Correction du DST 3

EXERCICE 1.

A. a/ Pour tout $\alpha > 0$, $\lim_{n \to +\infty} n^{\alpha} = +\infty$, ainsi $\lim_{n \to +\infty} n^4 = +\infty$, $\lim_{n \to +\infty} n^2 = +\infty$ et $\lim_{n \to +\infty} n = +\infty$.

Par opération sur les limites, $\lim_{n \to +\infty} n^4 + n - 1 = +\infty$ et $\lim_{n \to +\infty} 3n^2 + 1 = +\infty$.

Il s'agit donc d'une forme indéterminée de la forme " $\frac{\infty}{\infty}$ ".

Factorisons le numérateur et le dénominateur par le terme prédominant.

 $\forall n \in \mathbb{N},$

$$\frac{n^4 + n - 1}{3n^2 + 1} = \frac{n^4 \left(\frac{n^4}{n^4} + \frac{n}{n^4} + \frac{1}{n^4}\right)}{n^2 \left(3\frac{n^2}{n^2} + \frac{1}{n^2}\right)}$$
$$= \frac{n^4}{n^2} \frac{\frac{n^4}{n^4} + \frac{n}{n^4} + \frac{1}{n^4}}{3\frac{n^2}{n^2} + \frac{1}{n^2}}$$
$$= n^2 \frac{1 + \frac{1}{n^3} + \frac{1}{n^4}}{3 + \frac{1}{n^2}}$$

Pour tout $\alpha > 0$, $\lim_{n \to +\infty} \frac{1}{n^{\alpha}} = 0$, donc $\lim_{n \to +\infty} \frac{1}{n^4} = 0$ et $\lim_{n \to +\infty} \frac{1}{n^2} = 0$.

Par opération sur les limites, $\lim_{n\to+\infty} 1 + \frac{1}{n^3} + \frac{1}{n^4} = 1$ et $\lim_{n\to+\infty} 3 + \frac{1}{n^2} = 3$.

Par opération sur les limites, $\lim_{n\to+\infty} \frac{1+\frac{1}{n^3}+\frac{1}{n^4}}{3+\frac{1}{n^2}} = \frac{1}{3}$

Par opération sur les limites, $\lim_{n\to+\infty} \frac{n^4+n-1}{3n^2+1} = +\infty$

b/ Pour $q<-1,\,(q^n)_{n\in\mathbb{N}}$ n'a pas de limite, donc $((-2)^n)_{n\in\mathbb{N}}$ n'a pas de limite.

Factorisons par le terme prédominant.

 $\forall n \in \mathbb{N},$

$$4^{n} - (-2)^{n} = 4^{n} \left(\frac{4^{n}}{4^{n}} - \frac{(-2)^{n}}{4^{n}} \right)$$
$$= 4^{n} \left(1 - \left(\frac{-2}{4} \right)^{n} \right)$$
$$= 4^{n} \left(1 - \left(\frac{-1}{2} \right)^{n} \right)$$

Or pour -1 < q < 1, $\lim_{n \to +\infty} q^n = 0$, donc $\lim_{n \to +\infty} \left(\frac{-1}{2}\right)^n = 0$.

Par opération sur les limites $\lim_{n \to +\infty} \left(1 - \left(\frac{-1}{2}\right)^n\right) = 1$.

Finalement, par opération sur les limites, $\lim_{n\to+\infty} 4^n - (-2)^n = +\infty$.

 \mathbf{c} On a $\lim_{n \to +\infty} \frac{1}{n^2} = 0$ et $\lim_{n \to +\infty} n^2 = +\infty$.

Par opération par les limites, $\lim_{n \to +\infty} \frac{1}{n^2} - n^2 = -\infty$.

 \mathbf{d} Il s'agit d'une forme indéterminée de la forme " $\frac{0}{0}$ "

Posons $g(y) = \frac{e^y - 1}{y}$ pour $y \neq 0$ et $f(x) = \sqrt{x}$ pour $x \geqslant 0$.

On a $\lim_{x \to 0} f(x) = \lim_{x \to 0} \sqrt{x} = 0$.

On cherche la limite de g en $\lim_{x\to 0} f(x) = 0$, c'est une limite classique.

On a $\lim_{y \to 0} g(y) = \lim_{y \to 0} \frac{e^y - 1}{y} = 1$.

Par composition des limites, $\lim_{x\to 0} \frac{e^{\sqrt{x}}-1}{\sqrt{x}} = 1$.

