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Introduction
This report describes the work done during the internship with Professor Ken-ichi

Kawarabayashi from May 26 to August 10, 2016. It took place at the NII laboratory in
Tokyo, Japan.

During this internship, we first studied the problem of packing and covering directed
cycles in a directed graph. This two problems are quite important in graph theory. They
belong to a category of problems that try to measure how far a given graph is from a
simple graph. For instance, VertexCover measure how far a graph is from a stable graph.
Covering the cycles of G consists in finding a set of vertices the removal of which makes
G acyclic, and this problem measure the "distance" between our graph and an acyclic
one. In the case of undirected graphs, the smallest set that cover all the odd cycles is
also the smallest set which removal makes the graph bipartite. The covering vertices
given by all this parameters can therefore be considered as noisy vertices, and their
removal enlighten simple structures that are the core of the graph. That is why the odd
cycle covering problem seemed also interesting in the case of directed graphs, as another
parameter that gives a simple structure. Indeed, digraphs with no odd dicycle are the
one in which all the connected components are bipartite.

The dual problem can sometimes be helpful. The dual of the covering problem in
a graph is the packing problem. Packing a graph G with directed cycles consists in
finding a set of disjoint directed cycles in G. If cp is the maximal number of cycles
packing a graph, and cc the minimal number of vertices to cover all the cycles in a
graph, Reed and Shepherd showed in [5] that when the directed graph is planar we have
cc = O(cp log(cp) log log(cp)). The main point in the proof of that result is that the
fractional optimal of each problem is close to the integer optimal. The result we focused
on is the one given by Seymour [7]: if cc∗ is the fractional optimal of the cycle covering
problem, we have: cc = O(cc∗ log(cc∗) log(log(cc∗))). In this report, we show how we
tried to extend these results to cycles of a given parity.

Finding directed cycles of a given parity in a directed graph can be really different
from finding any directed cycle. Thought detecting an odd directed cycle is quite easy,
mostly because an odd length circuit contains at least an odd length directed cycle,
stating if a directed graph contains an even cycle is a much more difficult problem.
In [8], Thomassen proved that digraph with large outdegrees can be even dicycles free.
Later he provided, in [9], a general polynomial algorithm to find an even cycle in the
case of a planar digraph with complexity O(n6) where n is the number of vertices.

The parity property modifies the study of cycle’s problems. Therefore it seems
interesting to try to adapt the covering and packing results for odd and even cycles. As
shown in Section 1, we cannot find a polynomial function that links the optimal integer
covering and the optimal integer packing. To obtain an approximation algorithm of
the even and odd dicycle covering problems, we focuse on adapting the result given
in [7]. This leads to Theorem 2 for the odd dicycle covering and to the approximation
Theorem 11. First we define formally the covering and packing problems (1). Then we
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give the proof for the odd dicycle covering problem (2): iff occ and occ∗ are respectively
the integer and the fraction optimals for the odd dicycle covering problem then occ 6
µ(3(occ∗+ 1)) where µ(x) = 4x log(4x) log log(4x). This result leads to an O(µ(3(occ∗+
1)))-approximation for the odd cycle covering vertex set problem (3). We end with some
attempts to cover even cycles in a digraph (4).

1 The problems of packing and covering dicycles in a di-
graph

In this part we introduce the problem of packing and covering dicycles of a given
parity in a digraph.

1.1 Definitions and notations

All the graphs we consider are finite, directed and simple (we can have one and only
one edge from a vertex to another one). If G is a digraph, we denote by V (G) its set
of vertices and E(G) its set of edges. We call directed path P in G a finite sequence of
vertices (v1, . . . , vk) such that for all 1 6 i < k , (vi, vi+1) is in E(G), we denote |P | its
length. If F is a subgraph of G we note F @ G. If G and G′ are two isomorphic graphs
we write G ' G′.

If X ⊂ V (G) then G−X is a digraph with vertices V (G)\X and all the edges of G
that do not end nor begin in X. G[X] is the subgraph of G built on the vertices X and
with all the edges of G that start and end in X.

