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1 Introduction

This report describes the work done during the internship with Professor Samuel Fiorini
from February 1 to June 16, 2017. It took place in the Algebra and Combinatorics research
unit of the Université Libre de Bruxelles in Brussels, Belgium.

Many mathematical problems can be expressed as a linear program (LP) . Geometrically,
the constraints define a polyhedron in a space of dimension equal to the number of variables.
However, computationally solving an LP can take a lot of time if there are many constraints.
In addition, there exist some problems that are polytime solvable, can be expressed as an
LP, but still this LP have an exponential number of constraints in the corresponding: the
minimum spanning tree problem for instance is one of them. So, how can such an easy
problem be so geometrically hard to describe?

A way to study the "structural complexity" of a polyhedron (or polytope in the bounded
case) is extension complexity. Some problems can be expressed with fewer constraints by
extending the number of variables. Since the complexity of an LP is linked to the number
of constraints, this leads to faster computations. The extension complexity of a polytope
P is the minimal number of facets of a polytope that projects to P . The number of facet
being linked to the number of inequality, the extension and optimization complexities are
linked. Therefore to some extend extension complexity is linked to computation. Figure 1
shows a polytope in 2 dimensions with 8 facets that is the projection of a 6 facet polytope in
dimension 3. The case of regular polygon shows that there can be a gap between the number
of faces and the extension complexity since the extension complexity of an n-gon is θ(log n).

So, even though Edmonds’ [Edm71] description of the spanning tree polytope has an
exponential number of constraints, Martin [Mar91] showed that it can be expressed as the
projection of a higher dimensional polytope with O(n3) inequalities.

It is then natural to wonder if some NP -hard problems can have a corresponding polytope
with polynomial extension complexity, since this would imply NP = P/poly. On the other
hand one can wonder which polytopes have high extension complexity. One of the major
results is by Fiorini, Massar, Pokutta, Tiwary and de Wolf [FMP+11], where they prove that
many polytopes, such as the correlation polytope or the traveling salesman problem polytope
have exponential extension complexity. This lower bounding technique also raised another
important question: do all polytopes for which the associated optimization problem is in P
have low extension complexity? This was solved in 2014 by Rothvoss [Rot14], who showed
that the extension complexity of a perfect matching polytope of a complete n-node graph is
2Ω(n). But maximum weight matching is known to be polynomial.

All these major results are due to the development of bounding techniques. There are
many techniques to bound the extension complexity. Most recent papers directly study a
special matrix linked to the polytope, called the slack matrix. This is due to the fact that the
extension complexity of a polytope is equal to the non-negative rank of its slack matrix. Many
bounds were introduced thanks to this connection. Among them are common information
introduced by Braun and Pokutta in [BJLP14] and the hyperplane separation bound that can
be found in [Rot14]. Another lower bounding technique is to reduce the study of a polytope
to a polytope that is known to have high extension complexity. For instance, if we can project
a polytope P to a polytope Q with high extension complexity, then P too has high extension
complexity. Upper bounds can be obtained by explicit construction of an extension of the
polytope studied. There are other ways to obtain then, but constructive proofs have the
advantage to provide a structure on which algorithms can be run.

In this report we consider the study of lower bounds computed on the slack matrix, a
reduction proof to lower bound the correlation polytope, and a explicit construction of an
extension. We start by defining the notion of extension complexity 2. Then we define to
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lower bounds 3: the hyperplane separation bound and common information. We show in
Section 4 that computing common information is in NP and that computing the hyperplane
separation bound is NP -complete and even hard to approximate. Then, in Section 4 we
study the extension complexity of the correlation polytope of minor closed class of graphs.
For these graph we show a tight connection to the treewidth of the graph. For this polytope,
the lower bound is obtained by reduction, and the upper bound by an explicit construction
of an extension.

π

P

Q

Figure 1: Extension of a polytope with less facets

2 Extension complexity and related notions

In this section we formally introduce the notion of extension complexity and some basic
notions related to it.

2.1 Definitions and notation

We denote by [n] the set {1, . . . , n} where n ∈ Z>0.

Definition 1 . A polytope in Rd is the convex hull of a finite set of points in Rd. The
dimension, dimP , of a polytope P is the maximal number of affinely independent points in P
minus 1. We define a polyhedron in Rd as a subset P ⊆ Rd defined by P = {x ∈ Rd | Ax 6 b},
where A ∈ Rm×d and b ∈ Rm.

As shown by the Minkowski-Weyl theorem (see [Zie12]) there is an equivalence between
being a polytope and being a bounded polyhedron, which means that a polytope can be
described by a system of inequalities.

Definition 2 . Let P ⊆ Rd be a polytope. Let c ∈ Rd, k ∈ R and H = {x ∈ Rd | cᵀx = k}
be a hyperplane. H is a valid hyperplane for P if for every x in P , cᵀx 6 k. We say F ⊆ P
is a face of P if F = P or there exists a valid hyperplane H such that F = P ∩ H. The
dimension of a face is the dimension of its affine hull. A facet of a polytope of dimension n
is a (n− 1)-dimensional face.

Definition 3 . The extension complexity of a polytope P is the minimal number of facets f
for which there exists a polytope Q with at most f facets and an affine map π that satisfies
π(Q) = P . The extension complexity of P is denoted xc(P ).

2.2 First tools to study extension complexity

We define the notions of slack matrix and non-negative factorization which provide algebraic
tools to study the extension complexity of a polytope.
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Definition 4 . We consider a polytope with two descriptions P = conv{x1, . . . , xn} = {x ∈
Rd | Ax 6 b} where A ∈ Rm×d. We define the slack matrix S ∈ Rm×n by Sij = bi − Aixj .
The slack matrix is therefore a non-negative matrix.

