TD 3: Security Assumptions

Exercise 1.

Advantage(s)

We consider two distributions D_0 and D_1 over $\{0,1\}^n$ and the following experiment.

We say that a PPT (Probabilistic, Polynomial-Time) algorithm \mathcal{A} is a *distinguisher* if there exists a nonnegligible ε such that, in this experiment, $\Pr[Win] \ge 1/2 + \varepsilon$. The distributions D_0 and D_1 are said to be *indistinguishable* if there is no such distinguisher.

- 1. Show that this definition of indistinguishability is equivalent to the one seen during the lecture.
- **2.** A rebellious student decides to define a distinguisher as a PPT algorithm \mathcal{A} with $\Pr[\text{Win}] \leq 1/2 \varepsilon$ in the above experiment (rather than $\geq 1/2 + \varepsilon$). Is this a revolutionary idea?

Exercise 2.

We recall the definition of the DDH assumption.

Around the DDH assumption

Definition 1 (Decisional Diffie-Hellman distribution). Let \mathbb{G} be a cyclic group of (prime) order p, and let g be a public generator of \mathbb{G} . The decisional Diffie-Hellman distribution (DDH) is, $D_{\text{DDH}} = (g^a, g^b, g^{ab}) \in \mathbb{G}^3$ with a, b sampled independently and uniformly in $\mathbb{Z}/p\mathbb{Z} =: \mathbb{Z}_p$.

Definition 2 (Decisional Diffie-Hellman assumption). *The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between* D_{DDH} *and* (g^a, g^b, g^c) *with a, b, c sampled independently and uniformly at random in* \mathbb{Z}_p .

- **1.** Does the DDH assumption hold in $\mathbb{G} = (\mathbb{Z}_p, +)$ for $p = \mathcal{O}(2^{\lambda})$ prime?
- **2.** Same question for $\mathbb{G} = (\mathbb{Z}_p^*, \times)$ of order p 1, with p an odd prime.

Exercise 3.

Attacking the DLG problem

Let \mathbb{G} be a cyclic group generated by g, of (known) prime order p, and let h be an element of \mathbb{G} . Let $F : \mathbb{G} \to \mathbb{Z}_p$ be a nonzero function, and let us define the function $H : \mathbb{G} \to \mathbb{G}$ by $H(\alpha) = \alpha \cdot h \cdot g^{F(\alpha)}$. We consider the following algorithm (called *Pollard* ρ *Algorithm*).

Pollard ρ Algorithm

Input: $h, g \in \mathbb{G}$

Output: $x \in \{0, \dots, p-1\}$ such that $h = g^x$ or FAIL.

1.
$$i \leftarrow 1$$

2. $x \leftarrow 0, \alpha \leftarrow h$
3. $y \leftarrow F(\alpha); \beta \leftarrow H(\alpha)$

4. while $\alpha \neq \beta$ do

- 5. $x \leftarrow x + F(\alpha) \mod p; \alpha \leftarrow H(\alpha)$
- 6. $y \leftarrow y + F(\beta) \mod p; \beta \leftarrow H(\beta)$
- 7. $y \leftarrow y + F(\beta) \mod p; \beta \leftarrow H(\beta)$
- 8. $i \leftarrow i+1$
- 9. end while
- 10. **if** *i* < *p* **then**
- 11. return $(x y)/i \mod p$

12. else

- 13. return FAIL
- 14. end if

To study this algorithm, we define the sequence (γ_i) by $\gamma_1 = h$ and $\gamma_{i+1} = H(\gamma_i)$ for $i \ge 1$.

- **1.** Show that in the **while** loop from Steps 4 to 9 of the algorithm, we have $\alpha = \gamma_i = g^x h^i$ and $\beta = \gamma_{2i} = g^y h^{2i}$.
- **2.** Show that if this loop terminates with *i* < *p*, then the algorithm returns the discrete logarithm of *h* in basis *g*.
- **3.** Let *j* be the smallest integer such that there exists k < j such that $\gamma_j = \gamma_k$. Show that $j \leq p + 1$ and that the loop ends with i < j.
- **4.** Show that if *F* is a random function, then the average execution time of the algorithm is in $O(p^{1/2})$ multiplications in \mathbb{G} .