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Midpoints and exact points of some algebraic
functions in floating-point arithmetic

Claude-Pierre Jeannerod, Nicolas Louvet, Jean-Michel Muller, Senior member, IEEE , Adrien Panhaleux

Abstract—When implementing a function f in floating-point arithmetic, if we wish correct rounding and good performance, it is
important to know if there are input floating-point values x such that f(x) is either the middle of two consecutive floating-point numbers
(assuming rounded-to-nearest arithmetic), or a floating-point number (assuming rounded towards ±∞ or towards 0 arithmetic). In the
first case, we say that f(x) is a midpoint, and in the second case, we say that f(x) is an exact point. For some usual algebraic functions,
and various floating-point formats, we prove whether or not there exist midpoints or exact points. When there exist midpoints or exact
points, we characterize them or list all of them (if there are not too many). The results and the techniques presented in this paper can
be used in particular to deal with both the binary and the decimal formats defined in the IEEE 754-2008 standard for floating-point
arithmetic.

Index Terms—floating-point arithmetic, correct rounding, algebraic function.
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1 INTRODUCTION

In a floating-point system that follows the IEEE 754-
1985 standard for radix-2 floating-point arithmetic [1],
the user can choose an active rounding mode, also called
rounding-direction attribute in the newly revised IEEE
754-2008 standard [5]: rounding toward −∞, rounding
toward +∞, rounding toward 0, and rounding to near-
est, which is the default rounding mode. Given a real
number x, we denote respectively by RD(x), RU(x),
RZ(x), and RN(x) these rounding modes. Let us also
recall that correct rounding is required by the above
cited IEEE standards for the four elementary arithmetic
operations (+, −, ×, ÷) as well as for the square root:
the result of an operation is said to be correctly-rounded
if for any inputs its result is the infinitely precise result
rounded according to the active rounding mode. We are
interested here in facilitating the delivery of correctly-
rounded results for various simple algebraic functions
that are frequently used in numerical analysis or signal
processing.

Let us call midpoint for a floating-point format a number
that is exactly halfway between two consecutive floating-
point numbers of that format. Given a function f : Rd →
R and a floating-point vector x, we say that f(x) is a
midpoint of f if f(x) is a midpoint for that format.

Given f and x, the problem of computing RN(f(x)) is
closely related to the knowledge of the midpoints of the
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- ENS de Lyon - INRIA - UCBL) E-mail: adrien.panhaleux@ens-lyon.fr

function f . Then a common strategy (see [15] and [10,
chap. 10]) for returning RN(f(x)) is as follows.

Let us first compute an approximation f1, of accuracy
ε1, to f(x). If there are no midpoints of the considered
floating-point format within distance ε1 from f1, then
necessarily RN(f(x)) = RN(f1). If on the contrary there
are such midpoints within distance ε1 from f1, we can
progressively increase the quality of the approximations
(that is, computing an approximation f2 of accuracy
ε2 < ε1, and so on) until we are able to provide a
correctly-rounded result. The point is that this strategy
may not terminate if the function f has midpoints. As
a consequence, a correctly-rounded implementation of
a given function f can be made more efficient if we
know in advance that f admits no midpoints. If f
admits midpoints, it is also very useful to know how
to characterize them.

If now we consider one of the directed rounding modes
(RD, RU, or RZ), the strategy that consists in progres-
sively refining the approximations will not terminate if
f(x) is a floating-point number. In this case we say that
f(x) is an exact point of the function f , and it is also very
useful to know a characterization of these exact points
when implementing f . Moreover, a characterization of
the exact points of f can be used to set the “inexact”
flag required by the IEEE standards [1], [5]. For example,
for x/

√
x2 + y2 in radix 2, our study shows that this flag

must always be raised except when x or y is zero, which
can be detected easily.

In this paper, we present results on the existence of
midpoints and exact points for some algebraic functions:
beyond division, inversion, and square root, we study
functions like the reciprocal square root 1/

√
y, the 2D

Euclidean norm
√

x2 + y2 and its reciprocal 1/
√

x2 + y2,
and the 2D-normalization function x/

√
x2 + y2. A part
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of the results presented on division and square root have
been known for some time in binary arithmetic; see for
instance the pioneering work by Markstein [9], as well
as studies by Iordache and Matula [6] and Parks [11].
Let us also recall the work by Lauter and Lefèvre [8] on
the function xy , which thus covers integer powers. We
present these results for completeness, and we extend
some of them to other radices, in particular to radix 10.

Before going into further details, we introduce some
definitions. A radix-β, precision-p floating-point number
x is either 0 or a rational number of the form

x = ±X · βex−p+1,

where X is a positive integer such that X < βp. If in
addition βp−1 ≤ X , then x = ±X · βex−p+1 is called the
normalized representation of x, and the integers X and
ex are called, respectively, the integral significand and the
exponent of x. We can in fact speak of the exponent for
any nonzero real x: in radix β, it is the unique integer
ex such that βex ≤ |x| < βex+1. On computing systems
conforming to the IEEE 754-2008 standard [5], the radix
β is 2 or 10. Radix 16 is also sometimes used [12].
The exponent ex is bounded: emin ≤ ex ≤ emax, where
emin and emax are the extremal exponents of the consid-
ered floating-point format. A nonzero number without
a normal representation is said subnormal: all subnormal
numbers have absolute value less than βemin .

Assuming we are working with a radix-β, precision-p
floating-point arithmetic, a midpoint is a rational number
of the form

z = ± (Z + 1/2) · βez−p+1,

where Z is a nonnegative integer such that
{

βp−1 ≤ Z < βp, if emin < ez ≤ emax,
0 ≤ Z < βp, if ez = emin.

Such a number is exactly halfway between two con-
secutive floating-point numbers. The midpoints are the
values where the function x '→ RN(x) is discontinuous,
as illustrated by Figure 1 on a toy floating-point format
(β = 2, p = 3, emin = −1, emax = 1).

x

RN(x)

0 0.5 1.0 2.0
2.5 3.0 3.5

Fig. 1. The RN(x) function (radix β = 2, precision p = 3).

When using the implementation of a mathematical
function in floating-point arithmetic, in most practical
cases, the input and output precisions are the same.
However, a user may for example wish to calculate
the single-precision/binary32 number that is closest to
the square-root of a double-precision/binary64 floating-
point number. For the sake of simplicity, we assume in
this paper that the input and output precisions are the
same. Moreover, we give our results assuming an un-
bounded exponent range, that is, under the hypothesis
that no underflow nor overflow occurs. For that purpose,
we define Fβ,p as the set of the radix-β, precision-p
floating-point numbers, with an unbounded exponent
range. Similarly, midpoints are restricted to the set

Mβ,p =
{
± (Z + 1/2) · βez−p+1 :

Z ∈ N, βp−1 ≤ Z < βp, ez ∈ Z
}
,

where Z denotes the set of integers, and N denotes the
set {0, 1, 2, . . .} of nonnegative integers.

The purpose of this paper is, for the floating-point
number systems and the algebraic functions mentioned
above, to investigate whether these functions admit
midpoints or exact points, and to characterize such
midpoints and exact points when they exist. The results
we obtain are for β = 2q with q a positive integer, and
for β = 10, but in some cases, we managed to weaken
these assumptions on β. Moreover, most of the examples
proposed are based on the basic formats defined in
the IEEE 754-2008 standard [5], that are briefly recalled
below:

Binary formats p Decimal formats p

binary32 24 decimal32 7
binary64 53 decimal64 16
binary128 113 decimal128 34

Table 1 summarizes the results presented in the paper.
In this table, “many” indicates that the techniques we
used did not allow us to find a simple characterization
of the midpoints or of the exact points of the function,
that an exhaustive enumeration was impractical because
of the too large number of cases to consider, and that
we have experimental evidence that the number of mid-
points and/or exact points is large. Most of the results
displayed here for β = 2 are in fact obtained in a more
general setting, namely for β = 2q, q a positive integer.

Notice that since we considered an unbounded ex-
ponent range, subnormal floating-point numbers of the
various IEEE 754-2008 formats can be written in nor-
malized form. Hence, subnormal numbers are a subset
of floating-point numbers with unbounded exponent
range. This implies that the results presented in Table 1
remain unchanged when the inputs are subnormal num-
bers. If there are no exact points or midpoints for normal
floating-point numbers with unbounded exponent range
for a given function, then midpoints or exact points
cannot occur if the inputs are subnormals. Similarly, if
the exact points and midpoints are characterized by one
of the theorems, assuming the inputs are subnormals will
only restrict the characterization of the theorem, without
creating new possible exact points or midpoints.
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However, some results presented in Table 1 change
when we want to know if a given function outputs mid-
points in the range of subnormal floating-point numbers.
In radix 2, division admits midpoints in the subnormal
range, as well as the function x/‖y‖2, while they have no
midpoints in the normal range. The square-root function
admits no midpoints, even in the subnormal range, for
the square-root of a floating-point number cannot be
in the subnormal range. Although the results are not
detailed in the paper, the techniques presented can be
used to deal with midpoints in the subnormal range for
the other functions listed in Table 1.

TABLE 1
Summary of the results given in this paper.

