

J.THIBAUT, F.MEZZACAPO, T.ROSCILDE Laboratoire de Physique, ENS de Lyon, Lyon, France

State of a *N*-spin $\frac{1}{2}$ system: $|\psi\rangle = \sum_{\vec{\sigma}} C(\vec{\sigma}) |\vec{\sigma}\rangle$ $\rightarrow 2^N$ variables

ENS DE LYON

Through gradient algorithm, find $|\psi\rangle$ which minimizes $\langle \psi | H | \psi \rangle$, with the assumption

EPS ALGORITHM

Mean field

 $\rightarrow 2N$ variables

<u>But:</u>

						<u> </u>
	-			-		

EPS with plaquettes of size 3 $\rightarrow 2^3 N$ variables

 $|\psi\rangle = \sum_{\vec{\sigma}} \left(\prod_{P} C_{P}(\vec{\sigma}_{P})\right) |\vec{\sigma}\rangle$

 $\langle S_i^z S_j^z \rangle - \langle S_i^z \rangle \langle S_j^z \rangle = \begin{cases} \frac{1}{4} - \langle S_i^z \rangle^2 & \text{if } i = j \\ 0 & \text{if not} \end{cases}$

EPS DELOCALIZED

EPS with delocalized plaquettes of size 2 $\rightarrow N^2$ variables

Reduced with considerations on symetries. $\propto N \text{ variables}$

XX-CHAIN

 $H = J \sum_{i} (S_{i+1}^{x} S_{i}^{x} + S_{i+1}^{y} S_{i}^{y})$

J_1J_2 chain

$$H = J_1 \sum_{i} \vec{S}_i \cdot \vec{S}_{i+1} + J_2 \sum_{i} \vec{S}_i \cdot \vec{S}_{i+2}$$

HEISENBERG CHAIN

Correlation function between sites i and j of a system of size 40

Correlation function along x axis between sites i and j of a system of size 30

Entanglement entropy as a function of the size of the subsystem of a system of size 30

Energy as a function of the parameter J_2/J_1

CONCLUSION

- EPS algorithm with short range plaquettes reproduces well short range correlations but
- **Correlations with** $J_2 = J_1$

fails to reproduce long range

- EPS algorithm with delocalized plaquettes better reproduces the overall shape of the curve, but costs more calculation time.
 - Using symetries seems to be a good compromise, but how to choose the symetries we consider in the Ansatz ?
- The sign structure influences the convergence of the algorithm.
- Is it possible to find the sign structure of a system with this algorithm ?

REFERENCES

- → F. Mezzacapo, N. Schuch, M. Boninsegni and J.I. Cirac, "Ground-state properties of quantum many-body systems: entangled-plaquette states and variational Monte Carlo", *New journal of Physics*, **11**(2009).
- → M.E.J. Newman, G.T. Barkema, *Monte Carlo Methods in Statistical Physics*, Oxford University Press (1999).

Correlation function between sites *i* and *j* of a system of size 8