 \mathbf{e} Cherchons la limite de $x \mapsto \ln(-x)$.

Posons $g(y) = \ln(y)$ pour y > 0 et f(x) = -x pour $x \in \mathbb{R}$.

On a
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x = +\infty$$
.

On cherche la limite de g en $\lim_{x\to 0} f(x) = +\infty$.

On a
$$\lim_{y \to +\infty} g(y) = \lim_{y \to +\infty} \ln(y) = +\infty$$
.

Par composition des limites, $\lim_{x \to -\infty} \ln(-x) = +\infty$.

On a
$$\lim_{x \to -\infty} x = -\infty$$
.

Finalement, par opération sur les limites, $\lim_{x \to \infty} 2x \ln(-x) = -\infty$.

f/ Pour le DST, vu que nous n'avions pas encore vu la continuité, vous aviez le droit de donner la réponse directement en remplaçant par 2, mais à partir de maintenant, vous devez rédiger la réponse de la façon suivante.

Les polynômes sont continues sur \mathbb{R} , donc $\lim_{x\to 2} x^2 - 2x + 3 = 2^2 - 2 \times 2 + 3 = 3$

et
$$\lim_{x\to 2} 2x^3 - 5x - 3 = 2 \times 2^3 - 5 \times 2 - 3 = -5$$
.

Par opération sur les limites, on trouve $\lim_{x\to 2} \frac{x^2-2x+3}{2x^3-5x-3} = -\frac{3}{5}$.

 $\mathbf{g}/$ C'est une forme indéterminée de la forme " $\infty\times0$ ".

$$\forall n \in \mathbb{N}^*, \ n \ln \left(1 + \frac{1}{n}\right) = \frac{\ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n}}.$$

Posons $f(x) = \frac{\ln(1+x)}{x}$ pour x > -1 et $x \neq 0$ et $u_n = \frac{1}{n}$ pour $n \in \mathbb{N}^*$.

On a
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n} = 0.$$

On cherche la limite de f en $\lim_{n\to +\infty} u_n = 0$, c'est une limite classique.

On a
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Par composition des limites, $\lim_{n \to +\infty} n \ln \left(1 + \frac{1}{n}\right) = 1$.

h/ Pour tout
$$x > 0$$
, $\left(\frac{1}{x}\right)^{x^2} = e^{x^2 \ln\left(\frac{1}{x}\right)} = e^{-x^2 \ln(x)}$.

Cherchons la limite de $x^2 \ln(x)$ en 0^+ , il s'agit d'une forme indéterminée de la forme " $0 \times \infty$ ".

Par croissance comparée, $\lim_{x\to 0^+} x^2 \ln(x) = 0$.

Donc
$$\lim_{x \to 0^+} -x^2 \ln(x) = 0.$$

Or l'exponentielle est continue sur $\mathbb R$ donc en 0. Ainsi $\lim_{x\to 0}e^x=e^0=1$.

Par composition de limite, $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{x^2} = 1$.

 $\mathbf{i}/$ Pour $q<-1,\,(q^n)_{n\in\mathbb{N}}$ n'a pas de limite.

Ainsi $((-2)^n)_{n\in\mathbb{N}}$ n'a pas de limite.

 \mathbf{j} / Pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} 3^{k} \left(\frac{1}{2}\right)^{n-k} = \sum_{k=0}^{n} 3^{k} \left(\frac{1}{2}\right)^{n} \left(\frac{1}{2}\right)^{-k}$$

$$= \left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n} 3^{k} \left(\frac{1}{2}\right)^{-k}$$

$$= \left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n} 3^{k} 2^{k}$$

$$= \left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n} (3 \times 2)^{k}$$

$$= \left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n} 6^{k}$$

$$= \left(\frac{1}{2}\right)^{n} \frac{6^{n+1} - 1}{6 - 1}$$

$$= \frac{1}{2^{n}} \frac{6^{n+1} - 1}{5}$$

$$= \frac{6^{n+1} - 1}{5}$$

$$= \frac{6^{n+1} - 1}{5}$$

$$= \frac{6 \left(\frac{6}{2}\right)^{n} - \frac{1}{2^{n}}}{5}$$

$$= \frac{6 \times 3^{n} - \frac{1}{2^{n}}}{5}$$

Or $\lim_{n\to+\infty} 3^n = +\infty$ car 3>1 et $\lim_{n\to+\infty} \left(\frac{1}{2}\right)^n = 0$ car $-1<\frac{1}{2}<1$.