Midpoints Exact points
Function Radix 2 Radix 10 Radix 2 Radix 10

√
y none none many many

1/
√

y none Theorem 3 y = 22k Theorem 5
xk for

k ∈ N>0
Theorem 6 Theorem 6 Theorem 6 Theorem 6

x/‖y‖2 none many many many
x/y none many many many
1/y none Theorem 8 y = ±2k Theorem 9

1√
x2+y2

none Theorem 12
{x, y} =

{0,±2k}
Theorem 13

x√
x2+y2

none none
x = 0

or y = 0
many

p
x2 + y2 many many many many

Outline. We start with extensions to radices 2q and 10
of classical, radix-2 results for square roots (Section 2),
reciprocal square roots (Section 3), and positive integer
powers (Section 4). In Section 5 we move to the function
that maps a real x and a d-dimensional real vector
y = [yk]1≤k≤d to x/‖y‖2. Here ‖·‖2 denotes the Euclidean
norm of vectors: ‖y‖2 =

√
y2
1 + · · · + y2

d. The function
x/‖y‖2 is interesting for it covers several important spe-
cial cases, each of them being detailed in a subsequent
section: for d = 1, division and reciprocal (Sections 6
and 7); for d = 2, reciprocal two-dimensional Euclidean
norm 1/

√
x2 + y2 and normalization of two-dimensional

vectors x/
√

x2 + y2 (Sections 8 and 9). We comment on
the two-dimensional Euclidean norm in Section 10.
Notation. Throughout the paper, the symbols Q, R, and
N>0 denote the rational numbers, the real numbers,
and the positive integers, respectively. We write i for
the complex number whose square is −1, and *·+ and
,·- for the usual floor and ceiling functions. Also, for
x, y ∈ Z such that y .= 0, we use the standard notation
x mod y = x − y*x/y+ (see for instance Graham, Knuth,
and Patashnik [4, p. 82]).

2 SQUARE ROOT
2.1 Midpoints for square root
The following theorem can be viewed as a consequence
of a result of Markstein [9, Theorem 9.4]. It says that

the square root function has no midpoints, whatever the
radix β is. A detailed proof is given here for complete-
ness.

Theorem 1 (Markstein [9]): Let y ∈ Fβ,p be positive.
Then √

y .∈ Mβ,p.
Proof: Let z = √

y and assume that z is in Mβ,p.
Then there exist some integers Z and ez such that z =
(Z +1/2) ·βez−p+1 and βp−1 ≤ Z < βp. Using y = z2 and
y = Y · βey−p+1, we deduce that

4Y · βey−2ez+p−1 = (2Z + 1)2. (1)

Now, one may check that ez = *ey/2+, so that

ey − 2ez = ey mod 2, (2)

which is nonnegative. Thus, for p ≥ 1, the left-hand side
of (1) is an even integer. This contradicts the fact that the
right-hand side is an odd integer.

2.2 Exact points for square root
We saw in the previous section that the square root
function has no midpoints. The situation for exact points
is just opposite: for a given input exponent, the number
N of floating-point numbers having this exponent and
whose square root is also a floating-point number grows
essentially like βp/2. In this section, we make this claim
precise for β = 2q (q ∈ N>0) and β = 10 by giving an
explicit expression for N in Theorem 2. To establish this
counting formula, we need the following two lemmata.

Lemma 1: For a, b ∈ R such that 0 ≤ a ≤ b, and c ∈
N>0, the number of integer multiples of c that lie in [a, b)
is ,b/c- − ,a/c-.

Proof: Let us write N (c)
a,b for the number of integer

multiples of c lying in [a, b). Since 0 ≤ a ≤ b, the set [0, b)
is the union of the disjoint sets [0, a) and [a, b). Hence
N (c)

a,b = N (c)
0,b − N (c)

0,a and it remains to check that N (c)
0,a =

,a/c-. If a .∈ N, it follows from c ∈ N>0 that N (c)
0,a =

1 + *a/c+. If a ∈ N, either c divides a in which case
N (c)

0,a = a/c, otherwise N (c)
0,a = 1 + *a/c+.

Lemma 2: Let y ∈ Fβ,p be positive. The real number √y
is also in Fβ,p if and only if the integral significand Y of
y satisfies βp−1 ≤ Y < βp and Y = Z2 · β1−p−(ey mod 2)

for some integer Z such that βp−1 ≤ Z < βp.
Proof: Let z = √

y. Assume first that z ∈ Fβ,p. Then
there exists an integer Z such that z = Z · βez−p+1 and
βp−1 ≤ Z < βp. Using y = z2 and y = Y · βey−p+1, we
deduce that

Y = Z2 · β1−p−(ey−2ez). (3)

The “only if” statement then follows from (2). Con-
versely, using y = Y · βey−p+1, we may rewrite the
equality Y = Z2 · β1−p−(ey mod 2) as
√

y = Z · βez−p+1, where ez = (ey − (ey mod 2))/2.

By definition, ez is an integer and, by assumption, Z is
an integer lying in [βp−1,βp). Hence, √y is in Fβ,p.

Theorem 2: For a given exponent ey , let N denote the
number of positive values y ∈ Fβ,p such that √y ∈ Fβ,p,
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and let εy = (ey + p − 1) mod 2.
• If β = 2q, q ∈ N>0, then

N =
⌈
2(qp−εy(q mod 2))/2

⌉
−

⌈
2(q(p−1)−εy(q mod 2))/2

⌉
.

• If β = 10, then N =
⌈
10(p−εy)/2

⌉
−

⌈
10(p−1−εy)/2

⌉
.

Proof: Let γ = p− 1 + (ey mod 2). From Lemma 2, N
is the number of integers Y in [βp−1,βp) and of the form
Z2 · β−γ for some integer Z such that βp−1 ≤ Z < βp.

Rewriting Y = Z2 · β−γ as Y · βεy · βγ−εy = Z2,
we see that βγ−εy divides Z2. Since εy = γ mod 2, we
know that γ − εy is even and, for p ≥ 1, nonnegative.
Using for instance the factorizations of β(γ−εy)/2 and
Z into primes, we deduce that β(γ−εy)/2 divides Z.
Consequently, there exists an integer X such that

Y · βεy = X2 and Z = X · β(γ−εy)/2.

Now, the assumption βp−1 ≤ Y < βp is equivalent to

β(p−1+εy)/2 ≤ X < β(p+εy)/2, (4)

while the same assumption on Z is equivalent to
βp−1−(γ−εy)/2 ≤ X < βp−(γ−εy)/2. The latter interval
contains the former because p−1 ≤ δ ≤ p. Hence, N is the
number of integers X satisfying (4) and whose square is
an integer multiple of βεy . We distinguish between the
two cases εy = 0 and εy = 1.

If εy = 0 then N is the number of integers X satis-
fying (4). Consequently, N = ,βp/2- − ,β(p−1)/2- (using
either Lemma 1 with c = 1, or [4, (3.12)]).

If εy = 1 then X2 is a multiple of β: When β has
linear factors only (like β = 2 or β = 10 = 2 · 5),
this implies that X is a multiple of β. In this case,
N is the number of integers X that are multiples of
β and satisfy βp/2 ≤ X < β(p+1)/2. Hence, using
Lemma 1, N = ,β(p−1)/2- − ,β(p−2)/2-. Assume now
that β = 2q for some positive integer q. If q is even
then 2q divides X2 implies 2q/2 divides X , so that we
take the number of X’s being an integer multiple of
2q/2. Lemma 1 thus gives N = ,2qp/2- − ,2q(p−1)/2-. If
q is odd then Y · 2 = (X · 2−#q/2$)2, which means that
X ·2−#q/2$ is even. Hence we keep all the X’s that are an
integer multiple of 21+#q/2$. Using Lemma 1, this gives
N = ,2(qp−1)/2- − ,2(q(p−1)−1)/2-.

For a fixed ey , using Theorem 2, one can count the
number of input floating-point numbers y whose square
root is an exact point. We give below the number N of
exact points for the basic formats of the IEEE 754-2008
standard.

Format binary16 binary32 binary64 binary128
p 11 24 53 113

εy = 0 14 1199 ≈ 2.78 · 107 ≈ 2.98 · 1016

εy = 1 9 849 ≈ 1.97 · 107 ≈ 2.11 · 1016

Also, for a fixed exponent ey , one can see from Theo-
rem 2 that the number of exact points for the square root
function is Θ(βp/2), when the radix β is either 2q or 10
(it is said that u(p) = Θ(v(p)) if there exist positive con-
stants c1, c2 and p0 such that 0 ≤ c1v(p) ≤ u(p) ≤ c2v(p)

Format decimal32 decimal64 decimal128
p 7 16 34

εy = 0 2163 ≈ 6.84 · 107 ≈ 6.84 · 1016

εy = 1 683 ≈ 2.16 · 107 ≈ 2.16 · 1016

for all p ≥ p0, see for instance Graham, Knuth, and
Patashnik [4, p. 448] for more details on the Θ notation).
Except for small precisions, Theorem 2 implies therefore
that it can be regarded as impractical to enumerate the
exact points for the square root. It also shows that when
computing the square root of a floating-point number,
the probability of that square root being an exact point
is very small (it vanishes as p increases). This property
may be taken into account when tuning a square-root
algorithm.

3 RECIPROCAL SQUARE ROOT
3.1 Midpoints for reciprocal square root

Theorem 3: Let y ∈ Fβ,p be positive and let δy denote
ey mod 2. If β = 2q (q ∈ N>0) then 1/

√
y .∈ Mβ,p. If

β = 10, one has 1/
√

y ∈ Mβ,p if and only if the integral
significand Y of y has the form

Y = 23p−δy+1 · 53p−2%−δy−1,

with % ∈ N such that % ≤ (3p − δy − 1)/2 and
{

2 · 10p−1 < 5% < 2 · 10p−1/2, if ey is odd,
2 · 10p−1/2 < 5% < 2 · 10p, if ey is even.

