Mathématiques - ECE 1 2019-2020

Correction du TD de révision

I Indispensable 0

EXERCICE 1.

 $\frac{3}{7}$ $\frac{2}{3}$ $\frac{3}{20}$ $\frac{x}{4} = \frac{1}{4}x$ $\frac{3}{4x}$

 $\frac{-4}{3} = -\frac{4}{3} \qquad \frac{4}{3} \qquad \frac{3}{20} \qquad \frac{-2}{3} + \frac{1}{3}x = \frac{1}{3}x - \frac{2}{3} \qquad n^2 + 1$

 $\frac{2}{3}$ $\frac{11}{6}$ 0 $1 + \frac{1}{n} + \frac{1}{n^2}$ x + 1

 $\frac{1}{8}$ 1 x^5 x^6 $5x^2 + 5x + 5$

 $9x^2 \qquad \qquad \frac{1}{9}x^2 = \frac{x^2}{9} \qquad \qquad 5 \qquad \qquad \begin{array}{c} \sqrt{3}x, \text{ si } x \geqslant 0 \\ -\sqrt{3}x, \text{ si } x < 0 \end{array} \qquad \qquad \begin{array}{c} 1, \text{ si } n \text{ paire} \\ -1, \text{ si } n \text{ impaire} \end{array}$

 $3\sqrt{3}$ $\frac{3}{\sqrt{2}}$ $\sqrt{x-1+\frac{1}{x}}$ e^{-1} $\ln(2)-\ln(3)$

EXERCICE 2.

 $x^{2}\left(x^{3}+4x-1+\frac{3}{x^{2}}\right) \qquad \qquad x^{2}\sqrt{1-\frac{1}{x}+\frac{2}{x^{3}}} \qquad \qquad x^{2}\sqrt{x^{3}-5x+\frac{3}{x^{3}}-\frac{2}{x^{4}}}$

II Indispensable 1

EXERCICE 3.

x = -1 x = 2 x = -1

 $e^{-x} = -\frac{1}{3}$

 $x = \frac{3}{4}$ c'est impossible, $x = e^{-1}$

il n'y a pas de solution

EXERCICE 4.

x = -3y + 2z + 1 $x = \frac{4}{3} - \frac{2}{3}y + \frac{1}{3}z$ $x = 4 + y - \frac{2}{3}z$

EXERCICE 5.

pas de solutions $x = -1 \pm \sqrt{3}$ x = -1 ou $x = -\frac{1}{2}$

EXERCICE 6.

 $a^2 - b^2$ $a^2 + 2ab + b^2$ $a^2 - 2ab + b^2$

EXERCICE 7.

 $x \geqslant -\frac{3}{2}$ $x \leqslant -1 \text{ ou } x \geqslant 1$ $x \geqslant 0$

III Chapitre 1

EXERCICE 8.

 $(u_n)_{n\geqslant 0}$ est croissante $(v_n)_{n\geqslant 0}$ est décroissante $(w_n)_{n\geqslant 0}$ est croissante

 $(a_n)_{n\in\mathbb{N}}$ est croissante $(b_n)_{n\in\mathbb{N}}$ est décroissante

Il faut le montrer par récurrence.

EXERCICE 9.

 $\frac{31}{16}$

IV Indispensable 2

EXERCICE 10.

V Chapitre 2

EXERCICE 11.

$$AX = \begin{pmatrix} 7 \\ -7 \\ -7 \end{pmatrix}$$

$$BX = \begin{pmatrix} -5 \\ 5 \\ 2 \end{pmatrix}$$

$${}^{t}A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & -2 \\ 0 & 3 & 1 \end{pmatrix}$$

$$\mathcal{B} = \begin{pmatrix} -1 & 1 & -3 \\ 0 & 2 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} -1 & 2 & 6 \\ 2 & -8 & 3 \\ 4 & 0 & -5 \end{pmatrix}$$

$$AB = \begin{pmatrix} 1 & -6 & 2 \\ 0 & 0 & 7 \\ -5 & -4 & 2 \end{pmatrix}$$

VI Indispensable 4

Je vous laisse chercher ces trois exercices, n'hésitez pas à vous reporter à votre cours à ce propos.

VII Chapitre 4

EXERCICE 15.

$$D_f = \mathbb{R}^*$$
$$f'(x) = 1 - \frac{1}{x^2}$$

	$-\infty$	_	1	0	1	$+\infty$
f'(x)		+	1	_	+	
f(x)		7	×	×	7	

$$D_g = \mathbb{R} \setminus \{1\}$$

Mathématiques - ECE 1 2019-2020

$$g'(x) = \frac{-2}{(x-1)^2}$$

	$-\infty$	(0	$+\infty$
g'(x)		_	_	
g(x)		\searrow	>	

$$D_h = \mathbb{R}$$
$$h'(x) = 3x^2 - 18x - 21$$

	$-\infty$	$6-\sqrt{2}$		$6+\sqrt{2}$		$+\infty$
h'(x)		+	_		+	
h(x)		7	7		7	

$$D_a = \mathbb{R}_+$$
$$a'(x) = \frac{1-x}{2\sqrt{x}(x+1)^2}$$

	$-\infty$	1	L	$+\infty$
a'(x)		_	+	
a(x)		7	×	

$$D_b = \mathbb{R}$$
$$b'(x) = \frac{2x}{x^2 + 1}$$

$$\begin{array}{c|cccc}
 & -\infty & 0 & +\infty \\
\hline
b'(x) & - & + & \\
\hline
b(x) & & \nearrow & \\
\end{array}$$

$$D_c = \mathbb{R}_+^*$$
$$c'(x) = \frac{1}{2x}(2 - \sqrt{x}e^{-\sqrt{x}})$$

Trouver le signe de $2-\sqrt{x}e^{-\sqrt{x}}$ n'est pas facile. Si vous êtes arrivé là, vous pouvez passer au TD7. Si vraiment vous tenez à répondre à cette question, il vous faudra trouver que la fonction $x\mapsto xe^{-x}$ admet un maximum en 1 et qu'ainsi $2>\sqrt{x}e^{-\sqrt{x}}$. Vous trouverez alors le signe de c(x).

	$-\infty$	$+\infty$
c'(x)	-	+
c(x)	,	7