Sij

x(j)

Aix = bi

P

Figure 2: Geometrical interpretation of the slack

The slack matrix of a polytope is not unique since the system of inequalities that describes
a polytope is not unique. We call Sij the slack of the jth vertex xj with respect to the ith
facet-defining inequality Aix 6 bi of P . It represents the distance of the vertex xj from the
hyperplane Aix = bi when ‖Ai‖2 = 1 (see Figure 2). Figure 3 gives an example of slack
matrix.

−x1 6 0 2x1 + 3x2 6 6

−x2 6 0
u1 = (0, 0) u2 = (3, 0)

u3 = (0, 2)

Polytope

u1 u2 u3

6 0 0

0 3 0

0 0 2

Slack matrix

Figure 3: A polytope and its slack matrix

Definition 5 . Let M ∈ Rn×d>0 . The non-negative rank of M is defined by:

rk+(M) = min{r | ∃U ∈ Rn×r>0 , V ∈ Rr×d>0 : M = UV }.

Such U and V matrices provide a non-negative factorization of M . Equivalently:

rk+(M) = min

{
r

∣∣∣∣∣M =
r∑
i=1

piq
ᵀ
i , p1, . . . , pr > 0, q1, . . . , qr > 0

}
Any such sum on r elements is a non-negative decomposition of M .

The following theorem shows how extension complexity can be expressed as non-negative
rank.

Theorem 1 [Yan91]. Let P be a polytope such that dimP > 1 and S any of its associated
slack matrices. Then xc(P ) = rk+(S).

However the nonnegative rank is NP -hard to compute and even ETR-complete as Shitov
shows [Shi16]. Therefore, many lower bounding techniques were developed in order to bound
the extension complexity.

For all set A we define its the characteristic vector χA as χA(x) =

{
1 if x ∈ A
0 otherwise.

4



Definition 6 . The support of a matrix M ∈ Rn×d, denoted by supp(M), is defined as:

supp(M) = {(i, j) ∈ [n]× [d] |Mij 6= 0}

A rectangle is a set R = I×J ⊆ [n]× [d]. Informally I (resp. J) is a subset of the rows (resp.
columns). We identify the support with the matrix χsupp(M) ∈ Rn×d and a rectangle R with
χR. The rectangle covering number of a matrix M is the minimal number of rectangles with
support contained in supp(M) that cover supp(M). We denote it by rc(M).

Example 1 . We consider the following matrix: M =


0 4 8 3 5
0 4 6 7 2
0 7 5 0 7
0 0 4 1 0

. Then the support

of M is given in Figure 4a. Here the rectangle covering bound is 2 since the two following
rectangles cover all the non-zero values. The first one R1 is in red bold in Figure 4b. And
the second one R2 is shown in blue bold in Figure 4c.

0 1 1 1 1
0 1 1 1 1
0 1 1 0 1
0 0 1 1 0


(a) Support suppM


0 1 1 1 1
0 1 1 1 1
0 1 1 0 1
0 0 1 1 0


(b) Rectangle R1


0 1 1 1 1
0 1 1 1 1
0 1 1 0 1
0 0 1 1 0


(c) Rectangle R2

Figure 4: Biclique cover of the graph associated to M

The rectangle covering number provides a lower bound for the extension complexity.
Indeed, let S ∈ Rn×d be the slack matrix, r = rk+(S). Consider a non-negative factorization
of S, S = UV where U ∈ Rn×r>0 , V ∈ Rr×d>0 .

Then the rectangles Rk = {i ∈ [n] | Uik > 0} × {j ∈ [d] | Vkj > 0} for k ∈ [r] cover the
support of S. This gives the following theorem.

Theorem 2 [Yan91]. Let P be a polytope such that dimP > 1 and S its associated slack
matrix. Then rc(S) 6 xc(P ).

This bound has been used in [FMP+11] to prove exponential lower bound, for instance
for the correlation polytope of a complete graph (see Definition 14). It is the best bound
possible when the only given information is the support of a slack matrix. However sometimes
to obtain a more precise lower bound, we need to use more than the support of the matrix.
The lower bounds introduced in 3 are some of the lower bounds used in this case.

2.3 Biclique cover and partition

In this section we link the biclique cover and rectangle cover problems.

Definition 7 . A biclique is a complete bipartite graph. A biclique cover of a graph
G is a collection of biclique subgraphs of G that cover all the edges of G. The biclique
cover number bc(G) is the minimum number of bicliques needed to have a biclique cover.
A biclique partition of G is a biclique cover in which each edge is covered exactly once.
The biclique partition number bp(G) is the minimum number of bicliques needed to have a
biclique partition. Similarly, a clique is a complete graph, and a clique partition of G is a
clique cover in which each edge is covered exactly once. The clique partition number cp(G)
is the minimum number of cliques needed to have a clique partition.
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Now consider a non-negative matrixM . We construct a bipartite graph GM = (R∪C,E)
where R is the set of row indices and C is the set of column indices of M . We draw an edge
ij in GM for every ij such that Mij 6= 0. Then let R = I × J a rectangle of M included in
supp(M). Then the subgraphs whose edges are ij where i ∈ I and j ∈ J corresponds to a
biclique in GM , and vice-versa. Therefore a rectangle cover is equivalent to a biclique cover.
This proves the following result.

Theorem 3 . For M a non-negative matrix, bc(GM ) = rc(M).

Let S be some slack matrix of a polytope P . By Theorems 1 and 2 the biclique cover
number of the graph GS provides a lower bound on the extension complexity of P .

Example 2 . Consider again the matrix M in Example 1. The associated graph GM is
depicted in Figure 5. We illustrate the biclique cover corresponding to the previous rectangle
cover.

The vertices on the left side (resp. right side) are the ones associated to the rows (resp.
columns), the upper one being the first row (resp. column). In this example, the red dotted
and the blue dashed bicliques are the bicliques obtained by considering the rectangles of the
rectangle cover, and provide a biclique cover of the graph.

