
M1 – Cryptography and Security (2022/2023) A. Passelègue and J. Felderhoff

TD 3: Security Assumptions

Exercise 1. Advantage(s)
We consider two distributions D0 and D1 over {0, 1}n and the following experiment.

C A
sample b←↩ U(0, 1)

sample x ←↩ Db
send x to A

compute a bit b′

send b′ to C
If b = b′, say “Win”, else say “Lose”.

We say that a PPT (Probabilistic, Polynomial-Time) algorithm A is a distinguisher if there exists a non-
negligible ε such that, in this experiment, Pr[Win] ≥ 1/2 + ε. The distributions D0 and D1 are said to
be indistinguishable if there is no such distinguisher.

1. Show that this definition of indistinguishability is equivalent to the one seen during the lecture.

2. A rebellious student decides to define a distinguisher as a PPT algorithm A with Pr[Win] ≤
1/2− ε in the above experiment (rather than ≥ 1/2 + ε). Is this a revolutionary idea?

Exercise 2. Around the DDH assumption
We recall the definition of the DDH assumption.

Definition 1 (Decisional Diffie-Hellman distribution). Let G be a cyclic group of (prime) order p, and let g
be a public generator of G. The decisional Diffie-Hellman distribution (DDH) is, DDDH = (ga, gb, gab) ∈ G3

with a, b sampled independently and uniformly in Z/pZ =: Zp.

Definition 2 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that
there exists no probabilistic polynomial-time distinguisher between DDDH and (ga, gb, gc) with a, b, c sampled
independently and uniformly at random in Zp.

1. Does the DDH assumption hold in G = (Zp,+) for p = O(2λ) prime?

2. Same question for G = (Z⋆
p ,×) of order p− 1, with p an odd prime.

Exercise 3. Attacking the DLG problem
Let G be a cyclic group generated by g, of (known) prime order p, and let h be an element of G. Let
F : G → Zp be a nonzero function, and let us define the function H : G → G by H(α) = α · h · gF(α).
We consider the following algorithm (called Pollard ρ Algorithm).

Pollard ρ Algorithm

Input: h, g ∈ G

Output: x ∈ {0, . . . , p− 1} such that h = gx or fail.

1. i← 1

2. x ← 0, α← h

3. y← F(α); β← H(α)

4. while α ̸= β do

1



5. x ← x + F(α) mod p; α← H(α)

6. y← y + F(β) mod p; β← H(β)

7. y← y + F(β) mod p; β← H(β)

8. i← i + 1

9. end while

10. if i < p then

11. return (x− y)/i mod p

12. else
13. return fail

14. end if

To study this algorithm, we define the sequence (γi) by γ1 = h and γi+1 = H(γi) for i ⩾ 1.

1. Show that in the while loop from Steps 4 to 9 of the algorithm, we have α = γi = gxhi and
β = γ2i = gyh2i.

2. Show that if this loop terminates with i < p, then the algorithm returns the discrete logarithm of
h in basis g.

3. Let j be the smallest integer such that there exists k < j such that γj = γk. Show that j ⩽ p + 1
and that the loop ends with i < j.

4. Show that if F is a random function, then the average execution time of the algorithm is in O(p1/2)
multiplications in G.

2


	1. Advantage(s)
	2. Around the DDH assumption
	3. Attacking the DLG problem

