NTRU and mod-uSVP 2

Joël Felderhoff, Alice Pellet-Mary and Damien Stehlé

INRIA Lyon

Contributions

[This Talk]

- Reduction from mod-uSVP 2_{2} to NTRU.
- Random self-reduction for mod-uSVP 2 .

Definitions

NTRU

We work with elements of $R=\mathbb{Z}[X] /\left(X^{n}+1\right)$ for $n=2^{r}$.
The size of an element $a \in R$ is $\|a\|=\left(\sum_{i<n}\left|a_{i}\right|^{2}\right)^{1 / 2}$.

Definition $\left(N T R U_{q}\right)$

Let $f, g \in R$ with coefficients $\ll \sqrt{q}$ and f invertible $\bmod q$.
Given $h \in R$ such that $f \cdot h=g$ mod q, find a small multiple of (f, g).

Advantages:

Proposed first in [HPS96].
Used in NIST's post-quantum
standardization process:
NTRU and NTRUPrime.

- Small keys.
- Fast encryption/decryption (much faster than RSA).
- Old.

The NTRU module

Given $h \in R$, the set of solutions for (f, g) is

$$
M=\left\{\left(f_{0}, g_{0}\right)^{T} \in R^{2}, \quad f_{0} \cdot h=g_{0} \bmod q\right\}
$$

This is a "polynomial" lattice (a module) generated by the matrix

$$
\mathbf{B}=\left(\begin{array}{ll}
1 & 0 \\
h & q
\end{array}\right)
$$

Solving NTRU is finding a short non-zero vector in M.

Big gap

$$
\lambda_{1} \leq\left\|(f, g)^{T}\right\| \ll \sqrt{q} \text { versus } \lambda_{2} \geq \operatorname{det}(\mathbf{B}) / \lambda_{1} \gg \sqrt{q} .
$$

Rank-2 Unique-SVP

Typical lattice

mod-uSVP 2 instance

$\bmod -\mathrm{SVP}_{2}$

Given a basis B of a module $M \subset R^{2}$, find a short non-zero vector in it.

γ-mod-uSVP ${ }_{2}$: "generalized NTRU"

Given a basis B of a module $M \subset R^{2}$ s.t. $\lambda_{1}(M) \leq \sqrt{\operatorname{det}(M)} / \gamma$, find a short non-zero vector in it.

Prior Work

For R-modules

[LS15]: A. Langlois, D. Stehlé. Des. Codes Cryptogr. 2015.
[AD17]: M. Albrecht, A. Deo. ASIACRYPT 2017.
[BDPW20]: K. Boer, L. Ducas, A. Pellet-Mary, B. Wesolowski. CRYPTO 2020.
[PS21]: A. Pellet-Mary, D. Stehlé. ASIACRYPT 2021.

$\bmod -u \mathrm{SVP}_{2}=\mathrm{NTRU}$

Pre-HNF step

We will need that the first row spans the entire R, i.e., $\operatorname{gcd}\left(b_{11}, b_{12}\right)=1$.

Basis	Short vector
$\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$	$\mathbf{s}=\left[\begin{array}{l}u \\ v\end{array}\right]$
$(\mathbf{I}+\varepsilon) \times \downarrow$	$(\mathbf{I}+\varepsilon) \times \downarrow$
$\left(\begin{array}{ll}b_{11}^{\prime} & b_{12}^{\prime} \\ b_{21}^{\prime} & b_{22}^{\prime}\end{array}\right)$	$\mathbf{s}^{\prime}=(\mathbf{I}+\varepsilon) \mathbf{s}$

We do that until $\operatorname{gcd}\left(b_{11}^{\prime}, b_{12}^{\prime}\right)=1$

$$
\text { It takes } O\left(\zeta_{K}(2)\right) \text { trials. }
$$

Hermite Normal Form

$$
\begin{array}{cl}
\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) & \text { Using that } \operatorname{gcd}\left(b_{11}, b_{12}\right)=1 . \\
& \downarrow \\
\left(\begin{array}{cc}
1 & b_{12} \\
b_{21}^{\prime} & b_{22}
\end{array}\right) & \begin{array}{c}
\text { Columns operations on the basis. } \\
\\
\downarrow
\end{array} \\
\left(\begin{array}{cc}
1 & 0 \\
a & \text { b }
\end{array}\right) & \text { Similar to the NTRU matrix }\left(\begin{array}{cc}
1 & 0 \\
h & \text { (q) }
\end{array}\right)
\end{array}
$$

This changes neither the module nor the minimal vector.
Difference with NTRU: $q \in \mathbb{Z}$ versus $b \in R$.