The Erdös-Pósa property. Let F be a family of graphs.
F has the Erdös-Pósa property if there is a function f : N → N such that for every

graph G and every integer α, either there are α disjoint subgraphs of G isomorphic to
elements of F , or there is a vertex set X of size at most f(α) such that G −X has no
subgraph that is isomorphic to an element of F .

Let’s define the covering and the packing problem for a family of graphs F .
The packing problem by a family of graphs F consists in finding the maximal number

of disjoint subgraphs of G that are isomorphic to elements of F . The fractional relaxation
of this problem is given by the following maximization linear problem over w defined on
all subgraphs of G isomorphic to an element of F :

max
w

∑
F@G

F'F ′,F ′∈F

w(F )

subject to
∑
F3v

w(F ) 6 1, v ∈ V (G)

The covering problem by a family of graphs F consists in finding the smallest subset
X of V (G) such that no subgraph of G − X is isomorphic to an element of F . The
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fractional relaxation of this problem is given by this minimization linear problem over
w defined on the vertices of G:

min
w

∑
v∈V

w(v)

subject to
∑
v∈F

w(v) > 1, F @ G,F ' F ′ ∈ F

These two problems are dual to each other and therefore have the same optimal
solution.

1.2 Known results

A special case of the Erdös-Pósa property for directed graphs is the Gallai-Younger
property (F being here the set of all cycles).

The Gallai-Younger property. Let k be an integer.
There is a function g : N→ N such that, if G is a digraph, one of the two following

propositions is always true:

• G has k vertex-disjoint dicycles

• there is a set X ⊂ V (G) of at most g(k) vertices such that G−X has no dicycle.

It was proved in [4]. We focus on the proof of the planar digraphs case given in [5].
The proof uses the fractional relaxation defined in Section 1.1 (where F the set

of all cycle). The main point is that the optimal integer solution of each problem is
polynomially close to the optimal solution. We call cycle (resp. odd cycle, even cycle)
covering problem the covering problem by the family of all cycles (resp. odd cycles,
even cycles). We call cycles (resp. odd cycles, even cycles) packing problem the packing
problem by the family of all cycles (resp. odd cycles, even cycles). The following theorem
gives the precise result for the cycles covering problem:

Theorem 1 (Seymour [7]). Let G be a digraph, cc∗ (resp. cc) be the fractional (resp.
integer) optimal solution of the cycles covering problem for G.

Then cc = O(cc∗ log(cc∗) log(log(cc∗))).

This covering theorem is the main subject of our research during the internship.
From now on, we use the following notations:

• Let occ (resp. occ∗) be the integer (resp. fractional) optimal for the odd cycles
covering problem, and let ocp (resp. ocp∗) be the integer (resp. fractional) optimal
for the odd cycles packing problem.

• Let ecc (resp. ecc∗) be the integer (resp. fractional) optimal for the even cycles
covering problem, and let ecp (resp. ecp∗) be the integer (resp. fractional) optimal
for the even cycles packing problem.
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Remark. The duality argument give: ocp∗ = occ∗ and ecp∗ = ecc∗. Therefore we have:

ocp 6 ocp∗ = occ∗ 6 occ

ecp 6 ecp∗ = ecc∗ 6 ecc

1.3 New questions

With the previous remark we have ocp 6 occ and ecp 6 ecc. That makes us wonder if
we can find two polynomial functions go and ge such that occ 6 go(ocp) and ecc 6 ge(ecp).
As shown in Example 1 (resp. Example 2), the set of odd (resp. even) dicycles does not
satisfy the Erdös-Pósa property, therefore such functions cannot exist.

Figure 1: Grid in which covering odd cycles is more costly than packing.

Example 1. We consider the digraph given in Figure 1. Only one odd cycle can be
packed. Indeed, all the odd cycles go through one of the dashed blue edges. And the
cycles that go through dashed blue edges all have common vertices on the first or the
last line. However here, to cover all the odd cycles, 3 vertices are needed. This example
can be generalized with a grid of odd length n: the number of vertices needed to cover all
the odd cycles tends to infinity with the size of the grid ((n+ 1)/2 vertices are needed),
but there is always only one cycle packing the graph.
Example 2. We consider all the digraphs that have the same shape as the digraph of
Figure 2, with n = 2k+ 1 concentric layers and n+ 1 lines going alternatively from and
to the center. In this graph we can only pack two even dicycles: all even dicycles go
through either one vertex below u or one vertex on the right of v. Indeed either they go
through a, b or c and pass through u or v (otherwise they cannot either reach or cannot
leave the edges a, b or c), or they go through the center vertex. Therefore only 2 cycles
can be packed: one passing by a, b or c and one passing by the center. However the
integer optimal covering number is n+ 1.