Graph GM associated to M Biclique associated to R1 Biclique associated to R2

Figure 5: Biclique cover of the graph associated to M

3 Lower bound definitions

In this section, we define the two lower bounds on which we worked during the internship:
the hyperplane separation bound and common information.

3.1 Hyperplane separation bound

Let us first introduce the hyperplane separation bound. For two matrices M,N ∈ Rm×n, we
define the Frobenius inner product 〈M,N〉 =

∑m
i=1

∑n
j=1Mij ·Nij . For M a matrix, define

‖M‖∞ = maxij |Aij |.

Definition 8 . For W ∈ Rm×n, let ρ(W ) := max{〈W,R〉 | R ∈ {0, 1}m×n rectangle}. The
hyperplane separation bound of a matrix M ∈ Rm×n>0 is then defined by:

HSB(M) = sup
W∈Rn×d

〈W,M〉
‖M‖∞ · ρ(W )

In the case where W ∈ Rm×n60 have that ρ(W ) = 0, but since numerator is less than zero,
we consider that we obtain 0. Similarly, for a zero matrix we consider we have 0. There
exists another equivalent definition using the rectangle polytope.
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Definition 9 . We define the rectangle polytope RECT(m,n) as the convex hull of all the
rectangles of [m]× [n] matrices.

RECT(m,n) = conv{R | Rij = xiyj , x ∈ {0, 1}m, y ∈ {0, 1}n}

Theorem 4 . Let M ∈ Rm×n with ‖M‖∞ = 1. Then:

HSB(M) = min
λ>0
{λ−1 | λM ∈ RECT(m,n)}

Proof.
(6) Take λ > 0 such that λM ∈ RECT(m,n). Then there exists non-negative numbers

(µi)i∈[k] and rectangles (Ri)i∈[k] such that λM =
∑k

i=1 µiRi and
∑k

i=1 µi = 1. By
definition, for all W :

〈W,λM〉 =

〈
W,

k∑
i=1

µiRi

〉
=

k∑
i=1

µi〈W,Ri〉 6
k∑
i=1

µiρ(W ) = ρ(W )

So 1
λ > 〈W,M〉

ρ(W ) .
(>) Let λ∗ be such that (λ∗)−1 = minλ>0{λ−1 | λM ∈ RECT(m,n)}. By minimality of λ∗)−1

λ∗M is on the boundary of RECT(m,n) hence in a proper face F of RECT(m,n). The
face F is determined by an inequality 〈W ∗, X〉 6 b where W ∗ ∈ Rm×n and b ∈ R. Since
F contains λ∗M , it is nonempty so b = ρ(W ∗). Then ρ(W ∗) = 〈W ∗, λ∗M〉. Therefore
HSB(M) > 〈W ∗,M〉

ρ(W ∗) = 1
λ∗ .

Figure 6 gives a geometrical illustration of the hyperplane separation bound and the link
between the definitions given in Definition 8 and Theorem 4.

M

λM

W

〈W,λM〉 6 ρ(M)
RECT(m,n)

Figure 6: Geometrical interpretation of the hyperplane separation bound

This equivalent definition provides a first upper bound on the hyperplane separation
bound .

Theorem 5 . Let M ∈ Rm×n>0 . Then HSB(M) 6 m.

Theorem 6 [Rot14]. Let S ∈ Rn×d>0 be a slack matrix of a polytope P . Then:

xc(P ) > HSB(S)

Example 3 . We consider Jn the n by n matrix with ones everywhere, and In the identity.
LetM = Jn−In. We define a probability distribution on the rectangles R = I×J where I and

J are disjoint and I∪J = {1, . . . , n} by: for all i in {1, . . . , n}:

{
i ∈ I with probability 1/2

i ∈ J with probability 1/2
, independently for all i.
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We call λR this distribution. For i 6= j, (i, j) ∈ R if and only if i ∈ I, j /∈ I and the
probability of this is then 1/4. Then:∑

R rectangle
λRχ

R =
1

4
M

Therefore HSB(M) 6 4.
We define the weight matrix:

W =

−∞ 1
. . .

1 −∞


The −∞ means here that we take coefficients really big in absolute value in comparison to the
value of the elements of the matrix and of the size. We introduced the disjointness matrix:

DISJ1 =

(
1 1
1 0

)
and DISJn = DISJ⊗n1 for n > 1

We have 〈W,DISJn〉 = n(n− 1). A rectangle R = I × J that maximizes the scalar product
must avoid each −∞ entry, and so I ∩ J = ∅. Also by maximality, I ∪ J = {1, . . . , n} and so
ρ(W ) = n2/4. Therefore HSB(M) > n(n−1)

n2/4
= 4n−1

n .
So asymptotically the hyperplane separation bound is 4.

3.2 Common information

We introduce common information which provides a new lower bound that is based on an
information theory measure. The bound was first introduced by Wyner [Wyn75].

Definition 10 . Let P and Q be two probability distributions on a finite set X. The
entropy of P is: H[P ] = −

∑
x P (x) logP (x). The conditional entropy of P condition by

Q is: H(P |Q) =
∑

y Q(y)H[P |Q(y)]. The mutual information of P and Q is: I(P ;Q) =
H[P ]−H[P |Q].

Definition 11 . For M ∈ Rm×n>0 , M 6= 0, we consider the row and column joint random
variables (R,C). The induced distribution is then naturally, for all i in {1, . . . ,m} and j in
{1, . . . , n}:

P[R = i, C = j] =
Mij∑
k,`Mk`

A random variable Π is a seed for M if R and C are independent given Π.

Now let us define the common information of a matrix.