(5)

Proof: Let z = 1/
√

y and assume z ∈ Mβ,p. Let y =
Y ·βey−p+1 and z = (Z+1/2) ·βez−p+1 be the normalized
representations of y and z. From yz2 = 1 we deduce that

Y (2Z + 1)2 = 4 · β−ey−2ez+3p−3. (6)

Since z is a midpoint, one has βez < z < βez+1 and so
β−2ez−2 < y < β−2ez . From this, one may check that

−ey − 2ez = 2 − δy, δy = ey mod 2. (7)

Hence we obtain from Equations (6) and (7)

Y (2Z + 1)2 = 4 · β3p−δy−1. (8)

When β = 2q, Equation (8) has no solution, since the
right-hand side of the equality is a power of two while
the left-hand side has an odd factor (2Z + 1)2.

Let us now consider the case where β = 10. Equa-
tion (8) then becomes

Y (2Z + 1)2 = 23p−δy+1 · 53p−δy−1. (9)

Since 2Z +1 is odd, we deduce from (9) that 2Z +1 = 5%

for some % ∈ N. Hence

Y = 23p−δy+1 · 53p−2%−δy−1

and it remains to prove the bounds on %. Since Y is
an integer, we have 3p − 2% − δy − 1 ≥ 0, and the first
bound % ≤ (3p − δy − 1)/2 follows. To prove the bounds
in (5), note first that 10ey ≤ y < 10ey+1 and (7) give
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10ez+(1−δy)/2 < z = 1/
√

y ≤ 10ez+1−δy/2. Then, using
z = (Z + 1/2) · 10ez−p+1, we obtain

2 · 10p−(δy+1)/2 < 2Z + 1 = 5% ≤ 2 · 10p−δy/2.

In fact, the upper bound is strict, for 5% is an odd integer
while 2 · 10p−δy/2 is either an even integer (δy = 0) or an
irrational number (δy = 1). Conversely, let Y = 23p−δy+1 ·
53p−2%−δy−1, with % as in (5), and let z = 1/

√
y. From (8)

we deduce that y = 22p−2ez · 52p−2%−2ez−2 and z =
(
(5% −

1)/2+1/2
)
·101−p+ez . Now 2 ·10p−1 < 5% < 2 ·10p implies

10p−1 ≤ (5% − 1)/2 < 10p and thus z ∈ M10,p.
To find in radix 10 the significands Y of all the inputs

y such that 1/
√

y is a midpoint, it suffices to find the at
most two % ∈ N such that 2 · 10p−1 < 5% < 2 · 10p, and
to determine from the bounds (5) whether ey is even
or odd. Table 2 gives the integral significands Y and
the parity of the exponent ey such that z = 1/√y is a
midpoint in the basic decimal formats of IEEE 754-2008.

TABLE 2
Integral significands Y of y ∈ F10,p such that

1/
√

y ∈ M10,p, for the decimal formats of the IEEE
754-2008 standard [5].

Format Integral significand Y ey

decimal32
(p = 7)

222 · 50 = 4194304 even

decimal64 248 · 52 = 7036874417766400 odd
(p = 16) 249 · 51 = 2814749767106560 even

decimal128
2102 · 54

= 3169126500570573503741758013440000
odd

(p = 34)
2103 · 53

= 1267650600228229401496703205376000
even

Notice that for radices different from 10 or a power of
2, we do not have general results (which is in contrast
with square root; see Section 2.1). Equation (8) may have
solutions; for example, in radix 3 with p = 6, one may
check that (Y,Z, δy) = (324, 364, 1) satisfies Equation (8),
and gives a midpoint for the reciprocal square root.

3.2 Exact points for reciprocal square root

The following theorem gives a characterization of the
exact points of the square-root reciprocal when the radix
is a prime number (which includes the most frequent
case β = 2) and also when the radix is a positive integer
power of 2. The case β = 10 is treated separately in
Theorem 5.

Theorem 4: Let y ∈ Fβ,p be positive. Then
• for β a prime number, one has 1/

√
y ∈ Fβ,p if and only

if y = β2k with k ∈ Z;
• for β = 2q (q ∈ N>0), one has 1/

√
y ∈ Fβ,p if and only

if y = 22k with k ∈ Z.
Proof: Taking z = 1/

√
y, note first that (7) still holds.

Now assume that z ∈ Fβ,p and let Y and Z be the integral
significands of y and z. From yz2 = 1 and (7), we deduce

Y Z2 = β3p−δy−1. (10)

If β is prime, we deduce from (10) that Z = β% for
some % ∈ N. Hence Y = β3p−δy−1−2% and, using (7), y =
β2(p−1−ez−%) is indeed an even power of β. Conversely,
if y = β2k, then z = β−k is in Fβ,p.

If β = 2q with q ∈ N>0, we deduce from (10) that
Z = 2% for some % ∈ Z and, similarly to the previous
case, we find y = 22(q(p−1−ez)−%), which is an even power
of two. Conversely, if y = 22k, then z = 2−k. Since any
integral power of 2 is representable in F2q,p, we conclude
that z is an exact point.

All the floating-point numbers y such that 1/
√

y is an
exact point can be deduced from the ones lying in the
interval [1,β2). In radix 2q, Theorem 4 implies that at
most q values of y in [1, 22q) suffice to characterize the
exact points for the reciprocal square root. In radix 16 =
24 for instance, the only exact points for input values
y ∈ [1, 256) are:

y 1 4 16 64
1/
√

y 1 1/2 = 0.816 1/4 = 0.416 1/8 = 0.216

Theorem 5: Let y ∈ F10,p be positive and let δy denote
ey mod 2. One has 1/

√
y ∈ F10,p if and only if either

y = 10−2ez or the integral significand Y of y differs from
10p−1 and has the form

Y = 23p−1−δy−2k · 53p−1−δy−2%,

with k, % ∈ N such that 0 ≤ k, % ≤ (3p − 1 − δy)/2.
Proof: Let z = 1/

√
y and assume z ∈ F10,p. If z = 10ez

then obviously y = 10−2ez . On the other hand, z must
differ from the irrational number 10ez+1/2. Hence we
now assume z ∈ (10ez , 10ez+1/2)∪(10ez+1/2, 10ez+1). This
implies y ∈ (10−2ez−2, 10−2ez−1) ∪ (10−2ez−1, 10−2ez ).
Therefore, y is not a power of 10 and its normalized
representation y = Y · 10ey−p+1 is such that Y .= 10p−1.
Note now that (7) and (10) still hold here, so that yz2 = 1
implies Y Z2 = 103p−1−δy . In particular, Z must have the
form Z = 2k · 5% for some k, % in N. Thus

Y = 23p−1−δy−2k · 53p−1−δy−2%,

where, since Y is an integer, 0 ≤ k, % ≤ (3p − 1 − δy)/2.
Conversely, the case y = 10−2ez being straightforward,

let Y = 23p−1−δy−2k · 53p−1−δy−2% be the integral signifi-
cand of y such that 10p−1 < Y < 10p, and let z = 1/√y.
Using (7) further leads to z = 2k · 5% · 10ez−p+1. One
has 2k · 5% ∈ N and, from 10p−1 < Y < 10p, we get
10p−(1+δy)/2 < 2k · 5% < 10p−δy/2. Hence z ∈ F10,p.

Enumerating the integral significands Y =
23p−1−δy−2k · 53p−1−δy−2% with k, % ∈ N such that
0 ≤ k, % ≤ (3p − 1 − δy)/2 and 10p−1 < Y < 10p is easily
done by a simple program. Table 3 gives all the integral
significands Y of y, and the parity of the exponent ey ,
such that 1/

√
y is a floating-point number too, in the

decimal32 format (see also Table 8 in the appendix for
the decimal64 format).

For the basic decimal formats of the IEEE 754-2008,
the table below gives the number of significands Y such
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that 1/
√

y is an exact point, with respect to the parity δy

of the exponent of y.

Format decimal32 decimal64 decimal128
p 7 16 34

δy = 0 9 17 37
δy = 1 7 17 36

4 POSITIVE INTEGER POWERS

We consider here the function (x, k) '→ xk with x ∈ R
and k ∈ N>0, assuming that each prime factor appears
only once in the prime decomposition of β, which is
the case for β = 2 and β = 10. We provide a sufficient
condition for the nonexistence of midpoints in such
radices. In the particular case β = 2, the results given in
this section can be deduced from Lauter and Lefèvre’s
study of the power function (x, y) '→ xy [8], which shows
how to check quickly if xy is a midpoint or an exact
point, in double precision (binary64 format).

Definition 1: A number fits in n digits exactly in radix
β if it is a precision-n floating-point number that cannot
be exactly represented in precision n−1. More precisely,
it is a number of the form x = X · βex , where ex, X ∈ Z,
βn−1 < |X| < βn, and X is not a multiple of β.

Lemma 3: Let k ∈ N>0 be given. If each factor of β
appears only once in its prime number decomposition
(which is true for β equal to 2 or 10), and if x fits in n
digits exactly then xk fits in m digits exactly, with m ∈ N
such that k(n − 1) < m ≤ kn.

Proof: Let x = X ·βex be a number that fits in n digits
exactly. From βn−1 < |X| < βn it follows that βk(n−1) <
|Xk| < βkn. Consequently, there exists m ∈ N such that
k(n − 1) < m ≤ kn and βm−1 < |Xk| < βm. Moreover,
the assumption on the prime factor decomposition of β
and the fact that β does not divide X imply that Xk is
not a multiple of β.

An immediate consequence of the previous lemma is
the following result.