Par opération sur les limites, on a $\lim_{n\to+\infty}\sum_{k=0}^{n}3^{k}\left(\frac{1}{2}\right)^{n-k}=+\infty$.

 \mathbf{k} / Posons $f(x) = \frac{1}{\sqrt{x}}$ pour x > 0 et $u_n = n^2 + 3n + 4$ pour $n \in \mathbb{N}$.

On a $\lim_{n \to +\infty} n^2 = +\infty$ et $\lim_{n \to +\infty} n = +\infty$.

Par opération sur les limites, $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} n^2 + 3n + 4 = +\infty$.

On cherche la limite de f en $\lim_{n \to +\infty} u_n = +\infty$.

On a $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0.$

Par composition des limites, $\lim_{n\to+\infty} \frac{1}{\sqrt{n^2+3n+4}} = 0$.

 $\ell/ \ \forall n \in \mathbb{N}^*, \ \left(1 + \frac{2}{n}\right)^n = e^{n \ln\left(1 + \frac{2}{n}\right)}.$

Posons $f(x) = 2\frac{\ln(1+x)}{x}$ pour x > -1 et $x \neq 0$ et $u_n = \frac{2}{n}$ pour $n \in \mathbb{N}^*$.

On a bien $f(u_n) = 2\frac{\ln(1+\frac{2}{n})}{\frac{2}{n}} = n\ln(1+\frac{2}{n})$ pour tout $n \in \mathbb{N}^*$.

On a $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{2}{n} = 0$.

On cherche la limite de f en $\lim_{n \to +\infty} u_n = 0$.

On a $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2 \frac{\ln(1+x)}{x} = 2 \lim_{x \to 0} \frac{\ln(1+x)}{x} = 2.$

Par composition des limites, $\lim_{n \to +\infty} n \ln \left(1 + \frac{2}{n}\right) = 2$.

La fonction exponentielle est continue en 2, donc $\lim_{x\to 2} e^x = e^2$.

Par composition de limites, $\lim_{n\to+\infty} \left(1+\frac{2}{n}\right)^n = 2$.

B. 1. Soit $n \in \mathbb{N}^*$,

$$u_{n+1} - u_n = 1 - \frac{1}{n+1} - \left(1 - \frac{1}{n}\right)$$

$$= \frac{1}{n} - \frac{1}{n+1}$$

$$= \frac{n+1}{n(n+1)} - \frac{n}{n(n+1)}$$

$$= \frac{1}{n(n+1)}$$

$$v_{n+1} - v_n = 1 + \frac{1}{(n+1)^2} - \left(1 + \frac{1}{n^2}\right)$$

$$= \frac{1}{(n+1)^2} - \frac{1}{n^2}$$

$$= \frac{n^2}{n^2(n+1)^2} - \frac{(n+1)^2}{n^2(n+1)^2}$$

$$= \frac{-2n-1}{n^2(n+1)^2}$$

Ainsi $u_{n+1} - u_n > 0$ et $v_{n+1} - v_n < 0$ pour tout $n \in \mathbb{N}^*$.

Donc $(u_n)_{n\geqslant 1}$ est croissante et $(v_n)_{n\geqslant 1}$ est décroissante.

De plus, $u_n - v_n = -\frac{1}{n} - \frac{1}{n^2}$ pour tout $n \in \mathbb{N}^*$.

Or
$$\lim_{n \to +\infty} \frac{1}{n} = 0$$
 et $\lim_{n \to +\infty} \frac{1}{n^2} = 0$.

Par opération sur les limites, $\lim_{n \to +\infty} u_n - v_n = 0$.

Les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ sont donc adjacentes.

Les suites $(u_n)_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}$ convergent donc vers une même limite $\ell\in\mathbb{R}$.

2. Pour tout $n \in \mathbb{N}^*$, $\frac{1}{n} > 0$ et $\frac{1}{n^2} > 0$.

Donc pour tout $n \in \mathbb{N}^*$, $u_n < 1 < v_n$.

3. Par passage à la limite dans l'inégalité précédente, on trouve :

$$\ell\leqslant 1\leqslant \ell$$

Donc $\ell = 1$.

EXERCICE 2.

```
\label{eq:n=input} \begin{split} & \text{n=input("entrer un entier n")} \\ & \text{U=1} \\ & \text{for i=1 : n} \\ & \text{U=U^2+exp(-U)} \\ & \text{end} \\ & \text{disp(U)} \end{split}
```

EXERCICE 3.

