  else - sign (xn)

(6::;)  = (d,;-7,  -dn;-n)z(  ;;)

, y; 1 f~~t+%~-~  2-”

gives 8,  + sin-’ f.  It is worth noting that the replacement in these
algorithms of the terms tan-‘2-’  by the terms tanh-‘2-“,  and the
repetition of the iterations no 4, 13,40,  121, would give algorithms for
computing the functions s&h-’  and cash-‘,  provided we replace
the elementary rotations by

(;;I:) =  (  d”;-n  dy)2(;;).

At step n of the algorithm cos-1 .2,  zn is equal to 1;:  cos 0,  and yn
is equal to Ii:  sin 9,) where li,  has the same value as previously.
Therefore, since 8,  goes to 0 = cos-1  t as rz goes to infinity, we
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T A B L E  I I
C O M P U T A T I O N  O F  COS-~  0 . 5

l.&boo O.ooO&OOOOOO
o.oooooooooOoo 2.000000000000
2.oOOOOoOOOOOO 1.500000000000
1.125OOOOOOOOO 2.406250000000
1.708984375000 2.087402343750

trt dn & en  - m-1  t
030000000000 1 o.oooooooooooO -1.047197551196
1.000000000000 - 1 1.570796326795 0.5235987755982
1.250000000000 1 0.643501108793 -0.4036964424033
1.328125000000 - 1 1.133458435047, 0.0862608838504
1.348876953125 1 0.884748445953 -0.162449105243

deduce

Thus, cos -’ .2  may be used in order to compute f (t ) = m.
The undesirable scaling factor Ii2  may be avoided by performing
another sequence of rotations in parallel with that of cos-r .2,  as
follows:

We obt t a in: yi,  -+ m.  If we make the same changes to this
n-33

algorithm as previously (when we gave a method for computing the
hyperbolic sine and cosine functions), then we obtain an algorithm for
computing the function m.  It is worth noting that this function
may be computed in a simpler way: in [8],  Delosme shows that if

8, = o, so = 1, .r; = l/I?,  y. = 0, y:,  = 0,  to  = t

d,,  =  1 if sn  > t,,  else - 1

(- ) =  (d,,;-” -yl>’  (*;I)

(xi:+)  =  ( d,;pn -y’”  )‘(  2)

.4 = 8, + 2d,,  tan-’  2-”

f,,fl =  t, +  tn2-2n

x0 =  l,yo =  y

Hence, one needs to perform p + 2 iterations in order to ensure p
accuracy bits.

d, = sign (x, . yn) IV. CONCLUSION

x,,+l  = x,  + d,2-”

yn+l  = y, - 2d,2-“x,  - (2-“)’

then .r,  converges to Vysz”. As a matter bf fact, this iteration
may be viewed as a slight modification (change of initial values) of
a classical square root iteration (see [12]  for instance).

Fig. 2 shows the n th step of cos-’  .2
Example: We compute cos-1  t, using the algorithm cos-‘.2,  for

t = l/2.  The exact value is x/3  M 1.047197551196. Table II
displays the first 5 steps.

We have given here an extension of the Cordic algorithm which
makes it possible to compute the functions cos-’  , sin-‘, m,
sinh-‘,  cash-‘, and &?.  Our algorithms are suitable for VLSI
implementation, and require only a slight modification of the original
Cordic algorithm.
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Interrupt Handling for Out-of-Order Execution Processors

H. C. Torng and Martin Day

Abstract- Processors with multiple functional units, including the
superscalars, achieve significant performance enhancement through low-
level execution concurrency. In such processors, multiple instructions are
often issued and definitely executed concurrently and out-of-order. Con-
sequently, interrupt and exception handling becomes a vexing problem.

We identify factors that must be considered in evaluating the ef-
fectiveness of interrupt and exception handling schemes: latency, cost,
and performance degradation. We then briefly enumerate proposals and
implementations for interrupt and exception handling on out-of-order
execution processors.

Next, we present an efficient hardware mechanism, the Instruction
Window (IW), and a new approach, which allows for precise, responsive,
and flexible interrupt and exception handling.

The implementation of the IW is then discussed. The design of an S-cell
IW has been carried out; it can work with a very short machine cycle
t i m e .

Finally, we present a comparison of all interrupt and exception han-
dling schemes for out-of-order execution processors.

Index Terms-Interrupt handling, interrupt latency, low-level Concur-
rency, modified precise interrupt, out-of-order execution.

I .  INTRODUCTION

Processors with multiple functional units issue and execute multiple
instructions concurrently and possibly out-of-order; they enhance
performance by extracting low-level concurrency from the instruc-
tion stream [l]-[3]. The CDC 6600, IBM 360/91,  and the CRAY
machines are forerunners of this class of processors; however, these
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processors issue at most one instruction per cycle. Due to advances
in device technologies, recently announced RISC processors often
issue and certainly execute multiple instructions concurrently. How-
ever, these processors have not been able to support interrupt and
exception’ handling efficiently and with an acceptable latency.

In this paper, we address the interrupt handling problem, which
has hampered the development of processors which execute and may
even issue multiple instructions. We propose an efficient hardware
mechanism, which supports an interrupt handling scheme with a
flexible latency, set specifically for each type of interrupts requested.

The remaining sections are organized as follows: Section II presents
a discussion of interrupts and exceptions. Factors for evaluating the
effectiveness of interrupt handling schemes are presented. Existing
proposals and implementations for interrupt handling on out-of-order
execution processors are briefly reported in Section III.

Section IV presents the Instruction Window (IW), a simple and yet
versatile hardware mechanism which supports efficient and flexible
interrupt handling. Basic window operations are introduced in Section
V. Section VI proposes an innovative interrupt handling scheme,
which makes use of the IW. In Section VII, we discuss the imple-
mentation of the IW. Section VIII gives an evaluation of all interrupt
handling schemes.

II.  INTERRUPTS AND EXCEPTIONS

An important and indispensable feature of any processor is its
ability to handle properly interrupts and exceptions. An I/O device,
a sensor, or a timer may “interrupt” a processor to perform a
specific task. An executing instruction may cause a page fault or
an overflow/underflow; an “exception” thus results. Finally, one may
place an instruction in an instruction stream to call for a “trap,” which
initiates a pre-planned action. Presentations on interrupts, exceptions,
and traps can be found from many sources, among them [4]-[8].
In this paper, we use the term interrupt to denote an interrupt, an
exception or a trap. Our study does not treat the subject of interrupt
detection; rather, we investigate how a processor responds to an
interrupt request, once it has been received.

When an interrupt request is received, the processor must save
its processor state, then load and execute an appropriate interrupt
handler. Upon completion of the interrupt handling routine, the saved
processor state is restored, and the interrupted process can then be
restarted.

A processor state should contain enough and preferably only
enough information so that the interrupted process can be restarted at
the precise point where it was interrupted. To be able to resume an
interrupted process, the processor state should consist of the contents
of the general purpose registers, the program counter, the condition
register, all index registers, and the relevant portion of the main
memory.

The classical approach to identifying precisely the point where a
process is interrupted is to save, among other vital items, the address
of a specific instruction, say instruction (Y, when the processor state is
saved. All instructions that precede instruction a have been executed.
And instruction Q  and those that follow it have not. Instruction cy thus
provides a precise interrupt point.

For processors, which execute instructions concurrently and possi-
bly out-of-order, the identification of a precise interrupt point when
an interrupt request is made may become very costly.

‘From now on, we will simply use interrupt to stand for interrupt and
exception.
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