From the HNF to NTRU

We multiply the bottom row by q / b and round. If $q \approx b$, this does not change the geometry (much).

Basis	Short vector
$\left(\begin{array}{ll}1 & 0 \\ a & b\end{array}\right)$	$\mathbf{s}=\left[\begin{array}{c}u \\ v\end{array}\right]$
$\left(\begin{array}{cc}1 & \downarrow \\ \lfloor a \cdot q / b\rceil & q\end{array}\right)$	$\mathbf{s}^{\prime}=\left[\begin{array}{c}\downarrow \\ v \cdot q / b-u \cdot\{a \cdot q / b\}\end{array}\right]$

We can use an NTRU solver to solve a mod-uSVP 2 instance!

Random Self-reducibility of

 mod-uSVP 2
Anatomy of a mod-uSVP ${ }_{2}$ instance: QR factorization

Any (free) mod-uSVP ${ }_{2}$ instance has a basis

$$
\mathbf{B}=\mathbf{Q} \cdot\left(\begin{array}{cc}
r_{11} & r_{12} \\
0 & r_{22}
\end{array}\right)
$$

with $r_{11} \ll r_{22}, r_{12} \in\left(\frac{-r_{11}}{2}, \frac{r_{11}}{2}\right)$ and Q orthogonal.

Goal for the randomization:

- Randomize Q.
- Randomize r_{11} and r_{22}.
- Randomize r_{12}.

Difficulty: we don't have access to the good basis.

Randomization of r_{11} and r_{22}

We multiply by a scalar: this changes r_{11} and r_{22} but r_{11} / r_{22} is fixed.
Solution: sparsification by a prime p.

Sparsification by (p, \mathbf{b}^{\vee})
For p prime and $\mathbf{b}^{\vee} \in M^{\vee}, M_{p}=\left\{\mathbf{m} \in M,\left\langle\mathbf{m}, \mathbf{b}^{\vee}\right\rangle=0 \bmod p\right\}$.
This multiplies the non-zero shortest vector by p with high probability: this multiplies r_{11} by p and leaves r_{22} unchanged.

Randomization of r_{12}

Idea: blur the space by a gaussian \mathbf{D}.

$$
\mathbf{D} \cdot \mathbf{Q} \sim \mathbf{D}=\mathbf{Q}^{\prime} \cdot\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)
$$

Then

$$
M^{\prime}=\mathbf{D} \cdot M \sim \mathbf{Q}^{\prime} \cdot\left(\begin{array}{cc}
r_{11}^{\prime} & r_{12}^{\prime} \\
0 & r_{22}^{\prime}
\end{array}\right)
$$

where

$$
\begin{aligned}
r_{12}^{\prime} & =\left(b+a r_{12}\right) \bmod r_{11}^{\prime} \\
& \approx \operatorname{Unif}\left(R \bmod r_{11}^{\prime}\right) .
\end{aligned}
$$

Rounding

The "good basis" is randomized, but not the "bad" one.

$$
\begin{array}{c|c}
\text { Basis } & \text { Short vector } \\
\hline\left(\begin{array}{cc}
\tilde{b}_{11} & \tilde{b}_{12} \\
\tilde{b}_{21} & \tilde{b}_{22}
\end{array}\right) \in K_{\mathbb{R}}^{2 \times 2} & \tilde{\mathbf{s}}=\left[\begin{array}{c}
\tilde{u} \\
\tilde{v}
\end{array}\right] \\
\left(M^{\vee}\right)^{2} \ni(\lambda \mathbf{I}+\varepsilon) \times \downarrow & (\lambda \mathbf{I}+\varepsilon) \times \downarrow \\
\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \in R^{2 \times 2} & \mathbf{s}=(\lambda \mathbf{I}+\varepsilon) \tilde{\mathbf{s}} \in R^{2}
\end{array}
$$

Then take HNF.

What did I hide?

- We work over number fields all along.
- Modules are not necessarily free.
- We use an mod-SVP ${ }_{1}$-solver to take care of non-free modules.
- The HNF can take a $O\left(\zeta_{K}(2)\right)$ running time due to the Pre-HNF step.
- Polynomial losses in approximation factors.
- The distribution analysis uses Rényi divergence and statistical distance.

Contributions

[This Talk]

Open problems

- We need a mod-SVP ${ }_{1}$ solver to sample from our average-case distribution, can we get rid of it?
- Can we construct a random NTRU instance with a trapdoor?
- Composability of our reduction with the NTRU search-to-decision reduction from [PS21].
- For which K is $\zeta_{K}(2)$ polynomial?

Thank you for your attention

Any question?

Newton's fractal of the NTRUPrime polynomial for $p=7$.