The covering and packing problems for a fixed parity can be quite different from
the general case, since the Erdös-Pósa property is fulfilled when all cycles are taken.
A natural idea is to try to find an equivalent of Theorem 1 for the odd and for even
dicycle covering problems. In other word, can we find two functions fo and fe such that
occ 6 fo(occ∗) and ecc 6 fe(ecc∗)?
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Even length paths

Odd length paths
a

b c

u

v

Figure 2: Graph in which covering even cycles is more costly than packing.

2 Adapting the problem to the covering of odd dicycles
In this section we show that the integer optimal covering is close to the fractional

optimal in the case of odd dicycles.
The following proofs are inspired by [7]. The main result that we prove is Theorem 2:

Theorem 2. Let G be a digraph. Then:

occ 6 µ(3(occ∗ + 1)) , where µ(x) = 4x log(4x) log log(4x)

2.1 Construction of a digraph with good properties

Let w be a valid distribution on V (G) for the odd dicycle covering problem, and let k
be the fractional weight associated with w. We are going to show that occ 6 µ(3(k+1)).

The first step is to make a digraph H in which all the odd dicycles are big and each
odd (resp. even) dicycle of H corresponds to an odd (resp. even) dicycle in G. We
assume, by the continuity argument, that w is positive and that it is rational for every
vertex v. Let n be a common denominator of all the w(v)′s, where n > |V (G)|. We
construct a new digraph H that has big odd dicycles. We define w′(v) = n× w(v).

For each vertex v of G, we build the following vertices of H:

• If w′(v) is odd we create w′(v) vertices (v, 1), (v, 2), . . . , (v, w′(v)). We call w′(v)
the last rank of v.

• If w′(v) is even we create w′(v)+1 vertices (v, 1), (v, 2), . . . , (v, w′(v)), (v, w′(v)+1).
We call w′(v) + 1 the last rank of v.

For all the vertices v, there is an edge in H from (v, i) to (v, i + 1). If (u, v) is an
edge of G then there is an edge between the (u, i) where i is the last rank of u and (v, 1).
Thus we always split the vertices of G into an odd number of vertices.

This construction is illustrated by Figure 3.
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v in G
v

Splitting the vertex to obtain H

Splitting v
when w′(v) is odd (v, 1) (v, 2) (v, 3) (v, w′(v))

Splitting v
when w′(v) is even (v, 1) (v, 2) (v, 3) (v, w′(v)) (v, w′(v) + 1)

Figure 3: Transformation of a vertex in the new digraph.

Lemma 3. To every dicycle C ′ in H corresponds a dicycle C in G that has the same
parity.

Proof. Let C ′ be a dicycle of H.
((u, i), (v, j)), where u 6= v, is an edge of H iff i is the last rank of u and j = 1. Moreover
((v, i), (v, i+ 1)) is an edge and no other edge goes out of (v, i) for i+ 1 smaller than the
last rank. Therefore if a vertex (v, i), where v is in V (G), is in C ′ then all the vertices
(v, 1), (v, 2), . . . , (v, j) (where j last rank of v) are in the dicycle. By construction, this
gives us a dicycle in G (formed by taking the first components v of the vertices (v, i) of
C ′).

Now let’s show that C and C ′ have the same parity. By construction the last rank
of each vertex is always odd. Therefore C ′ is odd iff an odd number of vertices v of G
intervene in the dicycle. This is equivalent to the fact that C is odd. Therefore C ′ and
C have the same parity.

Remark. This means that if we cover all the odd (resp. even) dicycles of H with α
vertices, we can find a covering of all the odd (resp. even) dicycles of G with at most α
vertices. That is why from now on we work on H instead of G.