Definition 12 . Let M ∈ Rm×n>0 . The private information is defined as:

W[M ] = sup
Π seed for M

H[R,C|Π] = sup
Π seed for M

H[R|Π] + H[C|Π]

The common information of M is defined as:

C[M ] = inf
Π seed for M

I[R,C; Π] = H[M ]−W[M ]
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Another way to understand the private information is to see it as the largest entropy
among all the rank-1 decompositions of a matrix M . Indeed a rank-1 decomposition corre-
sponds to a decomposition into rank-1 matrices and therefore matrices for which the rows
and the columns are independent as probability distributions. We define a weighted convex
rank-1 decomposition of a non-negative matrix M as

∑s
i=1 λipiq

ᵀ
i where λi > 0,

∑
λi = 1.

Now assume ‖M‖1 = 1 (M is a probability distribution matrix). Given a convex rank-1
decomposition: M =

∑s
i=1 λipiq

ᵀ
i , we have H[M ] =

∑s
i=1 λi(H[pi] + H[qi]).

The following theorem, with Theorem 1, proves that common information can be used to
lower bound the extension complexity.

Theorem 7 [BP16]. For any non-negative matrix M , we have: C[M ] 6 log(rk+(M)).

This article also provides another theorem that is useful for the computation of the com-
mon information of tensor matrices.

Theorem 8 . Let M and N be two non-negative matrices. Then C[M⊗N ] = C[M ]+C[N ].

Example 4 . We consider the matrix M defined in 3. We will upper bound the common
information of this matrix with techniques similar to the ones used in 3. We consider M ′ =
M/‖M‖1. By using the same rectangle distribution, with |I| = |J |, we obtain that W[M ′] >∑

I P(I) log(n2/4) = log(n2/4). Therefore:

C[M ] 6 H[M ]−W[M ]

6 log(n(n− 1))− log

(
n2

4

)
= log

(
4
n− 1

n

)
So asymptotically the bound is at most 4 in log scale.

3.3 Comparison of the bounds

These two bounds have a lot of similarities. In [BJLP14], the main open question is whether
the logarithm of the hyperplane separation bound and common information are polynomially
related. We attempted to link the bounds by expressing rectangles as products of distribu-
tions, since a rectangle matrix is a rank-1 matrix. In many simple examples the two bounds
seem to behave in the same way.

In Examples 3 and 4, we compute the two bounds in a similar manner. The rank of M
in these examples is n, so rk+(M) > n. Therefore we see that both lower bounds give results
that are close to each other, but asymptotically far from the non-negative rank, and that are
therefore poor lower bounds in these particular case.

We now give a family of matrices for which the two bounds are asymptotically different.
However, even in this example the bounds are still polynomially related. We introduced
the disjointness matrix in Example 3. Using the fact the common information tensors (see
Theorem 8, [BJLP14] shows that C[DISJn] = 2n/3.

Moreover all the diagonal elements of DISJn are ones and it is upper triangular. So
consider the following weight matrix in R2n×2n :

W =


1

0 1
. . .

1 -∞
1
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Here 〈W,DISJn〉 = 2n, ‖DISJn‖∞ = 1. Every rectangle with more than 1 non-zero
element will meet at least one of the −∞ entries, which will give a small 〈W,R〉. Therefore
ρ(W ) = 1. This and Theorem 5 give HSB(DISJn) = 2n: in this case log(HSB(DISJn)) =
n > 2n/3 = C[DISJn].

This gives an example where we have a gap between the two values, but they are still
within a constant factor of each other.

4 Complexity of the bounds

One interesting question that can give a better understanding of the bounds is to know what
is the complexity of computing them. That is the subject of this section. We prove that
the hyperplane separation bound is NP -hard to approximate and also that the common
information is in NP .

4.1 The hyperplane separation bound is NP-complete

To show the NP -completeness of the hyperplane separation bound we first formally define
the decision problem.

Definition 13 . The hyperplane separation bound problem is the following decision problem:
Input: A matrix M in Qm×n

+ and k ∈ Q>0.
Question: Do we have that HSB(M) 6 k?

Before discussing further the hyperplane separation bound we first need to define the
correlation polytope of a graph.

Definition 14 . Let G = (V,E) be a graph where V = [n] and |E| = m. For a vector
ε ∈ {0, 1}n, let uε be the vector of Rn+m such that: uεi = εi for all i ∈ [n] and uεij = εiεj for
all ij ∈ E. We define the correlation polytope as:

COR(G) = conv{uε | ε ∈ {0, 1}n}

We denote COR(n) = COR(Kn) which is more simply the convex hull of the Boolean matrices
M = xxᵀ where x ∈ {0, 1}n. The correlation polytope membership problem is the following
decision problem:

Input: A matrix M in Qm×n
+ and k ∈ N.

Question: Is M in COR(G)?

From this definition, we can see that the correlation polytope of a graph G is the convex
hull of the characteristic vectors of induced subgraphs of G.

Theorem 9 [Pit91]. Deciding if a matrix is in COR(n) is NP-complete.

The NP-completeness of this membership problem is what gives us the following theorem.

Theorem 10 . The hyperplane separation bound problem is NP-complete.

Proof. First we show that the hyperplane separation bound is in NP.
Let 1

λ = HSB(M). By Carathéodory’s theorem, λM can be expressed as a convex com-
bination of at most mn + 1 rectangles. In other words, there exist ` 6 mn + 1, λ1, . . . , λ`
such that

∑`
i=1 λi = 1, and there exist rectangles R1, . . . , R` such that λM =

∑`
i=1 λiRi.

Moreover because the coefficients of M are rationals, the λi’s are too. Now let us the λi’s
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and the Ri’s can be provided as a certificate i.e. that they can be provided with a polynomial
number of bits. These λi’s are solutions of the system with unique solution:

{
λM −

∑`
i=1 λiRi = 0∑`

i=1 λi = 1
which is equivalent to


| | |
vM vR1 . . . vR`

| | |
0 1 . . . 1



λ
λ1
...
λ`

 = 0,

where for a matrix N , vN is an associated vector obtained by just sticking all the lines.
Moreover Hadamard proved that a n × n {0, 1}-matrix has a determinant that is in O(nn)
which can be encoded with O(n log n) bits. By Cramer’s rule of solving the system, and
because the determinants can always be obtained by expanding on the vm’s column, we
obtain the wanted result.