1. Il y avait une coquille dans cette question, on ne demandait que de montrer si les matrices A et B sont inversibles.

Les matrices A et B sont triangulaires supérieures. Elles sont donc inversibles si et seulement leurs coefficients diagonaux sont non nuls.

Il y a un zéro sur la diagonale de A, donc A n'est pas inversible.

Il n'y a pas de zéro sur la diagonale de B, elle est donc inversible.

2. [-1,2;-2,3]

3. Une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est inversible si $ad - bc \neq 0$ et son inverse est alors

$$\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

La matrice C est donc inversible car $-1 \times 3 - 2 \times (-2) = 1 \neq 0$ et

$$C^{-1} = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$$

4. Pour inverser la matrice M, utilisons un système linéaire que nous résoudrons par pivot de Gauss. Soient a, b et c des réels quelconques,

$$\begin{cases} x & + & 2y & + & 3z & = & a \\ x & - & 2z & = & b \\ 3y & - & z & = & c \end{cases} \xrightarrow{L_2 \leftarrow L_2 + L_1} \begin{cases} x & + & 2y & + & 3z & = & a \\ & 2y & + & z & = & b + a \\ & 3y & - & z & = & c \end{cases}$$

$$\Longrightarrow_{L_2 \leftarrow \frac{1}{2}L_2} \begin{cases} x & + & 2y & + & 3z & = & a \\ & y & + & \frac{1}{2}z & = & \frac{1}{2}b + \frac{1}{2}a \\ & 3y & - & z & = & c \end{cases}$$

$$\Longrightarrow_{L_1 \leftarrow L_1 - 2L_2} \begin{cases} x & + & 2z & = & -b \\ & y & + & \frac{1}{2}z & = & \frac{1}{2}b + \frac{1}{2}a \\ & 3y & - & z & = & c \end{cases}$$

$$\Longrightarrow_{L_1 \leftarrow L_1 - 2L_2} \begin{cases} x & + & 2z & = & -b \\ & y & + & \frac{1}{2}z & = & \frac{1}{2}b + \frac{1}{2}a \\ & - & \frac{5}{2}z & = & -\frac{3}{2}a - \frac{3}{2}b + c \end{cases}$$

$$\Longrightarrow_{L_1 \leftarrow L_1 - 2L_2} \begin{cases} x & + & 2z & = & -b \\ & y & + & \frac{1}{2}z & = & \frac{1}{2}b + \frac{1}{2}a \\ & z & = & \frac{3}{5}a + \frac{3}{5}b - \frac{2}{5}c \end{cases}$$

$$\Longrightarrow_{L_1 \leftarrow L_1 - 2L_2} \begin{cases} x & = & -\frac{6}{5}a - \frac{111}{5}b + \frac{4}{5}c \\ & y & = & \frac{1}{5}a + \frac{1}{5}b + \frac{1}{5}c \\ & z & = & \frac{3}{5}a + \frac{3}{5}b - \frac{2}{5}c \end{cases}$$

$$\Longrightarrow_{L_2 \leftarrow L_2 - \frac{1}{2}L_3} \begin{cases} x & = & -\frac{6}{5}a - \frac{111}{5}b + \frac{4}{5}c \\ & y & = & \frac{1}{5}a + \frac{1}{5}b + \frac{1}{5}c \\ & z & = & \frac{3}{5}a + \frac{3}{5}b - \frac{2}{5}c \end{cases}$$

Finalement
$$M^{-1} = \frac{1}{5} \begin{pmatrix} -6 & -11 & 4\\ 1 & 1 & 1\\ 3 & 3 & -2 \end{pmatrix}$$
.

EXERCICE 4.

1. a. Pour que h soit défini, on doit avoir $x \neq 0$ pour que $x \mapsto x$ soit défini et x > -1 pour que 1 + x > 0 et que $\ln(1+x)$ soit bien définie.

Finalement $\mathcal{D}_h =]-1;0[\cup]0;+\infty[$.

b. Soit $x \in \mathcal{D}_h$,

$$h'(x) = \frac{\frac{1}{1+x}x - \ln(1+x)}{x^2}$$
$$= \frac{\frac{x}{1+x} - \ln(1+x)}{x^2}$$

c. On a $\lim_{x \to -1} \frac{1}{x} = \frac{1}{-1} = -1$ car $x \mapsto \frac{1}{x}$ est continue en -1.

De plus, $\lim_{x\to -1} 1+x=0$ et $\lim_{x\to 0} \ln(x)=-\infty$, par composition de fonction, $\lim_{x\to -1} \ln(1+x)=-\infty$.