Theorem 4. For all odd dicycles C ′ of H we have |V (C ′)| > |V (H)|
k+1 .

Proof. Let C be the dicycle of G corresponding to the odd dicycle C ′ of H. We denote
e (resp. f) the number of vertices v of G (resp. of the dicycle C in G) where w′(v) odd.
Then, because the sum of the w(v)’s is more than 1 on all odd dicycles we have:

|V (C ′)| = f +
∑

v∈V (C)
nw(v) > f + n > n

Moreover
∑

v∈V (G)w(v) = k so we have:

|V (H)| =
∑

v∈V (G)
w′(v) odd

w′(v) +
∑

v∈V (G)
w′(v) even

(w′(v) + 1) = e+
∑

v∈V (G)
nw(v) = e+ nk
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However e 6 |V (G)| 6 n so |V (H)| 6 (k + 1)n 6 (k + 1)|V (C ′)|. Therefore

|V (C ′)| > |V (H)|
k + 1

2.2 Construction of the layer

We want to find a partition of the digraph that leads to a good induction. To do so
we want to partition the vertices into many sets. We call layers of distances of a vertex
u the family of sets Xi = {v|dist(u, v) = i} where dist(u, v) is the size of the smallest
path between u and v. We call number of layers of u the maximal integer i such that
Xi is not empty.

In the article all the dicycles are of big length, so to make a good partition, it was
enough to take a vertex randomly and make n layers. Here this method does not always
work because sometimes the maximal number of layers is small. Example 3 illustrates
this problem.

Example 3. In Figure 4 we have two representations of the same graph. The smallest
odd cycle of this graph is of length 13.

The first representation shows the layers of distance of u. There are only 4 layers
so taking randomly a vertex to build its layers of distances does not always work in our
case.

However this problem can be solved by choosing the vertex for which we build the
layers. The second representation of the graphs gives the layers of distances of v, the
vertex that is at the opposite of the only odd cycle of the graph. This vertex has 11
layers of distance. This observation gives the intuition of the next theorem.

u v

u

v

Figure 4: Finding a good vertex to make layers.

Theorem 5. Let H be a strongly connected digraph with at least 2 vertices. We assume
that all odd dicycles of H are of length at least n (n odd).

Then there are two vertices u and v in V (H) such that the shortest path between u
and v is at least (n− 1)/2.
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Proof. Let’s prove this theorem by contradiction: we assume that there is always a path
of length inferior to (n− 1)/2.

Let C = (v0, . . . , vl) be the smallest odd dicycle in H (if two or more dicycles have
the same size, we just take one of them). Without loss of generality we assume that
l = n− 1.

Let v0 be a vertex of the dicycle and and vm = v(n−1)/2. Let P0 (resp. P1) be the path
from v0 to vm (resp. from vm to v0) obtained with the dicycle. Then |P0| = (n − 1)/2
and |P1| = (n + 1)/2. We know that |P0| and |P1| do not have the same parity: we
assume that P0 is even and P1 odd (if not exchange v0 and vm).

By hypothesis there is a path Q0 (resp. Q1) from v0 to vm (resp. from vm to v0)
of length inferior to (n − 1)/2 (because the digraph is strongly connected). Figure 5
illustrates the different paths we have.

Let’s show that Q0 cannot be of even length. If it is, then the path that is the
concatenation of Q0 and P1 is of odd length, and it starts and ends in v0. Therefore it
contains an odd dicycle C ′. However |Q0| + |P1| < n−1

2 + n+1
2 = n if |C ′| < n. This is

absurd so |Q0| is odd.
With the same arguments we prove that Q1 is even.
Therefore the concatenation of Q0 and Q1 is of odd length, and it starts and ends

in v0. Therefore it contains an odd dicycle. However |Q0| + |Q1| < n−1
2 + n−1

2 < n:
contradiction.

v0

vm

P0 P1Q0 Q1

Figure 5: Using paths to make smaller odd dicycles.

This proves the theorem.