Then to verify if the hyperplane separation bound is less than k, compute the
∑`

i=0 λiRi
and verify that there exists a λ such that this sum is equal to λM . Then compare λ to k.
This is a polytime verification so the hyperplane separation bound problem is in NP.

Now we show that the problem is NP-hard. To do so we will show that the rectangle
polytope membership problem is NP-hard. Indeed for M in Qm×n, HSB(M) 6 k if and
only if M

k ∈ RECT(m,n). We reduce the hyperplane separation bound problem from the
correlation polytope membership problem.

Let M be a matrix, instance of the correlation polytope membership problem. We define
a new matrix N for the rectangle polytope membership problem as follow:

M =


1 M11 · · · Mnn

M11
...

Mnn

M


For the sake of simplicity, we index the coefficient of N from 0 to n.
Let’s show that: M ∈ COR(n)⇔ N ∈ RECT(n+ 1, n+ 1).

(⇒) We assume M ∈ COR(n). Then there exists (µi)
l
i=1 that sum to one, and xi ∈ {0, 1}n

such that M =
∑l

i=1 µixix
t
i. We define one rectangle for each xi as follow: let I be the

index set of the non-zero elements of xi, then Ri = ({0} ∪ I) × ({0} ∪ I). For k, l ∈
{1, . . . , n}2,

∑l
i=1 µi(Ri)kl =

∑l
i=1 µi(xix

t
i)kl = Mkl. Since (0, 0) is in all the rectangle,∑l

i=0 µi(Ri)00 = 1. For j ∈ {1, . . . , n}, N0j (resp. Nj0) appears in all the rectangle in
which Njj = Mjj appears. Therefore

∑l
i=1 µi(Ri)0j =

∑l
i=1 µi(Ri)jj = Mjj .

This gives: N =
∑l

i=0 µiRi.
(⇐) We assume N ∈ RECT(n + 1, n + 1). There exist λ1, . . . , λl such that

∑l
i=1 λi = 1,

and there exists rectangles R1, . . . , Rl such that N =
∑l

i=0 λiRi. Since
∑l

i=1 λi = 1
and N00 = 1 we have: ∀i ∈ {1, . . . , l}, (0, 0) ∈ Ri. This implies that all the rectangles
that contain Nii for 1 6 i 6 n contain N0i and Ni0. And since Nii = N0i = Ni0, these
three coefficients are exactly in the same rectangles. Therefore, if Ri = Ii×Ji, we have
Ii = Ji, which means that there exists xi in {0, 1}n+1 such that Ri = xix

t
i.

Therefore M ∈ COR(n).

4.2 Non-approximability of the hyperplane separation bound

In this section we show that we cannot achieve a good approximation of the hyperplane
separation bound problem. The idea is to use the non-approximability of the biclique cover
and biclique partition problems from [CHHK14]. Recall that these problems are defined in
Section 2.3.
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To be forthright with the reader, note that some results stated in [CHHK14] are not
proved. They should appear in the final version, which is not available yet. We managed to
reconstruct some of the proofs. We also sent an email to the authors to inquire about the
journal version. The answer was that some details were not written yet, but they will send
them to us as soon as they are ready.

Theorem 11 [CHHK14]. Let G be a graph and k an integer. There exist an algorithm that
runs in time |V (G)|O(k) and constructs a bipartite graph H such that |V (H)| = Θ(|V (G)|k)
and: (

cp(G)

log |V (G)|

)k
6 bc(H) 6 bp(H) 6 cp(G)k|V (G)|3

Feige and Kilian proved that it is NP-hard to approximate the chromatic number of a
graph which implies the following theorem.

Theorem 12 [FK96]. Let ε > 0 and G be a graph. Unless P=NP, it is NP-hard to
approximate the clique partition problems within a factor of |V (G)|1−ε.

We define the fractional biclique cover bc∗(G) of a graph G as the solution of the following
LP:

min
w

∑
(A,B) biclique

x(A,B)

subject to
∑

e3(A,B)
(A,B) biclique

x(A,B) 6 1,∀e ∈ E(G) and x(A,B) > 0

Lemma 13 . Let H be a bipartite graph and the associated matrix M constructed as in 2.3.
Then HSB(M) 6 bp(H) and bc(H) 6 (1 + log |E(H)|) HSB(M).

Proof. Let k = bp(H) and (A1, B1), . . . , (Ak, Bk) be a biclique partition. We identify the
bicliques and the associated rectangle in the matrix. Then since we have a partition we have:

M

k
=

k∑
i=1

1

k
χAi×Bi

So HSB(M) 6 bp(H).
Moreover there exists rectangles R1, . . . , Rl and λ1, . . . , λl ∈ R, where

∑l
i=1 λi = 1, such

that M = HSB(M)
∑l

i=1 λiRi. We write Ri = A
′
i ×B

′
i. Then A

′
i ×B

′
i is a biclique since we

have a rectangle. Now let (A,B) be a biclique. If there is an i such that (A,B) = (A
′
i, B

′
i)

then we define x(A,B) = HSB(M)λi, otherwise x(A,B) = 0. For e ∈ E(H) we have, since M
is a (0, 1)-matrix:∑

e3(A,B)

x(A,B) =
∑

e3(A
′
i,B
′
i)

HSB(M)λi = HSB(M)
∑

e3(A
′
i,B
′
i)

λi = 1

And
∑

(A,B) biclique x(A,B) = HSB(M) so HSB(M) > bc∗(H). Moreover bc(H) 6 (1 +
log |E(H)|) bc∗(H) (see [Lov75]) so bc(H) 6 (1 + log |E(H)|) HSB(M).

Because |V (H)| = Θ(|V (G)|k) we obtain the following theorem.