Par opération sur les limites, $\lim_{x\to -1} h(x) = +\infty$.

On a $\lim_{x\to 0} h(x) = 1$, c'est une limite du cours.

Pour tout x > 0, $\frac{\ln(1+x)}{x} = \frac{\ln(1+x)}{1+x} \frac{1+x}{x} = \frac{\ln(1+x)}{1+x} \left(1 + \frac{1}{x}\right)$.

Par opération sur les limites, $\lim_{x \to +\infty} 1 + x = +\infty$.

Or, par croissance comparée, $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$.

Par composition sur les limites $\lim_{x\to +\infty} \frac{\ln(1+x)}{1+x} = 0$.

On a
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
.

Par opération sur les limites, $\lim_{x \to +\infty} 1 + \frac{1}{x} = 1$.

Finalement, $\lim_{x \to +\infty} h(x) = 0$.

2. a. f est définie si $\ln(1+ax)$ et $\ln(1+bx)$ sont définis, donc si 1+ax>0 et 1+bx>0, finalement si $x>-\frac{1}{a}$ et si $x>-\frac{1}{b}$.

Puisque a < b, $\frac{1}{a} > \frac{1}{b}$ et donc $-\frac{1}{a} < -\frac{1}{b}$.

Donc f est définie sur $\left[-\frac{1}{h}; +\infty\right[$.

b. Si x > 0, 1 + ax > 1 et 1 + bx > 1.

Par croissance du logarithme, ln(1 + ax) > 0 et ln(1 + bx) > 0.

Donc f est positive pour x > 0.

c. Pour tout x > 0,

$$f(x) = \frac{\ln(x) + \ln\left(\frac{1}{x} + a\right)}{\ln(x) + \ln\left(\frac{1}{x} + b\right)}$$

$$= \frac{\ln(x)}{\ln(x)} \times \frac{1 + \frac{\ln\left(\frac{1}{x} + a\right)}{\ln(x)}}{1 + \frac{\ln\left(\frac{1}{x} + b\right)}{\ln(x)}}$$

$$= \frac{1 + \frac{\ln\left(\frac{1}{x} + a\right)}{\ln(x)}}{1 + \frac{\ln\left(\frac{1}{x} + b\right)}{\ln(x)}}$$

On a $\lim_{x \to +\infty} \frac{1}{x} = 0$, par opération sur les limites, $\lim_{x \to +\infty} \frac{1}{x} + a = a$.

Or a > 0, par continuité du logarithme sur \mathbb{R}_+^* , on a $\lim x \to a \ln(x) = \ln(a)$.

Par composition de limites, $\lim_{x \to +\infty} \ln\left(\frac{1}{x} + a\right) = \ln(a)$.

Or $\lim_{x \to +\infty} \ln(x) = +\infty$.

Par opération sur les limites, $\lim_{x\to +\infty} \frac{\ln\left(\frac{1}{x}+a\right)}{\ln(x)} = 0.$

Par opération sur les limites, $\lim_{x\to +\infty} 1 + \frac{\ln\left(\frac{1}{x}+a\right)}{\ln(x)} = 1$.

De même, $\lim_{x \to +\infty} 1 + \frac{\ln(\frac{1}{x} + b)}{\ln(x)} = 1$.

Par opération sur les limites, $\lim_{x \to +\infty} f(x) = 1$.

d. Pour tout x > 0,

$$\frac{\frac{\ln(1+ax)}{ax}}{\frac{\ln(1+bx)}{bx}} = \frac{\ln(1+ax)}{ax} \times \frac{bx}{\ln(1+bx)}$$
$$= \frac{\ln(1+ax)}{a} \times \frac{b}{\ln(1+bx)}$$
$$= \frac{a}{b} \frac{\ln(1+ax)}{\ln(1+bx)}$$
$$= \frac{a}{b} f(x)$$

Finalement $f(x) = \lambda \frac{\frac{\ln(1+ax)}{ax}}{\frac{\ln(1+bx)}{bx}}$ pour $\lambda = \frac{b}{a}$.

e. Par opération sur les limites, $\lim_{x\to 0} ax = 0$.

De plus,
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$$
.

Par composition de limites, $\lim_{x\to 0} \frac{\ln(1+ax)}{ax} = 1$.

De même,
$$\lim_{x\to 0} \frac{\ln(1+bx)}{bx} = 1$$
.