2.3 Using the layers to divide the digraph

Lemma 6. Let H be a strongly connected digraph with at least 2 vertices in which all
odd dicycles are of length at least n (n odd). Define m = n−1

2 .
Then there is a partition a partition X1, . . . , Xm of V (G) (the sets being non empty)

such that for 1 6 i, j 6 m, if i+ 1 < j there is no edge between Xi and Xj.
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Proof. As shown in Theorem 5, there are two vertices u and v in V (H) such that the
shortest path between u and v is at least m. For 1 6 i 6 m let X ′i be the set of elements
that are at distance i of u, and X ′m+1 = V (H)\(X ′1 ∪ · · · ∪X ′m).

Let’s show that all these sets are not empty. Xm+1 contains u so it is not empty. X ′m
is not empty because it contains v. This implies that all the other sets are not empty
(there cannot be any element at distance m if there is no element at distance i < m).

Moreover, there is no edge between X ′i and X ′j where 1 6 i, j 6 m and i + 1 < j.
Otherwise an element in X ′j would also be at distance i+1 which is a contradiction. For
the same reason, the only possible edges between X ′i and Xm+1 if i 6 m are from an
element of Xi to u. And there is no edge between X ′i and Xm+1 if i 6 m is even because
this would create an odd dicycle of length inferior to n.

u

∈ X ′m+1

X ′1 X ′2 =X2 X ′3 =X3 X ′m X ′m+1

X1 Xm

Figure 6: Building layers.

Define X1 = X ′1 ∪ {u}, for 1 < i < m, Xi = X ′i and Xm = X ′m ∪ X ′m+1\{u}. The
previous remarks imply that these sets are not empty and that for 1 6 i, j 6 m, if
i+ 1 < j there is no edge between Xi and Xj .

Definition 2.1. Let µ be a real-value function on R+. µ is suitable if:

1. µ > 0

2. ∀x > 1, µ(x) > x

3. ∀x, y > 0, µ(x+ y) > µ(x) + µ(y)

4. ∀y > x > 1
4 if x+y > 1 then µ(x+y)−µ(x)−µ(y) > 4x log

(
1 + y

x

)
log log(4(x+y))

Theorem 7. Let µ be a suitable function, k > 0 a real number. Let y be a continuous
real-valued function on [0, 1], we assume that y(0) > 0, y(1) 6 1, there is a finite set I
such that y is differentiable on [0, 1]\I and dy

dx > 1
k .

Then there is h such that: k dy
dx(h) 6 µ(k)− µ(ky(h))− µ(k(1− y(h)))

Remark. This kind of functions suits well the problem because of the previous theorem.
Moreover there is a quasi-linear function that is suitable: µ(x) = 0 for 0 < x < 1 and

10



µ(x) = 4x log(4x) log log(4x) for x > 1. The proof of this fact and of the theorem can
be found in [7].

Theorem 8. Let µ be a suitable function, H a digraph with at least 2 vertices and
n > 3 an odd integer. We assume that all odd dicycles in H have length at least n.
Define m = n−1

2 .
Then there is a partition (A,B,C) of V (H) where A,B 6= V (H) and there is no edge

from A to B such that:

|C| 6 µ

( |V (H)|
m

)
− µ

( |A|
m

)
− µ

( |B|
m

)
Proof. (Adapted from [7])

If the digraph is not connected then there are A and B non empty with no edge from
A to B. Therefore C = ∅ is a good choice.

Let’s assume that the digraph is connected. By Lemma 6 there is a partition a
partition X1, . . . , Xm of V (H) such that for 1 6 i, j 6 m, if i + 1 < j there is no edge
between Xi and Xj .

We define y on [0, 1] such that y(0) = 0 and for 0 < x 6 1, if i = dmxe:

y(x) = (|X1|+ · · ·+ |Xi−1|+ (mx− i+ 1)|Xi|)
1

|V (H)|

y is a continuous function. Define I = {0, 1
m ,

2
m , . . . , 1}. Then y is differentiable on

[0, 1] − I. We denote l = |V (H)|
m . For x in [0, 1] − I, if i = dmxe, then dy

dx(x) = |Xi|
l .

Lemma 6 implies that all the Xi’s are not empty. Therefore dy
dx(x) > 1

l .
Thus by Theorem 7 y is differentiable in a point h ∈ [0, 1] such that: l dy

dx(h) 6
µ(l)− µ(ly(h))− µ(l(1− y(h))).