Theorem 14 . Let G be a graph and k an integer. There exist a constant a and an algorithm
that runs in time |V (G)|O(k) and construct a (0, 1)-matrix M of size Θ(|V (G)|k).

1

ak log |E(G)|

(
cp(G)

log |V (G)|

)k
6 HSB(M) 6 cp(G)k|V (G)|3

12



The following theorem and its proof are inspired by [CHHK14].

Theorem 15 . Let ε > 0. It is NP-hard to approximate the hyperplane separation bound
problem for a matrix M within factor (mn)1−ε where M is an m× n matrix.

Proof. We use Theorem 12 to deduce the hardness of approximation of the hyperplane sep-
aration bound : this Theorem implies the existence of an algorithm A that takes a SAT
instance ϕ as an input and produce a graph such that:
• If ϕ is satisfiable, then cp(G) 6 c = |V (G)|ε
• If ϕ is not satisfiable, then cp(G) > s = |V (G)|1−ε

And the gap is g = s/c = |V (G)|1−2ε.
For k an integer, we build a new algorithm Ak that take a SAT instance ϕ as input, runs

A on it to obtain a graph G, and produce a matrix M with the algorithm of 14. We compute
the gap gk of Ak. If ϕ is satisfiable then HSB(M) 6 cp(G)k|V (G)|3 6 ck|V (G)|3. If ϕ is not

satisfiable then HSB(M) > 1
ak log |E(G)|

(
cp(G)

log |V (G)|

)k
> 1

2ak log |V (G)|

(
s

log |V (G)|

)k
. Moreover

|M | = α|V (G)|k where α is a constant and M is the number of entries of the matrix. So we
have:

gk >
sk

2akck|V (G)|3 logk |V (G)|
=

|V (G)|k−2kε

2ak|V (G)|3 logk |V (G)|
>

α′|M |1−2ε

|M |3/k logk |V (G)|

where α′ is a constant. And for k = d1/εe, gk > α
′ |M |1−5ε

logk |V (G)| > α
′′ |M |1−6ε . Moreover the

Feige-Kilian algorithm runs in polynomial time and |V (G)| = ϕO(1). The algorithm from
Theorem 14 runs in |V (G)|O(1/ε) = |ϕ|O(1). So this reduction show that the hardness result
of approximating SAT holds for the hyperplane separation bound problem.

4.3 The common information bound is in NP

We first formally define the decision problem associated to the common information bound.

Definition 15 . The common information bound problem is the following decision problem:
Input: A matrix M in Qm×n

+ in and k > 0.
Question: Do we have that C[M ] < k?

Theorem 16 . The common information problem is in NP.

Proof. LetM ∈ Qm×n. First we show by contradiction that there exist a decomposition that
minimize the entropy with less that mn+ 1 terms in the sum.

Let M =
∑l

i=1 µipiq
t
i be a decomposition of the matrix M into matrices of rank 1 that

minimize H[M |Π] where Π is the distribution of the (µi). Among all such decomposition
we choose the one with the smallest l possible. Let’s show that l 6 mn + 1. If not then
the piqti are dependent. So there exists (αi)

l
i=1 a family of non-all zero elements such that∑l

i=1 αipiq
t
i = 0 and

∑l
i=1 αi = 0. Without loss of generality we assume αl 6= 0.

The first case is
∑l

i=1 αiH(piq
t
i) 6 0. Let ε = −µl

αl
. We still have:

M =

l∑
i=1

µipiq
t
i + ε

l∑
i=1

αipiq
t
i =

l−1∑
i=1

(µi + εαi)piq
t
i

Because
∑l

i=1 αi = 0 we have a new decomposition ofM with rank one matrices and another
distribution Π′. Then:

H[M |Π′] =
l∑

i=1

(µi + εαi)(H[pi] + H[qi]) = H[M |Π] + ε
l∑

i=1

αiH(piq
t
i) 6 H[M |Π]

13



But this decomposition has one less element which contradicts the minimality of l: contra-
diction.

If
∑l

i=1 αiH(piq
t
i) 6 0 we take ε = µl

αl
and that leads to the same contradiction. So we

have a decomposition with mn+ 1 that minimize the entropy.
Assume C[M ] < k. Then there exist a distribution Π associated to the decomposition

M =
∑mn+1

i=1 µipiq
t
i (where µi ∈ Q, pi ∈ Qm and qi ∈ Qn) and such that H[M ]−H[M |Π] < k.

Providing the µi, pi, qi gives a certificate that can be verified in polynomial time. Indeed
computing H[M ] is polytime, and same for H[M |Π] since the sum contains at most mn+ 1
elements.

5 An example of bounding via reduction

The previous bounding techniques involve a direct study of the slack matrix of the polytope.
However other techniques can be used to study the extension complexity. That is what we
did to bound the extension complexity of the correlation polytope of some class of graphs.

5.1 Background and definitions

Let G = (V,E) be a graph. We defined the correlation polytope (see 14).

Definition 16 . A graph H is a minor of a graph G if H can be obtained from a subgraph
of G by contracting edges. A class C of graphs is minor-closed if G ∈ C and H a minor of G
implies that H ∈ C.

We determine the extension complexity of the correlation polytopes of proper minor-
closed classes almost exactly. In order to state our main result, we also need the notion of
tree-width, which we now define.

Definition 17 . A tree-decomposition of a graph G is a pair (T,B) where T is a tree and
B := {Bt | t ∈ V (T )} is a collection of subsets of vertices of G satisfying:
• V (G) =

⋃
t∈V (T )Bt,

• for each uv ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ Bt, and
• for each v ∈ V (G), the set of all w ∈ V (T ) such that v ∈ Bw induces a connected

subtree of T .
We call each member of B a bag. The width of (T,B) is max{|Bt| − 1 | t ∈ V (T )}. The
tree-width of G, denoted tw(G), is the minimum width taken over all tree-decompositions of
G.

We can now state our main theorems.