Theorem 6: Assume the radix β is such that each factor
appears only once in its prime number decomposition,
and let p be the precision. If x fits in n digits exactly then
xk cannot be a midpoint as soon as k(n − 1) > p, and it
cannot be an exact point as soon as k(n − 1) + 1 > p.

Theorem 6 is not helpful when k is small. For large
values of k, however, it allows to quickly determine the
possible midpoints and exact points. For instance, in the
binary64 format (β = 2 and p = 53), the only floating-
point numbers x such that x10 can be an exact point are
those that fit in n bits exactly, where n ≤ 6. For a given
value of the exponent, there are at most 26 = 64 such
points: it therefore suffices to check these 64 values to
know all the exact points. By accurately computing x10

for these 64 points, we easily find that the exact points
for function x10 in the binary64 format correspond to
the input values of the form x = X · 2ex , where X is an
integer between 0 and 40.

TABLE 3
Integral significands Y of y ∈ F10,7, such that

1/
√

y ∈ F10,7.

Y 1/
√

Y · 10δy−p+1 ey

26 · 56 = 1000000 1.000000 · 100 even
220 · 50 = 1048576 9.765625 · 10−1 even
218 · 52 = 6553600 3.906250 · 10−1 even
216 · 52 = 1638400 7.812500 · 10−1 even
212 · 54 = 2560000 6.250000 · 10−1 even
28 · 56 = 4000000 5.000000 · 10−1 even
24 · 58 = 6250000 4.000000 · 10−1 even
22 · 58 = 1562500 8.000000 · 10−1 even
20 · 510 = 9765625 3.200000 · 10−1 even

219 · 51 = 2621440 1.953125 · 10−1 odd
215 · 53 = 4096000 1.562500 · 10−1 odd
213 · 53 = 1024000 3.125000 · 10−1 odd
211 · 55 = 6400000 1.250000 · 10−1 odd
29 · 55 = 1600000 2.500000 · 10−1 odd
25 · 57 = 2500000 2.000000 · 10−1 odd
21 · 59 = 3906250 1.600000 · 10−1 odd

5 THE FUNCTION (x, y) '→ x / ‖y‖2

Given d ∈ N>0, the number of exact points of the
function that maps (x, y) ∈ R × (Rd\{0}) to x/‖y‖2 =
x/

√∑
1≤k≤d y2

k is huge. Indeed, all the exact points for
the division operation, whose number is huge as we
will see later in Section 6.2, are exact points for the
function x/‖y‖2 as well. Therefore, we shall focus here
exclusively on midpoints: our aim is to decide whether
there exist floating-point inputs x, y1, . . . , yd ∈ Fβ,p such
that x/‖y‖2 ∈ Mβ,p. We start with the following theorem,
which says that midpoints cannot exist in radix 2.

Theorem 7: Let x ∈ Fβ,p and, for d ∈ N>0, let y be
a nonzero, d-dimensional vector of elements of Fβ,p. If
β = 2 then x/‖y‖2 .∈ Mβ,p.

Proof: Because of the symmetries of the function that
maps (x, y) to x/‖y‖2, we can restrict to the case where
x and all the entries of y = [yk] are positive. Hence x =
X · βex−p+1 and yk = Yk · βeyk

−p+1 for some integers X
and Yk such that βp−1 ≤ X, Yk < βp. Let z = x/‖y‖2 and
assume z is a midpoint, that is, z = (Z + 1/2) · βez−p+1

for some integer Z in the same range as X and the Yk

above. The identity x2 = ‖y‖2
2 z2 thus becomes

4X2 · β2(ex−ez+p−1) =
( ∑

k

Y 2
k · β2eyk

)
(2Z + 1)2. (11)

In order to have integers on both sides, it suffices to
multiply (11) by β−2e∗

, where e∗ = mink eyk . This gives

4X2 · β2(ex−ez−e∗+p−1) =
( ∑

k

Y 2
k · β2(eyk

−e∗)
)
(2Z + 1)2.

(12)
Now, the power of β involved in the left-hand side
of (12) is itself an integer. This is due to the fact that the
integer ex − ez − e∗ is nonnegative, which can be seen
as follows. Since d ≥ 1 and yk ≥ βe∗

for k = 1, . . . , d,
one has z ≤ x/βe∗

. Using x < βex+1 and βez ≤ z (in
fact this lower bound is strict, for z is a midpoint), we
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deduce that βez < βex−e∗+1. The exponents on both sides
of the latter inequality being integers, we conclude that
ez ≤ ex − e∗. When β = 2, Equation (12) becomes

X2 ·22(ex−ez−e∗+p) =
( ∑

k

Y 2
k ·22(eyk

−e∗)
)
(2Z+1)2. (13)

The left-hand side of (13) is a multiple of the odd integer
(2Z + 1)2. Since ex − ez − e∗ is nonnegative, this implies
that X is a multiple of 2Z + 1 and thus X ≥ 2Z + 1.
However, recalling that 2p−1 ≤ X, Z < 2p, we have

X < 2Z + 1. (14)

Hence a contradiction, which concludes the proof.
Theorem 7 implies the non-existence of midpoints in

radix β = 2 for a number of important special cases:
division x/y (see Corollary 1) and thus reciprocal 1/y
as well; reciprocal 2D Euclidean norm 1/

√
x2 + y2 and

2D-vector normalization x/
√

x2 + y2.
However, when β > 2, the function x/‖y‖2 does

have midpoints and some examples will be given in
Section 6.1 for β ∈ {3, 4, 10}. Thus, rather than trying to
characterize all the midpoints of that general function,
we focus from Section 6 to Section 9 on the four special
cases just mentioned.

6 DIVISION

6.1 Midpoints for division
Concerning midpoints for division, Theorem 7 gives an
answer for the far most frequent case in practice: the
radix is 2, the input precision equals the output preci-
sion, and the results are above the underflow threshold.
Indeed, choosing d = 1 in Theorem 7, we obtain the
following corollary.

Corollary 1: In binary arithmetic, the quotient of two
floating-point numbers cannot be a midpoint in the same
precision.

In radix-2 floating-point arithmetic, Corollary 1 can be
seen as a consequence of a result presented by Markstein
in [9, Theorem 8.4, p. 114]. Note that this result only
holds when β = 2 and when the input precision is less
than or equal to the output precision. Nevertheless, it
is sometimes believed that it holds in prime radices: the
first example given below shows that this is not the case.
The following examples also illustrate the existence of
midpoints when β > 2.

• In radix 3, with precision p = 4,

2810

5610
=

10013

20023
= 0.11113 +

1
2
· 3−4.

• In radix 4, with p = 4

12910

12810
=

20014

20004
= 1.0004 +

1
2
· 4−3.

• In radix 10, midpoint quotients are quite frequent.
For instance, when p = 2 there are 181 midpoints for
X/Y with 10 ≤ X, Y ≤ 99 (that is, 10/16 = 0.625)

and, when p = 3, there are 2633 cases with 100 ≤
X, Y ≤ 999.

We now briefly discuss the case of different input (pi)
and output (po) precisions. If pi > po, many quotients
can be midpoints, even in radix-2 arithmetic: If x is in
precision pi > po, x can be a midpoint in precision po,
which is then the case for the quotient x/1. It is also
possible to find less trivial cases. For example, if x and
y are binary64 numbers (pi = 53) with

x = 1.000000000000000000000000
1111111111111111111110100000,

y = 1.1111111111111111111111
000000000000000000000000000000,

then one has

x/y = 0. 100000000000000000000001︸ ︷︷ ︸
po=24

1,

which is a midpoint in the binary32 floating-point format
(po = 24).

6.2 Exact points for division
Let x and y be two numbers in Fβ,p, and assume that the
quotient z = x/y is also in Fβ,p. Using the normalized
representations x = X · βex−p+1, y = Y · βey−p+1 then z
can be written z = Z ·βex−ey+δ−p, with δ ∈ {0, 1}. Hence
from x = yz it follows that

βp−δX = Y Z, (15)

with δ ∈ {0, 1}. In other words, if z is an exact point then
Equation (15) must be satisfied. For any radix β, Equa-
tion (15) has many solutions: for each value of X there is
at least the straightforward solution (X, Y ) = (Z,βp−1),
which corresponds to x/βey . As a consequence, the
number of exact points of the function (x, y) '→ x/y
grows at least like βp−1(β − 1) for any given exponents
ex, ey . This is too large to enumerate all the exact points
of division in practice.

7 RECIPROCAL
As we have seen above, except in radix 2, division ad-
mits many midpoints. Moreover, whatever the radix is,
division also admits a lot of exact points. Consequently,
we now focus on a special case, the reciprocal function
y '→ 1/y, for which more useful results can be obtained.

7.1 Midpoints for reciprocal
Theorem 8: Let y ∈ Fβ,p be nonzero. If β = 2q (q ∈ N>0)

then 1/y .∈ Mβ,p. If β = 10, one has 1/y ∈ Mβ,p if and
only if the integral significand Y of y has the form

Y = 22p · 52p−1−%, (16)

with % ∈ N such that 2 · 10p−1 < 5% < 2 · 10p.
Proof: Without loss of generality, we assume y > 0.