If i = dmhe, A = X1 ∪ · · · ∪Xi−1, B = Xi+1 ∪ · · · ∪Xm, C = Xi, as in the article we
have:

l = |V (H)|
m

= |C|, µ(ky(l)) > µ

( |A|
m

)
, µ(k(1− y(l))) > µ

( |B|
m

)
Therefore we obtain:

|C| 6 µ

( |V (H)|
m

)
− µ

( |A|
m

)
− µ

( |B|
m

)

2.4 Covering the digraph

Theorem 9. Let µ be a suitable function, and k > 0. Let H be a digraph such that all
the odd dicycles have length at least |V (H)|

k+1 . Let m = n−1
2 where n is the smallest odd

number that is bigger than |V (H)|
k+1 .

Then we can find a set X covering all the odd dicycles in H and of cardinality at
most µ

(
|V (H)|

m

)
if m 6= 0, and µ(3(k + 1)) otherwise.
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Proof. Let’s prove this result by induction on |V (H)|.
If |V (H)| = 1 the empty set covers all odd dicycle.
Let’s now assume that this is true for all the digraphs that have strictly less that

|V (H)| vertices. If there is no odd dicycle in the digraph then the empty set is a good
choice.

If n = 1, then m = 0, and k+ 1 > |V (H)|. Therefore if X = V (H), X covers all odd
dicycles and |V (H)| 6 k + 1 6 3(k + 1) 6 µ(3(k + 1)) because µ is suitable.

Let’s assume that n > 3. Then there is a partition (A,B,C) of V (H) where A,B 6=
V (H) and there is no edge from A to B such that:

|C| 6 µ

( |V (H)|
m

)
− µ

( |A|
m

)
− µ

( |B|
m

)

Then all the odd dicycles of A (resp. B) have a length that is bigger than |V (H)|
k+1 so

we have the same integers n > 1 and m, so there is Y (resp. Z) of size at most µ
(
|A|
m

)
(resp. µ

(
|B|
m

)
) that covers all the odd dicycles of A (resp. B).

Define X = C ∪ Y ∪Z: X covers all the dicycles of H because the is no edge from A
to B. Moreover:

|X| 6 |C|+ |Y |+ |Z|

6 µ

( |V (H)|
m

)
− µ

( |A|
m

)
− µ

( |B|
m

)
+ µ

( |A|
m

)
+ µ

( |B|
m

)
6 µ

( |V (H)|
m

)
Therefore the property is true for H. This proves the theorem.

Remark. In the case where n > 1, we have n−1
2 > n

3 so:

|V (H)|
m

6 3 |V (H)|
n

= 3(k + 1)

Therefore in all the cases we have covered the odd dicycles of H with a set of cardinality
at most µ(3(k + 1)). So we proved 2 when w is the optimal solution.

3 The algorithmic point of view: the minimum odd cycle
covering set

As in the article [1], we will use the odd dicycle covering result found in Section 2 to
approximate minimum odd cycle covering set problem in the case of odd cycle covering.

We formally define the OCC problem as:
Input: A digraph G.
Question: What is the smallest set of vertices that cover all the odd dicycles in

the graph?

12



Theorem 10. The OCC problem is NP-complete.

Theorem 11. There is a polynomial time O(µ(3(occ∗+1)))-approximation for the OCC
problem.

The following algorithm gives the approximation.

Computing the fractional optimal
The first thing we need is to find the fractional odd cycle covering optimal k. We can

obtain it by solving the linear program, but we still have to be careful because there can
be an exponential number of constraints. To show that the linear program is solvable
in polynomial time we can use a separability argument and then apply the ellipsoid
algorithm.

The system is separable if we can state that a given distribution does not satisfy
the constraints in polynomial time. Let w a function on the vertices. We want to show
that this function satisfies all the covering problem constraints. This is equivalent to the
fact that the smallest odd cycle going through a vertex has weight at least 1. Therefore
proving separability is equivalent to finding an algorithm that gives the smallest odd
cycle going through a vertex.