Theorem 17 . For every n-vertex graph G, the extension complexity of the correlation
polytope of G is 2O(tw(G)+logn).

For proper minor-closed classes, we prove that this bound is tight.

Theorem 18 . For every proper minor-closed class C, there exist a constant c such that for
every n-vertex graph G ∈ C,

2c(tw(G)+logn) 6 xc(COR(G)).

14



5.2 Upper bound

Wainright and Jordan [WJ04] proved that COR(G) has an extended formulation of size
nO(tw(G)) using hierarchy techniques. In this section, we prove a better upper bound.

Definition 18 . A tree-decomposition of width k is smooth if all bags of the decomposition
are of size k + 1 and two adjacent bags share exactly k vertices.

Definition 19 . An induced subgraph of a graph G = (V,E) is a graph formed by a subset
of V as vertices, and all the edges between these vertices in that are in E.

Definition 20 . The stable set polytope of a graph G, denoted STAB(G), is the convex hull
of the incidence vectors of its stable sets.

It is well-known (see [Bod96]) that every graph G has a smooth tree-decomposition of
width tw(G). We also require the following [Bod96, Lemma 2.5].

Theorem 19 . If (T,B) is a width k smooth tree-decomposition of a graph G, then |B| =
|V (G)| − k.

Theorem 20 . For all graphs G with n vertices,

xc(COR(G)) = 2O(tw(G)+logn).

Proof. We start from a smooth, minimal width tree-decomposition (T,B) for G, where B =
(Bv)v∈V (T ) denotes the collection of bags of the tree-decomposition.

We now define a new graph H in which the induced subgraphs of G are represented by
certain stable sets of H. For each v ∈ V (T ), we create 2|Bv | vertices that represent all the
ways to select a subset of Bv. We name these vertices (v,X), where X ⊆ Bv. Then, we
create an edge between (v,X) and (v′, X ′) whenever vv′ ∈ E(T ) and the sets X, X ′ are
incompatible in the sense that Bv ∩ Bv′ ∩ X 6= Bv ∩ Bv′ ∩ X ′. Moreover, for every fixed
v ∈ V (T ) the vertices of the form (v,X) for X ⊆ Bv form a clique in H, that we denote Kv.

In the graph H, we consider the stable sets that contain exactly one vertex of each Kv.
They form the vertices of a face of STAB(H) which we denote by F . Thus, F = {y ∈
STAB(H) | ∀v ∈ V (T ) :

∑
X⊆Bv

y(v,X) = 1}. For vw ∈ E(T ) we let Hvw be the induced
subgraph of H induced by vertices of the formto vertices of the form (v,X) or (w, Y X),
where X and Y are arbitrary. We let yvw be the projection of y ∈ F to the vertices of Hvw.

Notice that Kv is a cutset, for each non-leaf vertex v ∈ V (T ). Moreover Chvátal’s clique
cutset lemma [Chv75, Theorem4.1] states that if a graph G has a cliqueK such that G−V [K]
has two components G1 and G2, then we can reconstruct the stable sets of G by taking stable
sets of G1 and G2. So we can write F =

⋂
vw∈E(T ) Fvw, where

Fvw :=
{
y ∈ RV (H)

>0

∣∣∣ yvw ∈ STAB(Hvw)
}
.

Now by the smoothness of the tree-decomposition, we get xc(Fvw) 6 |vert(Fvw)| 6
2tw(G)+2, where vert(Fvw) is the set of vertices of Fvw. Therefore,

xc(F ) 6 |E(T )| · 2tw(G)+2 = (n− tw(G)− 1)2tw(G)+2 6 n2tw(G)+2.

To finish the proof it suffices to show that F are equivalent COR(G) up to an affine map.
To see this, let ((xi)i∈V (G), (xij)ij∈E(G)) ∈ COR(G). For each i ∈ V (G) and ij ∈ E(G), let
v(i) and v(ij) be vertices of T such that i ∈ Bv(i) and {i, j} ⊆ Bv(ij). Then note that

xi =
∑

i∈S⊆Bv(i)

y(v(i),S) xij =
∑

{i,j}⊆S⊆Bv(ij)

y(v(ij),S).
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This defines a map from F to COR(G).
Now we show that all vertices of F are mapped on vertices of COR(G). Let y be a vertex

of F . For all v in V (T ) there exists a set Xv in Bv such that y(v,Xv). Moreover since we have
a stable set, if vv′ is an edge of T , Bv ∩Bv′ ∩Xv = Bv ∩Bv′ ∩Xv′ : we will say that Xv and
Xv′ are compatible. Then xi = 1 if and only if then there exist a Bv(i) and an Xv(i) ∈ Bv(i)

such that y(vi,Xvi )
= 1. Assume that xi = 1 = xj for ij ∈ E(T ). Then there exists a bag Bv

that contains ij and an Xv ∈ B such that y(v,Xv) = 1. But i is in all the bags in the path
from v(i) to v. This bags contain a set on which y values 1 and by compatibility i is in this
sets. Therefore i ∈ Xv. By the same reasoning j ∈ Xv. So xij = 1. Now if xi = 0 but for
an edge ij, xij = 1, then by compatibility all bags containing i contain i in the set that is
valued to one: contradiction since this would mean that xi = 1. Therefore all vertices of F
map on vertices of COR(G).

Now let V ′ ∈ V (G) and G′ = G[V ] the induced subgraph. For each bag Bv of T
we define Xv = Bv ∩ V ′. Let y(v,X) = 1 if and only if X = Xv. Then if vv′ ∈ E(T ),
Bv ∩Bv′ ∩Xv = Bv ∩Bv′ ∩Xv′ . We constructed a vertex of F that maps to G′.

Therefore F and COR(G) are the same polytope up to an affine map. This provides the
upper bound.

5.3 Lower bound

In this section we prove the lower bound. Since the extension complexity of a polytope is at
least its dimension, we have the following easy observation.