Let z = 1/y. First, one may check that

ez = −ey − 1. (17)
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Now, if z ∈ Mβ,p then z = (Z + 1/2) · βez−p+1 for some
integer Z such that βp−1 ≤ Z < βp. Using yz = 1 thus
gives

Y (2Z + 1) = 2 · β2p−1. (18)

When β = 2q, Equation (18) has no solution, since the
right-hand side of the equality is a power of two while
the left-hand side has an odd factor 2Z+1. When β = 10,
(18) becomes

Y (2Z + 1) = 22p · 52p−1. (19)

As 2Z + 1 is odd, we deduce from (19) that 2Z + 1 is a
power of 5. Also, since 2 · 10p−1 < 2Z + 1 < 2 · 10p, there
are at most two such powers of 5. Hence y is necessarily
as in (16). Conversely, if y = Y ·10ey−p+1 with Y as in (16)
then, using (17), y = 5−%−1 ·10−ez+p. It follows that z can
be written z = ((5%−1)/2+1/2)·10ez−p+1. Since (5%−1)/2
is an integer, and by hypothesis 10p−1 ≤ (5%−1)/2 < 10p,
we deduce that z ∈ M10,p, which concludes the proof.

In radix 10, there are at most two values of % ∈ N such
that 2 · 10p−1 < 5% < 2 · 10p. Therefore, to determine all
inputs y that give a midpoint 1/y for a fixed exponent ey ,
it suffices to find the at most two % such that 2 · 10p−1 <
5% < 2 · 10p. This is easily done, even when the precision
p is large. Table 4 gives the integral significands Y of the
floating-point numbers y such that 1/y is a midpoint, for
the decimal formats of the IEEE 754-2008 standard [5].

TABLE 4
Integral significands Y of y ∈ F10,p such that 1/y ∈ M10,p,

for the decimal formats of the IEEE 754-2008
standard [5].

Format Integral significand Y

decimal32
(p = 7)

214 · 53 = 2048000

decimal64 232 · 58 = 1677721600000000
(p = 16) 232 · 59 = 8388608000000000

decimal128 268 · 518 = 1125899906842624000000000000000000
(p = 34) 268 · 519 = 5629499534213120000000000000000000

7.2 Exact points for reciprocal
For radices either 10 or a positive power of 2, the exact
points of the reciprocal function can all be enumerated
according to the following theorem.

Theorem 9: Let y ∈ Fβ,p be nonzero. One has 1/y ∈
Fβ,p if and only if the integral significand Y of y satisfies
βp−1 ≤ Y < βp and

Y =
{

2k, 0 ≤ k ≤ q(2p − 1), if β = 2q, q ∈ N>0;
2k · 5%, 0 ≤ k, % ≤ 2p − 1, if β = 10.

Proof: For the “only if” statement, let y > 0 in Fβ,p

be given, let z = 1/y, and assume that z ∈ Fβ,p. First, one
may check that the exponent of z satisfies ez = −ey − δ
with δ ∈ {0, 1}. Then, using the identity yz = 1 together
with the normalized representations y = Y ·βey−p+1 and
z = Z · βez−p+1, we get

Y Z = β2p−2+δ, βp−1 ≤ Y,Z < βp. (20)

If β = 2q for some integer q ≥ 1 then (20) implies that
Y = 2k for some integer k such that 0 ≤ k ≤ q(2p − 1).
If β = 10 then (20) implies that Y = 2k · 5% for some
integers k and % such that 0 ≤ k, % ≤ 2p − 1.

Let us now prove the “if” statement. If Y = βp−1 then
y is a power of the radix and thus 1/y belongs to Fβ,p.
If βp−1 < Y < βp then, defining Z = Y −1 · β2p−1, we
obtain

1/y = Z · β−ey−p, βp−1 < Z < βp. (21)

To conclude that 1/y belongs to Fβ,p it remains to show
that Z is an integer: If β = 2q and Y = 2k, one has
Z = 2q(2p−1)−k, which is an integer for k ≤ q(2p − 1); If
β = 10 and Y = 2k ·5% then Z = 22p−1−k ·52p−1−%, which
is an integer for k, % ≤ 2p − 1. Hence Z is an integer in
both cases, showing that 1/y is indeed an exact point.
This concludes the proof.

In radix 16 = 24 for instance, the exact points 1/y with
y in the interval [1, 16) are listed below:

y 1 2 4 8
1/y 1 1/2 = 0.816 1/4 = 0.416 1/8 = 0.216

In radix 10, all the integers Y = 2k · 5% with 0 ≤
k, % ≤ 2p − 1 and 10p−1 ≤ Y < 10p can be enumerated
by a simple program, and each one of them gives an
exact point. Table 5 gives the 21 integral significands
Y such that 1/y is an exact point, in the case of the
decimal32 format (see also Table 7 in the appendix for
the decimal64 format).

TABLE 5
Integral significands Y of y ∈ F10,7 such that 1/y ∈ F10,7.

Y 1/Y

20 · 59 = 1953125 5.120000 · 10−7

20 · 510 = 9765625 1.024000 · 10−7

21 · 59 = 3906250 2.560000 · 10−7

22 · 58 = 1562500 6.400000 · 10−7

22 · 59 = 7812500 1.280000 · 10−7

23 · 58 = 3125000 3.200000 · 10−7

24 · 57 = 1250000 8.000000 · 10−7

24 · 58 = 6250000 1.600000 · 10−7

25 · 57 = 2500000 4.000000 · 10−7

26 · 56 = 1000000 1.000000 · 10−6

26 · 57 = 5000000 2.000000 · 10−7

27 · 56 = 2000000 5.000000 · 10−7

28 · 56 = 4000000 2.500000 · 10−7

29 · 55 = 1600000 6.250000 · 10−7

29 · 56 = 8000000 1.250000 · 10−7

210 · 55 = 3200000 3.125000 · 10−7

211 · 54 = 1280000 7.812500 · 10−7

211 · 55 = 6400000 1.562500 · 10−7

212 · 54 = 2560000 3.906250 · 10−7

213 · 53 = 1024000 9.765625 · 10−7

213 · 54 = 5120000 1.953125 · 10−7

Furthermore, given an input exponent, the result be-
low provides an explicit formula for the number N of
floating-point inputs having this exponent and whose
reciprocal is a floating-point number.
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Theorem 10: For a given exponent ey , the number N
of positive values y ∈ Fβ,p such that 1/y ∈ Fβ,p is

N =

{
q, if β = 2q, q ∈ N>0;

2
⌊
p log5(10)

⌋
+ 1, if β = 10.

Proof: When β = 2q, Theorem 9 says that each exact
point corresponds to an integer k such that 2q(p−1) ≤
2k < 2qp and 0 ≤ k ≤ q(2p − 1). The former condition
is equivalent to q(p − 1) ≤ k < qp and thus implies the
latter. From this we deduce that the number of possible
values of k is q when β = 2q.

When β = 10, Theorem 9 says that each exact point
corresponds to a pair of integers (k, %) such that

10p−1 ≤ 2k · 5% < 10p and 0 ≤ k, % ≤ 2p − 1.

The value of N is the number of points (k, %) ∈ Z2 that
satisfy those two sets of constraints. Let σ = log5(2) =
0.4306765581 . . .. The first set of constraints is equivalent
to

(p − 1)(1 + σ) ≤ σk + % < p(1 + σ). (22)

It implies in particular that (p− 1)(1 +σ) ≤ % < p(1 +σ),
which is stronger than 0 ≤ % ≤ 2p − 1 for p ≥ 2, since
1 + σ ≈ 1.43. Hence N =

∑
0≤k<2p Nk, where Nk is the

number of integers % satisfying (22) for a given k.
Recalling that half-open real intervals [a, b) such that

a ≤ b contain exactly ,b- − ,a- integers [4, p. 74], we
deduce that, for 0 ≤ k < 2p,

Nk =
⌈
p(1 + σ) − σk

⌉
−

⌈
(p − 1)(1 + σ) − σk

⌉

=
⌈
(p − k)σ

⌉
−

⌈
(p − k − 1)σ

⌉
+ 1.

Consequently, the sum
∑

0≤k<2p Nk telescopes to 2p +
*pσ+ + ,pσ-. Since the integer p is nonzero and σ is
irrational, pσ cannot be an integer. Hence ,pσ- = *pσ++1,
which leads to N = 2

⌊
p(1 + σ)

⌋
+ 1.

According to Theorem 10, when β = 2q, the number N
of different integral significands leading to an exact point
is q. In radix 10, we have N = Θ(p), which confirms the
fact that the midpoints for the reciprocal can be easily
enumerated, even when the precision p is large. This
is in contrast with the exact points of square root in
radix 10 or 2q, whose number is exponential in p (see
Section 2.2). For the decimal formats of IEEE 754-2008,
the corresponding values of N are listed below:

Format decimal32 decimal64 decimal128
p 7 16 34
N 21 45 97

8 RECIPROCAL 2D EUCLIDEAN NORM
Given a d-dimensional vector y with entries in F2,p, we
know from Theorem 7 that z = 1/‖y‖2 cannot be a
midpoint in radix 2. In this section, we focus on the
two-dimensional case, studying the midpoints and the
exact points of the reciprocal 2D Euclidean norm, in
radices 2q and 10. In radix 10, our study relies on the
representation of products of the form 2r · 5s as sums of

two squares a2+b2, where a, b ∈ N. Thus, we first explain
in Section 8.1 the method we used for enumerating all
the representations of such a product as the sum of two
integer squares. Then midpoints and exact points are
studied in Sections 8.2 and 8.3, respectively.

8.1 Decomposing 2r · 5s into sums of two squares
Decomposing an integer into sums of two squares is a
well studied problem in the mathematical literature (see
for instance Wagon [13] and the references therein). In
our particular case of interest, we deduce the following
theorem that allows us to compute all the decomposi-
tions of 2r ·5s as sums of two squares. The proof of The-
orem 11 relies on the uniqueness of the decomposition
of a number into prime factors in the ring of Gaussian
integers1 Z[i] (see for instance Everest and Ward [3,
chap. 2] for more details on this topic).