Par opération sur les limites, on trouve donc $\lim_{x \to a} f(x) = 1$.

f. Soit x > 0,

$$f'(x) = \frac{a \frac{\ln(1+bx)}{1+ax} - b \frac{\ln(1+ax)}{1+bx}}{(\ln(1+bx))^2}$$

$$= \frac{a(1+bx) \ln(1+bx) - b(1+ax) \ln(1+ax)}{(1+ax)(1+bx)(\ln(1+bx))^2}$$

$$= \frac{g(x)}{(1+ax)(1+bx)(\ln(1+bx))^2}$$

g. Pour tout x > 0, 1 + ax > 0, 1 + bx > 0 et $(\ln(1 + bx))^2 > 0$.

Donc f'(x) est du signe de g(x).

h. Soit x > 0,

$$g'(x) = ab \ln(1 + bx) + ab - (ba \ln(1 + ax) + ab)$$
$$= ab(\ln(1 - bx) - \ln(1 + ax))$$

i. Soit x > 0,

On a a < b donc ax < bx car x > 0.

Donc 1 + ax < 1 + bx et par croissance du logarithme, $\ln(1 + ax) < \ln(1 + bx)$.

Finalement ln(1 + bx) - ln(1 + ax) > 0.

j. ab > 0, donc pour tout x > 0, g'(x) > 0. On trouve alors le tableau de signe suivant :

$$\begin{array}{c|cc}
 & 0 & +\infty \\
\hline
g'(x) & + & \\
g(x) & \nearrow & \\
\end{array}$$

 $\lim_{x\to 0^+}g(x)=0 \text{ et } \lim_{x\to +\infty}g(x)=+\infty.$ k. La fonction g est croissante donc pour tout $x>0,\ g(x)\geqslant \lim_{x\to 0^+}g(x)=0.$ Finalement g est positive sur \mathbb{R}_+^* .

$$\begin{array}{c|cccc}
 & 0 & +\infty \\
\hline
f'(x) & + & \\
\hline
f(x) & \nearrow & \\
\end{array}$$

 $m. \frac{1}{b} < \frac{1}{a}$, donc $f(\frac{1}{b}) \leqslant f(\frac{1}{a})$ car f est croissante.

Donc
$$\frac{\ln(1+\frac{a}{b})}{\ln(1+\frac{b}{b})} \leqslant \frac{\ln(1+\frac{a}{a})}{\ln(1+\frac{b}{a})}$$
.

$$\begin{array}{l} \text{Donc } \frac{\ln\left(1+\frac{a}{b}\right)}{\ln(2)} \leqslant \frac{\ln(2)}{\ln\left(1+\frac{b}{a}\right)}. \\ \text{Finalement } \ln\left(1+\frac{a}{b}\right)\ln\left(1+\frac{b}{a}\right) \leqslant (\ln(2))^2. \end{array}$$

EXERCICE 5. Étant donné le nombre très faible de personnes ayant tenté cet exercice, je vous donne juste les résultats, je vous laisse réfléchir à la démonstration. Nous pourrons en rediscuter par la suite si vous le souhaitez.

- $A. 1. 3^4$
 - $2. \ \frac{1}{3^4}$
 - 3. $\left(\frac{2}{3}\right)^4$

- $4. \ 1 \left(\frac{2}{3}\right)^4$ $5. \ \frac{2}{3^3}$ $6. \ \frac{2}{3^4}$ $B. \ 1. \ A_i = \overline{C_i \cup G_i}$
 - 2. $\mathbb{P}(A_i) = \mathbb{P}(G_i) = \mathbb{P}(C_i) = \frac{1}{3}$
 - 3. a. $A = \bigcap_{i=1}^{n} A_i$ b. $\mathbb{P}(A) = \frac{1}{3^n}$
 - 4. $a. Alt = (A_1 \cap G_2 \cap A_3 \cap G_4 \cap ...) \cup (G_1 \cap A_2 \cap G_3 \cap A_4 \cap ...)$
 - b. $\mathbb{P}(Alt) = \frac{2}{3^n}$
 - 5. $a. P = C_1$ b. $\mathbb{P}(P) = \frac{1}{3}$
 - 6. a. $D = \bigcup_{i \neq j} \left[\left(\bigcap_{k \neq i, k \neq j} \overline{C_k} \right) \cap C_i \cap C_j \right]$ b. $\mathbb{P}(D) = \frac{1}{18} n(n+1) \left(\frac{2}{3} \right)^{n-2}$
 - 7. Cette question est particulièrement délicate.