Theorem 21 . For all graphs G with n vertices,

xc(COR(G)) > n.

Theorem 22 . Let G and H be graphs such that H is a minor of G. Then xc(COR(H)) 6
xc(COR(G)).

Proof. If uv ∈ E(G), then COR(G \ uv) can be obtained from COR(G) by projecting out
xuv and COR(G/uv) is obtained from COR(G) by setting xu = xv. If w is an isolated vertex
of G, then COR(G− w) is obtained from COR(G) by setting xw = 0.

Theorem 23 . Let C be a proper minor-closed class of graphs. For every n-vertex graph
G ∈ C,

xc(COR(G)) = 2Ω(tw(G)).

Proof. We first show that it is sufficient to prove the theorem for a grid with gadgets G′ of
size Ω(tw(G))×Ω(tw(G)) (see Figure 7). In this grid all the interior vertices are replaced by
a constant size planar gadget, and the left vertex of the gadget is linked to the bottom vertex.
The gadget of the grid is constant size and planar so it can be embedded in a grid of constant
size. Therefore this grid with gadgets can be embedded in a grid of size Ω(tw(G))×Ω(tw(G))
by just extending the embedding of the gadget. As shown by Demaine and Hajiaghayi [DH08]
(see also Kawarabayashi and Kobayashi [KK12]), since our initial graph G belongs to a proper
minor-closed class, it has a grid minor G`,` where ` = Ω(tw(G)). If the grid gadget is chosen
carefully we therefore have: G′ 6m G`,` 6m G. Because the extension complexity of the
correlation polytope is minor monotone, this implies that xc(COR(G′)) 6 xc(COR(G)).
Therefore it is enough to show the theorem for the grid with gadgets.

The gadget used in the proof is inspired by the crossover gadget of the reduction from
3-SAT to Planar 3-SAT in [Lic82]. Each diamond (see Figure 8a) in the grid with gadgets
will be replaced by the planar graph in Figure 8b. In this gadget the square vertices represent
the clauses of a SAT formula and the round vertices represent the variables. When a round

16



Figure 7: Grid with gadgets

vertex is adjacent to a square via a blue-dashed (resp. red-dotted) edge, this means that the
corresponding variable (resp. negation of the variable) appears in the corresponding clause.

(a)

u1

u2

v1 v2

(b)

Figure 8: Gadget in the grid

To obtain G′, we first replace the degree-2 square vertices as in Figure 9b. Then we
replace the red-dotted edges as in Figure 10b. Then we replace the degree-3 square vertices
as in Figure 11b.

a b

(a)
¬a
i

¬b

j

(b)

Figure 9: Simulation of a ∨ b with a stable set of a graph

i

(a)

i′ i

(b)

Figure 10: Transformation of the NOT edge

The idea is to reduce the study of the correlation polytope of G′ to the study of the
correlation polytope of a complete bipartite graph by projecting on some face of COR(G′).
This projection should transmit the value of the variable that is on the left of the gadget to
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i

j

k

(a)

i

j

k

i′

j′

k′

i′′

j′′

k′′

(b)

Figure 11: Simulation of i ∨ j ∨ k with a stable set of a graph

the right and the one that is at the bottom should be transmitted up. This then reduces
the problem to the complete bipartite graph where the stable sets are the bottom and left
vertices, and the edges are given by the dotted edges of Figure 8.

Now let us define the faces on which we project. For each vertex i (resp. edge ij) we
define the associated non-negative variable xi (resp. xij).

If ij is a green edge of G′ for which both vertices are not in a gadget, then we project on
xi = xi = xij (this is valid since we have an induced subgraph).

In Figure 9b, the vertices i and j correspond to the negation of a and b. Since a ∨ b =
¬(¬a ∧ ¬b) we set xij = 0.

In Figure 10b, we either take i or i′ . The projection is then xi + xi′ − 2xii′ = 1.
In Figure 11b we want to simulate an OR, which means that one of the variables xi, xj

or xk should be set to 1. This is described by the following equations: xi + xi′ − 2xii′ = 1,
xj + xj′ − 2xjj′ = 1, xk + xk′ − 2xkk′ = 1, xii′ = 0, xii′ = 0, xii′ = 0 and xi′′ + xi′′ + xi′′ −
2xi′′j′′ − 2xj′′k′′ − 2xk′′i′′ = 1.

The projections are defined so that all the clauses are satisfied. Because of the properties
of the gadget (see [Lic82]), we have in Figure 8, xu1 = xu2 and xv1 = xv2 .

Therefore, these projections reduce the study of the correlation polytope of G′ to the
correlation polytope of K`′,`′ where `′ is Ω(tw(G)). Moreover K`′ is a minor of K`′,`′ so
xcK`′ 6 xcK`′,`′ . In [FMP+11], Fiorini, Massar, Pokutta, Tiwary and de Wolf show that
xcK`′ = 2Ω(`′): this gives the lower bound we wanted.

6 Conclusion and open problems

In this report we study some bounding technique for extension complexity.
We formulated and studied the decision problems of some bound that are used to study

directly the slack matrix of the polytopes. This provided some complexity results on the
hyperplane separation bound and the common information bound. We provided the hardness
of approximation for the hyperplane separation bound .

Some interesting question we are still working on remain: is common information NP -
complete? If yes is it hard to approximate? And for both bounds can we design efficient
algorithm if we restrict to some families of slack matrices? Can we solve the hyperplane
separation bound in polytime if we know the maximal biclique of the graph associated to
the support of the slack matrix? Is there parameters that would provide a good FPT for the
computation of these bounds?

This study started because of the interest in comparing the two bounds. So an inter-
esting extension to this work could be to the question raised in [BP16]: are the two bound
polynomially related?

As for the correlation polytope problem, we have linked tightly the extension complexity
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with the treewidth for minor closed families of graphs. Now we are working on extending the
result for a certain family of graphs, the expander graphs.
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