Theorem 11: Let r, s ∈ N be given, and assume k ∈ N.
All the unordered pairs {a, b} with a, b ∈ N and a2+b2 =
2r · 5s are given by a = |2(c)| and b = |3(c)| with

c = 2#r/2$(1+i)r mod 2(2+i)k(2−i)s−k, 0 ≤ k < ,(s+1)/2-.

In particular, there are exactly ,(s + 1)/2- different de-
compositions of 2r · 5s as the sum of two squares.

Proof: Let us assume 2r · 5s = a2 + b2. Since the
decomposition of 2r · 5s into prime factors in Z[i] is
unique apart from multiplications by ±1 or ±i, one has
2r ·5s = δ0(1+i)r(1−i)r(2+i)s(2−i)s with δ0 ∈ {±1,±i}.
On the other hand one has a2+b2 = (a+ib)(a−ib), hence
by uniqueness of the decomposition into prime factors it
follows that a+ib = δ1(1+i)k1(1−i)k2(2+i)k3(2−i)k4 for
some k1, k2, k3, k4 ∈ N and δ1 ∈ {±1,±i}. Then one has
a2+b2 = δ1δ1(1+i)k1+k2(1−i)k1+k2(2+i)k3+k4(2−i)k3+k4 ,
and from 2r · 5s = a2 + b2 we deduce that k1 + k2 = r
and k3 + k4 = s. Moreover, distinguishing two cases
corresponding to the parity of r, it can be checked that

(1 + i)k1(1 − i)k2 = δ2 · 2#r/2$(1 + i)r mod 2,

with δ2 ∈ {±1,±i}. Hence, we obtain

a + ib = δ · 2#r/2$(1 + i)r mod 2(2 + i)k(2 − i)s−k,

for some δ ∈ {±1,±i} and k ∈ N such that 0 ≤ k ≤ s.
Since a, b ≥ 0, we deduce that necessarily a = |2(c)| and
b = |3(c)| with c = 2#r/2$(1 + i)r mod 2(2 + i)k(2 − i)s−k.
However, since both c and c = 2#r/2$(1 − i)r mod 2(2 −
i)k(2+i)s−k lead to the same unordered pair {a, b}, there
are at most ,(s + 1)/2- such unordered pairs {a, b}. This
implies that we only need the assumption 0 ≤ k < ,(s+
1)/2- for k.

Conversely, if a = |2(c)| and b = |3(c)| with c =
2#r/2$(1 + i)r mod 2(2 + i)k(2 − i)s−k, then a + ib =
δ2#r/2$(1 + i)r mod 2(2 + i)k(2 − i)s−k with δ ∈ {±1,±i}.
Then one can check that a2+b2 = (a+ib)(a−ib) = 2r ·5s.

By uniqueness of the factorization into primes in Z[i],
it can be shown that if we take k1 .= k2 with 0 ≤ k1, k2 <

1. Z[i] is the set of the numbers of the form a + ib, where a and b
are integers.
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,(s + 1)/2-, then the corresponding unordered pairs
{a1, b1} and {a2, b2} are necessarily different. Hence,
there are exactly ,(s + 1)/2- unordered pairs {a, b}.

For later use, we also state the following corollary of
Theorem 11.

Corollary 2: Given r ∈ N, the unique decomposition of
2r as a sum of two integer squares is

2r =
{

02 + (2r/2)2, if r is even,
(2(r−1)/2)2 + (2(r−1)/2)2, if r is odd.

8.2 Midpoints for reciprocal 2D norm
Theorem 12 below can be used to determine all the
the midpoints of the reciprocal 2D-norm function with
exponent ez .

Theorem 12: Let x, y ∈ Fβ,p be such that (x, y) .= (0, 0),
and let z = 1/

√
x2 + y2. If β = 2q (q ∈ N>0) then z .∈

Mβ,p. If β = 10, one has z ∈ Mβ,p if and only if z has the
form (

5% − 1
2

+
1
2

)
· 10ez−p+1,

with ez ∈ Z, and % ∈ N such that 2 · 10p−1 < 5% < 2 · 10p.
Proof: Let z = 1/

√
x2 + y2 be a midpoint, with x, y ∈

Fβ,p. Without loss of generality, we assume that z is in
[1,β), and since z is a midpoint then one has 1 < z < β.
Let us also assume that x ≥ y ≥ 0, which implies

1√
2x

≤ 1√
x2 + y2

≤ 1
x

. (23)

Denoting by ex and ey the exponents of x and y respec-
tively, from (23) it follows that β−ex−2 < z ≤ β−ex ,
and since 1 < z < β, necessarily ex ∈ {−1,−2}.
Writing z = (Z + 1/2) · β−p+1, with Z ∈ N such that
βp−1 ≤ Z < βp, from (x2 + y2)z2 = 1 we deduce

(
X2 · β2ex−2ey + Y 2

)
(2Z + 1)2 = 4 · β4p−2ey−4. (24)

Note that x ≥ y implies ex ≥ ey , so that the left-hand
side of Equation (24) is indeed in N. When β = 2q,
Equation (24) has no solution, since the right-hand side
of the equality is a power of two while the left-hand side
has an odd factor. When β = 10, (24) becomes
(
X2 · 102ex−2ey + Y 2

)
(2Z + 1)2 = 24p−2ey−2 · 54p−2ey−4.

(25)
Then one has necessarily 2Z + 1 = 5% with % ∈ N.
The bounds on 5% follow from 10p−1 ≤ Z ≤ 10p − 1.
Conversely, if z has the form given in Theorem 12 it is
clearly a midpoint.

For instance, in the decimal32 format of IEEE 754-2008
(p = 7), function 1/

√
x2 + y2 has only one midpoint in

[1, 10), namely z = 4.8828125. This midpoint corresponds
to 510 = 9765625, which is the only power of 5 in the
interval (2 · 106, 2 · 107). All the other midpoints of the
function are obtained by multiplying 4.8828125 by an
integral power of 10.

Theorem 12 can only be used to determine the mid-
points of the reciprocal norm function. Given such a

midpoint z, let us now show how to find x and y in
F10,p such that z = 1/

√
x2 + y2. For this, we shall use

the following trivial lemma.
Lemma 4: Let a be in Q. One has a2 ∈ N if and only if

a ∈ Z.
As in the proof of Theorem 12, let us assume that 1 <
z < 10 and x ≥ y ≥ 0, which implies ex ∈ {−1,−2}. We
denote by X and Y the integral significands of x and y
respectively. From Equation (25) we can deduce that X
and Y must satisfy

24p+2 · 54p−2% =
(
X · 10ex+2

)2 +
(
Y · 10ey+2

)2
. (26)

From 2 · 10p−1 < 5% < 2 · 10p, one has 54p−2% ∈ N. Since
moreover ex ∈ {−1,−2}, necessarily X · 10ex+2 ∈ N, and
Y 2 ·102(ey+2) is also in N. Since Y ·10ey+2 is a nonnegative
rational number whose square is a natural integer, it
follows from Lemma 4 that Y · 10ey+2 ∈ N. Hence we
know that X · 10ex+2 and Y · 10ey+2 both necessarily
belong to N.

As a consequence, to find all inputs (X,Y ) that give
a midpoint for the function 1/

√
x2 + y2, we know from

Equation (26) that we need to find all the decompositions
of the at most two integers 24p+2 · 54p−2% as the sum of
two squares. We used Theorem 11 to build all values
x and y, x ≥ y, such that 1/

√
x2 + y2 is a midpoint,

for the decimal formats of the IEEE 754-2008 standard.
For the decimal32 format, all the pairs of floating-point
numbers (x, y) for which 1/

√
x2 + y2 is a midpoint can

be deduced from the pairs listed in Table 6 by either
exchanging x and y or by multiplying them by the
same power of 10 (results for the decimal64 format are
listed in Table 9 in the appendix, and those for the
decimal128 format are available at http://prunel.ccsd.
cnrs.fr/ensl-00409366/fr/).

TABLE 6
Floating-point numbers x, y ∈ F10,7 with X ≥ Y such that

z = 1/
√

x2 + y2 is a midpoint, with 10−8 ≤ z < 10−7.

x y z = 1/
p

x2 + y2

1966080
1638400
1916928
2048000

573440.0
1228800
720896.0

0

4.8828125 ×10−7

The following table gives the number Nz of midpoints
z in a decade (i.e., with a fixed exponent ez), with respect
to the decimal format considered. The table also gives
the number N of pairs of integral significand (X, Y )
with X ≥ Y that give these midpoints. In decimal64
arithmetic for instance, the function (x, y) '→ 1/

√
x2 + y2

has 2 midpoints z1 < z2 in the decade [1, 10): the number
of pairs (X,Y ) that give z1 is 10, and 9 pairs give z2.

Format decimal32 decimal64 decimal128
p 7 16 34

Nz 1 2 2
N 4 10 + 9 20 + 19
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8.3 Exact points for reciprocal 2D norm
Theorem 13: Let x, y ∈ Fβ,p be such that (x, y) .= (0, 0).

Let X, Y denote the integral significands of x, y, and let
also z denote 1/

√
x2 + y2.

