ENTANGLEMENT PROPERTIES OF LATTICE BOSONS FROM A VARIATIONAL WAVE FUNCTION

J.THIBAUT, T.ROSCILDE Laboratoire de Physique, ENS de Lyon, Lyon, France

INTRODUCTIONState of a N-spin $\frac{1}{2}$ system: $|\psi\rangle = \sum_{\vec{\sigma}} C(\vec{\sigma}) |\vec{\sigma}\rangle$
 $\rightarrow 2^N$ variablesMean field Ansatz: $C(\vec{\sigma}) = \prod_i C_i(\sigma_i)$
 $\rightarrow 2N$ variablesMean field Ansatz: $C(\vec{\sigma}) = \prod_i C_i(\sigma_i)$
 $\rightarrow 2N$ variables

But:

$$\langle S_i^z S_j^z \rangle - \langle S_i^z \rangle \langle S_j^z \rangle = \begin{cases} \frac{1}{4} - \langle S_i^z \rangle^2 & \text{if } i = j \\ 0 & \text{if not} \end{cases}$$

CNIS

ENS DE LYON

GRADIENT ALGORITHM

Aim: Find $|\psi\rangle$ which minimize $\langle\psi|H|\psi\rangle$, with Hamiltonian H and state

 $|\psi\rangle = \sum_{\vec{\sigma}} \left(\prod_{P} C_{P}(\vec{\sigma}_{P})\right) |\vec{\sigma}\rangle$

Figure 3: Disjoint plaquettes of size 3

$$\rightarrow 2^3 \frac{N}{3}$$
 variables

Figure 4: EPS with plaquettes of size 3 $\rightarrow 2^3 N$ variables

CORRELATION

es	1.0	<u> </u>	I I I
sit	0.9		 exact computation
en	0.8		EPS delocalized of size 2
Ň	0.7		
et	0.6		

Figure 1: EPS with delocalized plaquettes of size 2

ENERGY

Figure 7: Energy of an XX-model chain of size 30 founded with different EPS algorithms

ENTANGLEMENT ENTROPY

Figure 5: Correlation function along x axis between sites *i* and *j* of an XX-model chain of size 62

Figure 6: Correlation function along z axis between sites *i* and *j* of an Heisenberg chain of size 60

Figure 8: Entanglement entropy as a function of the size of the subsystem of an XX-model chain of size 30

CONCLUSION

- Delocalized plaquettes EPS seems to nicely reproduce correlations
 - \rightarrow Try to use it on frustrated system
- For a small system, EPS extract lots of infor-

Figure 9: Information contained in the ground state exact diagonalized (a), EPS size 2 (b), EPS size 3 (c), EPS size 4 (d), EPS size 5 (e), EPS delocalized size 2 (f)

Figure 10: Information entropy of the groundstate founded with different algorithms of an XX-model chain of size 10

mation

 \rightarrow What behavior for bigger systems and how to quantify the extraction of the information we want

REFERENCES

- → F. Mezzacapo, N. Schuch, M. Boninsegni and J.I. Cirac, "Ground-state properties of quantum many-body systems: entangled-plaquette states and variational Monte Carlo", *New journal of Physics*, **11**(2009).
- → M.E.J. Newman, G.T. Barkema, *Monte Carlo Methods in Statistical Physics*, Oxford University Press (1999).
- → M. Takahashi,*Thermodynamics of One-Dimensional Solvable Models*, Cambridge University Press (1999)
- → P. Calabrese, J. Cardy, "Entanglement entropy and conformal field theory", *Journal of Physics A: Mathematical and Theoretical*, 42 (2009) 50