DST 4 (13 Mars 2020)

Durée: 4h

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

EXERCICE 1. Cet exercice reprend des exercices d'application du cours vu en TD. Quelques valeurs ont cependant été légèrement modifiées.

- A) On dispose d'un jeu de 52 cartes, constitué de quatre couleurs (carreau, cœur, pique et trèfle) et des cartes allant de 2 à 10 puis valet, dame, roi et as. On appelle main 5 cartes extraites du paquet.
 - 1. Combien y a-t-il de mains possibles?
 - 2. Combien y a-t-il de mains donnant exactement trois rois?
 - 3. Combien y a-t-il de mains où toutes les cartes sont des cœurs?
- B) Donner la nature des séries suivantes et calculer leur somme dans le cas où elles convergent.

$$1/\sum_{n\geq 0} 4^n$$

$$2/\sum_{n\geqslant 0}\frac{n}{3^n}$$

3/
$$\sum_{n\geqslant 0} \frac{(-5)^n}{n!}$$

4/
$$\sum_{n \ge 1} (\ln(n+1) - \ln(n))$$

$$5/\sum_{n\geqslant 0} \frac{n-1}{n!}$$

6/
$$\sum_{n\geq 0} \frac{n(n+1)}{2^n}$$

C) Calculer les limites suivantes

$$1/\lim_{x\to+\infty}\frac{2x+2}{e^{-x}}$$

$$2/\lim_{x\to 0^+} \ln\left(2+\frac{1}{x}\right)$$

3/
$$\lim_{x\to 0^+} \frac{e^{\sqrt{x}}-1}{\sqrt{x}}$$

4/
$$\lim_{x \to +\infty} e^{x^3-2}$$

5/
$$\lim_{x\to 3} \frac{x^3-x+1}{3x^2-5x+3}$$

6/
$$\lim_{x \to -\infty} (x^3 - 3x^2 + 2)e^x$$

EXERCICE 2.

- **A)** Définissons la fonction f par la formule $f(x) = (x+1)^2 \ln(x+1)$.
 - 1. Donner l'ensemble de définition \mathcal{D}_f de f.
 - 2. Rédiger un programme Scilab permettant de tracer la fonction f sur l'intervalle [1; 2].
 - 3. Montrer que f est continue sur \mathcal{D}_f .
 - 4. Donner les variations de f.
 - 5. f est elle prolongeable par continuité en -1?
 - 6. Calculer la limite de f en $+\infty$.
 - 7. Montrer que l'équation f(x) = 1 admet une unique solution sur \mathcal{D}_f .
- **B)** Pour tout $n \in \mathbb{N}$, on définit les fonctions f_n pour tout x > 0 par : $f_n(x) = x^n \ln(x)$.
 - 1. Montrer que, pour tout $n \in \mathbb{N}$, f_n est continue sur \mathbb{R}_+^* .
 - 2. Donner les variations de f_n , pour tout $n \in \mathbb{N}$.
 - 3. Montrer que l'équation $f_n(x) = 1$ admet une unique solution sur \mathbb{R}_+^* que l'on appellera par la suite x_n .
 - 4. Quelle est la valeur de x_0 ?

Mathématiques - ECE 1 2019-2020

- 5. Montrer que, pour tout $n \in \mathbb{N}$, $x_n \ge 1$.
- 6. Montrer que, pour tout $n \in \mathbb{N}$, $f_{n+1}(x_n) = x_n$ et en déduire que la suite $(x_n)_{n \geqslant 0}$ est décroissante.
- 7. Montrer que la suite $(x_n)_{n\geqslant 0}$ converge vers une limite finie ℓ .
- 8. Montrer que $\ell = 1$.

EXERCICE 3. Prenons une urne constituée de 3 boules vertes, 2 boules rouges et 4 boules bleues. Effectuons une infinité de tirages avec remise dans cette urne.

Posons les événements V_i : "On tire une boule verte au i-ème tirage" et l'événement V: "On ne tire que des boules vertes".

- 1. Quelle est la probabilité de V_i ?
- 2. Exprimer l'événement V en fonction des événements V_i .
- 3. Quelle est la probabilité de l'événement V?

EXERCICE 4. Soit $q \in]0;1[$.

- 1. Pour tout $n \in \mathbb{N}$, on pose $s(n,0) = \sum_{k=0}^{n} q^k$. Calculer s(n,0) et sa limite vers $+\infty$.
- 2. Pour tout $n \in \mathbb{N}$, on pose $s(n,1) = \sum_{k=0}^{n} (k+1)q^k$.
 - a) Rédiger un programme Scilab demandant un entier n à l'utilisateur et renvoyant la valeur de s(n,1).
 - b) Déterminer la limite de la suite $(nq^n)_{n\in\mathbb{N}}$ lorsque n tend vers $+\infty$.
 - c) Exprimer (1-q)s(n,1) à l'aide de s(n,0) et en déduire la limite de s(n,1) lorsque n tend vers $+\infty$.
 - d) Retrouver le résultat présentant en utilisant une série bien choisie.
- 3. Plus généralement, pour tout couple (n,r) de nombres entiers naturels, on pose :

$$s(n,r) = \sum_{k=0}^{n} \binom{r+k}{r} q^k$$

a) On suppose que $n,r \ge 1$. Montrer que :

$$(1-q)s(n,r) = s(n,r-1) - \binom{r+n}{r} q^{n+1}$$

- b) Déterminer les limites des suites de termes généraux n^rq^n et $\binom{r+n}{r}q^n$ lorsque n tend vers $+\infty$.
- c) En déduire, par récurrence, que, lorsque n tend vers $+\infty$, s(n,r) tend vers $s(r) = \frac{1}{(1-q)^{r+1}}$.