• For β = 2q (q ∈ N>0), the real z is also in F2q,p if and
only if {x, y} = {0,±2k} for some k ∈ Z.
• For β = 10, the number z is in F10,p if and only if its
integral significand Z satisfies Z = 2k · 5%, with 10p−1 ≤
2k · 5% < 10p and k, % ∈ N. In this case one has 28p−2k ·
58p−2% ∈ N, and (X, Y ) must satisfy

(X · 10m)2 + (Y · 10n)2 = 28p−2k · 58p−2%,

where m, n ∈ Z such that X · 10m and Y · 10n are in N.
Proof: Without loss of generality, we assume that

1 ≤ z < β and that 0 ≤ y ≤ x. Reasoning as in the
proof of Theorem 12, one may check that necessarily
ex ∈ {−2,−1, 0}. Using as usual the normalized repre-
sentations of x, y, and z, from (x2 + y2)z = 1 we deduce

Z2(X2 · β2ex−2ey + Y 2) = β4p−4−2ey . (27)

If β = 2q for some q ∈ N>0, then Equation (27) implies
that Z = 2% for some % ∈ Z. From Equation (27), we then
deduce

(
X · 2q(ex+2)

)2
+

(
Y · 2q(ey+2)

)2
= 24qp−2%. (28)

Since 2q(p−1) ≤ Z < 2qp, we deduce that q(p−1) ≤ % < qp,
hence 24qp−2% is in N. Since both 24qp−2% and X · 2q(ex+2)

are in N, it follows that (Y · 2q(ey+2))2 is also in N,
and from Lemma 4 we deduce that Y · 2q(ey+2) ∈ N.
Then Corollary 2 implies that the only possible de-
composition of 24qp−2% as the sum of two squares is
24qp−2% = 02 + (22qp−%)2, so that {X, Y } = {0, 22qp−%}.
Conversely, if {x, y} = {0,±2k}, then 1/

√
x2 + y2 = 2−k

belongs to F2q,p.
Now let us assume that β = 10. Then Equation (27)

becomes

Z2
(
X2 · 102ex−2ey + Y 2

)
= 104p−4−2ey . (29)

Since 104p−4−2ey is a multiple of Z, necessarily Z = 2k ·5%

with k, % ∈ N such that 10p−1 ≤ 2k · 5% < 10p, which
implies % ≤ 2p and k ≤ 4p. Moreover, from (29) with
Z = 2k · 5% we have

(
X · 102p+ex+2

)2 +
(
Y · 102p+ey+2

)2 = 28p−2k · 58p−2%.
(30)

Since (X · 102p+ex+2)2 and 28p−2k · 58p−2% are both in N,
then Y · 102p+ey+2 also belongs to N, which concludes
the proof.

In radix 2q, the pairs (x, y) such that 1/
√

x2 + y2 is a
midpoint are characterized by Theorem 13. In radix 10,
for each Z = 2k · 5% with k, % ∈ N such that 10p−1 ≤
2k · 5% < 10p, we are reduced to find all decompositions
of 28p−2k · 58p−2% as sums of two squares. This is done
as explained in Subsection 8.1. For each basic decimal
format of the IEEE 754-2008 standard, the following table
gives the number Nz of midpoints with a fixed exponent
ez , together with the number N of pairs of significands
(X, Y ) with X ≥ Y such that 1/

√
x2 + y2 is in F10,p.

Format decimal32 decimal64 decimal128
p 7 16 34

Nz 42 93 196
N 160 764 3373

9 NORMALIZATION OF 2D-VECTORS
Theorem 7 shows that x/

√
x2 + y2 cannot be a midpoint

in radix 2. Here we first extend this result to radices 2q

and 10. Then we characterize the exact points of the 2D-
normalization function in radix 2q.

9.1 Midpoints for 2D normalization
Theorem 14: Let x, y ∈ Fβ,p such that (x, y) .= (0, 0). If

β = 2q (q ∈ N>0) or β = 10 then x/
√

x2 + y2 .∈ Mβ,p.
Proof: Without loss of generality, let us assume x, y >

0, and assume that z = x/
√

x2 + y2 is a midpoint. Hence
we write as usual z = (Z+1/2)·10ez−p+1 with ez ∈ Z and
Z ∈ N such that βp−1 ≤ Z < βp. From x/

√
x2 + y2 ≤ 1

we deduce that z ≤ 1, hence ez ≤ 0. Using x2(1 − z2) =
y2z2 and the normalized representations of x and y gives

X2
(
4 · β2p−2−2ez − (2Z + 1)2

)
= Y 2(2Z + 1)2 · β2ey−2ex .

(31)
From ez ≤ 0, the left-hand side of (31) is in N and thus,
using Lemma 4, Y (2Z + 1) · βey−ex ∈ N. Since Y 2(2Z +
1)2 · β2ey−2ez is a multiple of X2, it follows that Y (2Z +
1) · βey−ex = JX for some J in N>0. Equation (31) then
becomes

(2 · βp−1−ez )2 = J2 + (2Z + 1)2, (32)

which expresses (2 · βp−1−ez )2 as a sum of two integer
squares.

If β = 2q then (2 · βp−1−ez )2 is an even power of
two and Corollary 2 then implies that it has only one
possible decomposition, which is 02 + (2q(p−1−ez)+1)2.
However, this contradicts the fact that both J and 2Z +1
are positive integers.

With β = 10, Equation (32) becomes

22p−2ez · 52p−2−2ez = J2 + (2Z + 1)2. (33)

Since 2p−2ez is even, according to Theorem 11, one has

22p−2ez · 52p−2−2ez = |2(c)|2 + |3(c)|2,

with c = 2p−ez (2 + i)k(2 − i)2p−2−2ez−k for some k ∈ N,
and one may check that both |2(c)| and |3(c)| are
even. Hence the two squares in the right-hand side of
Equation (33) must be even, which is a contradiction
since 2Z + 1 is odd.

9.2 Exact points for 2D normalization
The next theorem provides a characterization of the exact
points of the 2D-normalization function in radix 2q.

Theorem 15: Let q ∈ N>0 and let x, y ∈ F2q,p be such
that (x, y) .= (0, 0). One has z = x/

√
x2 + y2 ∈ F2q,p if

and only if x = 0 or y = 0.
Proof: The “if” statement is obvious. Conversely,

assume that z ∈ F2q,p and that both x and y are nonzero.
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We can restrict to x, y > 0 with no loss of generality.
Let z = x/

√
x2 + y2. Since z ≤ 1, necessarily ez ≤ 0.

Then, using x2(1 − z2) = y2z2 and the normalized
representations of x and y,

X2(β2p−2ez−2 − Z2) = Y 2Z2 · β2ey−2ex . (34)

From ez ≤ 0 it follows that the left-hand side of (34) is
in N and, due to Lemma 4, so is Y Z ·βey−ey . Now, since
Z2Y 2·β2ey−2ex is a multiple of X2, we have ZY ·βey−ex =
JX for some J ∈ N>0. Then we obtain from (34)

(
βez−p+1

)2 = J2 + Z2. (35)

When β = 2q, Corollary 2 implies that either J or Z is
zero, a contradiction.

In radix 10, we do not have simple results to character-
ize the exact points of the 2D-normalization function. But
they can of course be enumerated using Equation (35),
at least for some small precisions. Using Theorem 11,
we enumerate all the pairs (Z, J) for a fixed ez such
that (35) holds. Without loss of generality, we fix ex = 0.
The inputs x and y can then be found by searching the
points (X, Y · 10ey ) on the line Y Z · 10ey = JX , with
10p−1 ≤ X < 10p and X ∈ N. For some small precisions,
the following table gives the number of pairs of inputs
(X, Y ) such that x/

√
x2 + y2 is an exact point:

p 1 2 3 4 5 6 7

ez = −1 4 54 558 5622 56254 562696 5630268
ez = −2 0 0 0 6 60 597 2889

This experiment suggests that the number of pairs
(x, y) such that x/

√
x2 + y2 is an exact point grows very

rapidly with p, and that no useful enumeration can be
performed.

10 2D EUCLIDEAN NORM
Let x and y be two numbers in Fβ,p, and assume that
z =

√
x2 + y2 is a midpoint. We use the normalized

representations of x, y and we write as usual z =
(Z+1/2)·βez−p+1. Without loss of generality, we assume
that x ≥ y, which implies ez ≥ ex ≥ ey . Then from
x2 + y2 = z2 it follows that

4(Y 2 + X2 · β2ex−2ey ) = (2Z + 1)2 · β2ez−2ey . (36)

When β is odd, the right-hand side of Equation (36) is
odd, while the left-hand side is always even. Hence,
if the radix β is odd,

√
x2 + y2 cannot be a midpoint,

and this observation can be generalized to the Euclidean
norm in higher dimensions. Nevertheless, this not a very
useful result since it does not hold for binary, decimal
nor hexadecimal arithmetic.

For even radices, we do not have general results.
Equation (36) has solutions, and exhaustive enumeration
can be performed at least for small precisions. In radices
2 and 10, and for some small precisions p, the following
two tables display the number N of input pairs (x, y),
with x ≥ y, such that z =

√
x2 + y2 is a midpoint in

[1,β).
Radix 2
p 1 2 3 4 5 6 7 8 9 10

N 0 1 1 3 5 18 30 76 155 348

Radix 10
p 1 2 3 4

N 0 11 177 2428

These experiments suggest that the number of mid-
points for the function (x, y) '→

√
x2 + y2 grows very

rapidly with p.
On the other hand, in one-dimension the Euclidean

norm reduces to the absolute value, which suffices to
see that it admits only exact points.

