TD 3: Security Assumptions

Exercise 1.

Advantage(s)
We consider two distributions D_{0} and D_{1} over $\{0,1\}^{n}$ and the following experiment.

\mathcal{C}	\mathcal{A}
sample $b \hookleftarrow U(0,1)$	
sample $x \hookleftarrow D_{b}$	
send x to \mathcal{A}	compute a bit b^{\prime}
send b^{\prime} to \mathcal{C}	

We say that a PPT (Probabilistic, Polynomial-Time) algorithm \mathcal{A} is a distinguisher if there exists a nonnegligible ε such that, in this experiment, $\operatorname{Pr}[\mathrm{Win}] \geq 1 / 2+\varepsilon$. The distributions D_{0} and D_{1} are said to be indistinguishable if there is no such distinguisher.

1. Show that this definition of indistinguishability is equivalent to the one seen during the lecture.
2. A rebellious student decides to define a distinguisher as a PPT algorithm \mathcal{A} with $\operatorname{Pr}[$ Win $] \leq$ $1 / 2-\varepsilon$ in the above experiment (rather than $\geq 1 / 2+\varepsilon$). Is this a revolutionary idea?

Exercise 2.

Around the DDH assumption
We recall the definition of the DDH assumption.
Definition 1 (Decisional Diffie-Hellman distribution). Let \mathbb{G} be a cyclic group of (prime) order p, and let g be a public generator of \mathbb{G}. The decisional Diffie-Hellman distribution $(D D H)$ is, $D_{\mathrm{DDH}}=\left(g^{a}, g^{b}, g^{a b}\right) \in \mathbb{G}^{3}$ with a, b sampled independently and uniformly in $\mathbb{Z} / p \mathbb{Z}=: \mathbb{Z}_{p}$.

Definition 2 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between D_{DDH} and $\left(g^{a}, g^{b}, g^{c}\right)$ with a, b, c sampled independently and uniformly at random in \mathbb{Z}_{p}.

1. Does the DDH assumption hold in $\mathbb{G}=\left(\mathbb{Z}_{p},+\right)$ for $p=\mathcal{O}\left(2^{\lambda}\right)$ prime?
2. Same question for $\mathbb{G}=\left(\mathbb{Z}_{p}^{\star}, \times\right)$ of order $p-1$, with p an odd prime.

Exercise 3.

Attacking the DLG problem
Let \mathbb{G} be a cyclic group generated by g, of (known) prime order p, and let h be an element of \mathbb{G}. Let $F: \mathbb{G} \rightarrow \mathbb{Z}_{p}$ be a nonzero function, and let us define the function $H: \mathbb{G} \rightarrow \mathbb{G}$ by $H(\alpha)=\alpha \cdot h \cdot g^{F(\alpha)}$. We consider the following algorithm (called Pollard ρ Algorithm).

Pollard ρ Algorithm

Input: $h, g \in \mathbb{G}$
Output: $x \in\{0, \ldots, p-1\}$ such that $h=g^{x}$ or FAIL.

1. $i \leftarrow 1$
2. $x \leftarrow 0, \alpha \leftarrow h$
. $y \leftarrow F(\alpha) ; \beta \leftarrow H(\alpha)$
while $\alpha \neq \beta$ do
3. $\quad x \leftarrow x+F(\alpha) \bmod p ; \alpha \leftarrow H(\alpha)$
4. $y \leftarrow y+F(\beta) \bmod p ; \beta \leftarrow H(\beta)$
5. $y \leftarrow y+F(\beta) \bmod p ; \beta \leftarrow H(\beta)$
. $i \leftarrow i+1$
end while
if $i<p$ then
return $(x-y) / i \bmod p$
else
return FAIL
end if
To study this algorithm, we define the sequence $\left(\gamma_{i}\right)$ by $\gamma_{1}=h$ and $\gamma_{i+1}=H\left(\gamma_{i}\right)$ for $i \geqslant 1$.
6. Show that in the while loop from Steps 4 to 9 of the algorithm, we have $\alpha=\gamma_{i}=g^{x} h^{i}$ and $\beta=\gamma_{2 i}=g^{y} h^{2 i}$.
7. Show that if this loop terminates with $i<p$, then the algorithm returns the discrete logarithm of h in basis g.
8. Let j be the smallest integer such that there exists $k<j$ such that $\gamma_{j}=\gamma_{k}$. Show that $j \leqslant p+1$ and that the loop ends with $i<j$.
9. Show that if F is a random function, then the average execution time of the algorithm is in $O\left(p^{1 / 2}\right)$ multiplications in \mathbb{G}.