11 CONCLUSION
We have shown that for several simple algebraic func-
tions (√y, 1/

√
y, xk for k ∈ N>0, x/‖y‖2, x/y, 1/y,

1/
√

x2 + y2, x/
√

x2 + y2), we can obtain useful informa-
tion on the existence of midpoints and exact points. This
information can be used for simplifying or improving the
performance of programs that evaluate these functions.

Finding midpoints and exact points would also be of
interest for the most common transcendental functions
(sine, cosine, exponential, logarithm,. . . ). Providing these
functions with correct rounding is a difficult problem,
known as the Table-Maker’s Dilemma [7], [10]. For the
most simple transcendental functions, those built from
the complex exponential and logarithm, one can deduce
the nonexistence of midpoints from the following corol-
lary of Lindemann’s theorem (see for example [2, p. 6]):

Theorem 16 (Lindemann): ez is transcendental for every
non-zero algebraic complex number z.
Since floating-point numbers as well as midpoints are
algebraic numbers, Theorem 16 allows us to deduce that
for any radix and precision, if x is a floating-point num-
ber then ln(x), exp(x), sin(x), cos(x), tan(x), arctan(x),
arcsin(x) and arccos(x) cannot be midpoints. Further-
more, the only exact points are ln(1) = 0, exp(0) = 1,
sin(0) = 0, cos(0) = 1, tan(0) = 0, arctan(0) = 0,
arcsin(0) = 0, and arccos(1) = 0.

The case of radix-2 and radix-10 exponentials and
logarithms have to be treated more carefully. But one
can prove that the radix-2 or 10 logarithm of a rational
number is either an integer or an irrational number. This
gives the following result. Assume that the exponent size
is less than the precision (which is true in any reasonable
floating-point system), and that x is a floating-point
number. Then we have the following:

• log2(x) cannot be a midpoint. It can be an exact
point only when x = 2k, where k is an integer;

• log10(x) cannot be a midpoint. It can be an exact
point only when x = 10k, where k is an integer.

It is always possible to build ad-hoc transcendental
functions for which something can be said about mid-
points or exact points. Unfortunately, for the many com-
mon non-elementary transcendental functions useful in
scientific applications (physics, statistics, etc.), almost
nothing is known about their midpoints or exact points
in floating point arithmetic.

Consider for instance the Gamma function. We know
that if n is a nonnegative integer then Γ(n) = (n− 1)! is
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an integer too (which implies the existence of midpoints
in some cases, e.g., in radix-2 arithmetic with p = 3,
the number 610 = 1102 is a floating-point number,
and Γ(6) = 5! = 12010 = 11110002 is a midpoint).
Although we have no proof of that, it is extremely
unlikely that Gamma of a non-integer floating-point
number could be a midpoint or an exact point. To our
knowledge (see for example [14]), the only result that
can be used to deal with a very few cases is that Γ(x)
is shown to be irrational if x modulo 1 belongs to
{1/6, 1/4, 1/3, 1/2, 2/3, 3/4, 5/6}.
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Arénaire reasearch team, he is now assistant
professor in the department of computer science
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His research interests are in computer arithmetic.

Jean-Michel Muller was born in Grenoble,
France, in 1961. He received his Ph.D. degree in
1985 from the Institut National Polytechnique de
Grenoble. He is Directeur de Recherches (senior
researcher) at CNRS, France, and he is the
former head of the LIP laboratory (LIP is a joint
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APPENDIX: EXACT POINTS FOR RECIPROCAL,
SQUARE ROOT RECIPROCAL AND 2D-NORM RE-
CIPROCAL

TABLE 7
In this table, we list the 45 integral significands Y such
that 1/y is an exact point, in the case of the decimal64

format.

Y 1/Y

2384185791015625 4.194304000000000 · 10−16

4768371582031250 2.097152000000000 · 10−16

1907348632812500 5.242880000000000 · 10−16

9536743164062500 1.048576000000000 · 10−16

3814697265625000 2.621440000000000 · 10−16

1525878906250000 6.553600000000000 · 10−16

7629394531250000 1.310720000000000 · 10−16

3051757812500000 3.276800000000000 · 10−16

1220703125000000 8.192000000000000 · 10−16

6103515625000000 1.638400000000000 · 10−16

2441406250000000 4.096000000000000 · 10−16

4882812500000000 2.048000000000000 · 10−16

1953125000000000 5.120000000000000 · 10−16

9765625000000000 1.024000000000000 · 10−16

3906250000000000 2.560000000000000 · 10−16

1562500000000000 6.400000000000000 · 10−16

7812500000000000 1.280000000000000 · 10−16

3125000000000000 3.200000000000000 · 10−16

1250000000000000 8.000000000000000 · 10−16

6250000000000000 1.600000000000000 · 10−16

2500000000000000 4.000000000000000 · 10−16

1000000000000000 1.000000000000000 · 10−15

5000000000000000 2.000000000000000 · 10−16

2000000000000000 5.000000000000000 · 10−16

4000000000000000 2.500000000000000 · 10−16

1600000000000000 6.250000000000000 · 10−16

8000000000000000 1.250000000000000 · 10−16

3200000000000000 3.125000000000000 · 10−16

1280000000000000 7.812500000000000 · 10−16

6400000000000000 1.562500000000000 · 10−16

2560000000000000 3.906250000000000 · 10−16

1024000000000000 9.765625000000000 · 10−16

5120000000000000 1.953125000000000 · 10−16

2048000000000000 4.882812500000000 · 10−16

4096000000000000 2.441406250000000 · 10−16

1638400000000000 6.103515625000000 · 10−16

8192000000000000 1.220703125000000 · 10−16

3276800000000000 3.051757812500000 · 10−16

1310720000000000 7.629394531250000 · 10−16

6553600000000000 1.525878906250000 · 10−16

2621440000000000 3.814697265625000 · 10−16

1048576000000000 9.536743164062500 · 10−16

5242880000000000 1.907348632812500 · 10−16

2097152000000000 4.768371582031250 · 10−16

4194304000000000 2.384185791015625 · 10−16

TABLE 8
This table gives all integral significands Y of y, and the

parity of the exponent ey, such that z = 1/
√

y is a floating
point number too, in decimal64 format.

Y 1/
√

Y · 10δy−p+1 δy

215·515 = 1000000000000000 1.000000000000000 ·100 0
245·53 = 4398046511104000 4.768371582031250 ·10−1 0
243·53 = 1099511627776000 9.536743164062500 ·10−1 0
241·55 = 6871947673600000 3.814697265625000 ·10−1 0
239·55 = 1717986918400000 7.629394531250000 ·10−1 0
235·57 = 2684354560000000 6.103515625000000 ·10−1 0
231·59 = 4194304000000000 4.882812500000000 ·10−1 0
229·59 = 1048576000000000 9.765625000000000 ·10−1 0
227·511 = 6553600000000000 3.906250000000000 ·10−1 0
225·511 = 1638400000000000 7.812500000000000 ·10−1 0
221·513 = 2560000000000000 6.250000000000000 ·10−1 0
217·515 = 4000000000000000 5.000000000000000 ·10−1 0
213·517 = 6250000000000000 4.000000000000000 ·10−1 0
211·517 = 1562500000000000 8.000000000000000 ·10−1 0
29·519 = 9765625000000000 3.200000000000000 ·10−1 0
27·519 = 2441406250000000 6.400000000000000 ·10−1 0
23·521 = 3814697265625000 5.120000000000000 ·10−1 0

246·52 = 1759218604441600 2.384185791015625 ·10−1 1
242·54 = 2748779069440000 1.907348632812500 ·10−1 1
238·56 = 4294967296000000 1.525878906250000 ·10−1 1
236·56 = 1073741824000000 3.051757812500000 ·10−1 1
234·58 = 6710886400000000 1.220703125000000 ·10−1 1
232·58 = 1677721600000000 2.441406250000000 ·10−1 1
228·510 = 2621440000000000 1.953125000000000 ·10−1 1
224·512 = 4096000000000000 1.562500000000000 ·10−1 1
222·512 = 1024000000000000 3.125000000000000 ·10−1 1
220·514 = 6400000000000000 1.250000000000000 ·10−1 1
218·514 = 1600000000000000 2.500000000000000 ·10−1 1
214·516 = 2500000000000000 2.000000000000000 ·10−1 1
210·518 = 3906250000000000 1.600000000000000 ·10−1 1
26·520 = 6103515625000000 1.280000000000000 ·10−1 1
24·520 = 1525878906250000 2.560000000000000 ·10−1 1
22·522 = 9536743164062500 1.024000000000000 ·10−1 1
20·522 = 2384185791015625 2.048000000000000 ·10−1 1

TABLE 9
In decimal64 arithmetic, the function 1/

√
x2 + y2 has two

midpoints in the range [10−16, 10−15), denoted by z1 and
z2. The pairs of floating-point numbers x and y such that

1/
√

x2 + y2 equals z1 or z2 are listed below.

x y z

8053063680000000 2348810240000000 z1
6710886400000000 5033164800000000 =
7851737088000000 2952790016000000 1.1920928955078125
7073274265600000 4509715660800000 ×10−16

6309843828736000 5527622909952000
8208004625203200 1731301317017600
7605184490373120 3539761721507840
7394920071430144 3960290559393792
8364448808960000 636192030720000
8388608000000000 0
1342177280000000 1006632960000000 z2
1261968765747200 1105524581990400 =
1610612736000000 469762048000000 5.9604644775390625
1570347417600000 590558003200000 ×10−16

1414654853120000 901943132160000
1672889761792000 127238406144000
1641600925040640 346260263403520
1521036898074624 707952344301568
1677721600000000 0
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