To do so we use Dijkstra algorithm on a graph reduced from our graph. In the new
graph G′ we double the vertice of V (G) into two set V1 and V2. Then the edges are:

• the (u1, v2) with u1 ∈ V1 (resp. v2 ∈ V2) corresponding to v ∈ V (G) and (u, v) ∈
E(G)

• the (v2, u1) with u1 ∈ V1 (resp. v2 ∈ V2) corresponding to v ∈ V (G) and (v, u) ∈
E(G)

The weight of an edge (u, v) is w(v). Then we compute for u in V (G) the path of
smallest weight between u1 and u2 which gives the odd cycle of smallest weight. This
proofs the separability.

Therefore we can find the fractional optimal in polynomial time.

We call w the function that satisfies this optimal. Let’s describe an algorithm that
gives an approximation to OCC. Here we denote V = V (G)

The algorithms that follow are adapted from [1].

Building H
First we build the graph H (Section 2.1) in polynomial time: to do so we should have

a common denominator n that is polynomial in |V | to ensure that we add a polynomial
number of vertices. To do so we create a new feasible function ϕ for the OCC problem:

ϕ(v) =


1

2|V | if w(v) < 1/2|V |
d4nw(v)e

2|V | otherwise
(mod 2).
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This new function gives a valid covering with weight at most k = 4occ∗. Therefore
we can build a graph H that has a polynomial number of vertices in |V | (H has O(|V |2)
vertices and therefore can be build in O(|V |2))

Find the smallest odd cycle
To make the layers, we need to find the smallest odd dicycle. To do so we use the

following algorithm:
Input : the graph H.
Output: the smallest odd dicycle of H.

1 pick a vertex v randomly
2 with a BFS algorithm find the smallest odd dicycle C going through v
3 C ′ =SmallestOddCycle(H − v)
4 if |C| 6 |C ′| then
5 return C
6 else
7 return C ′

Algorithm 1: SmallestOddCycle
This algorithm runs |V (H)| times the BFS and therefore is in O(|V (H)|(|E(H)| +

|V (H)|)) which is polynomial in |V |. More precisely, |E(H)| = O(|V (H)| + |E(G)|) =
O(|V |2) so this algorithm is in O(|V |4).

Building the layers
To build the layers we need to try one vertex in the cycle and if it has less than

(n− 1)/2 layers, build the layers for the vertex at the other extremity of the cycle:
Input : the graph H.
Output: A partition of V (H) into m = (n− 1)/2 layers

1 C = SmallestOddCycle(H)
2 Pick v in V (C).
3 i = 0, X0 = {v} while X ′i 6= ∅ do
4 i = i+ 1, X ′i = {v′ at distance i from v in H}
5 if i > m then
6 X ′m+1 = V (H)\(X ′1 ∪ · · · ∪X ′m)
7 X1 = X ′1 ∪ {v}, for 1 < i < m, Xi = X ′i, Xm = X ′m ∪X ′m+1\{v}
8 else
9 Pick u at distance m in the cycle from v

10 for 1 6 i 6 m do
11 X ′i = {v′ at distance i from u in H}
12 X ′m+1 = V (H)\(X ′1 ∪ · · · ∪X ′m)
13 X1 = X ′1 ∪ {u}, for 1 < i < m, Xi = X ′i, Xm = X ′m ∪X ′m+1\{u}

Algorithm 2: BuildLayers
This algorithm is in O(|V (H)|) = O(|V |2).
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General algorithm
We obtain the following general algorithm:
Input : the graph G.
Output: X ⊂ V that covers odd cycles.

1 Build H
2 i = 0 A = ∅, B = V (H)
3 for 1 6 j 6 m do
4 i = i+ 1, A = A ∪Xi, B = B −Xi

5 if |Xi| 6 µ
(
|V (H)|

m

)
− µ

(
|A|
m

)
− µ

(
|B|
m

)
then

6 goto 7
7 Y =CoverOddCycles(H[A])
8 Z =CoverOddCycles(H[B])
9 X ′ = Y ∪ Z ∪Xi

10 Obtain the cover X of G by taking the first component of the vertices covering X ′
of H

11 return X
Algorithm 3: CoverOddCycles

This covering is a O(µ(3(k + 1)))-approximation and therefore a O(µ(3(occ∗ + 1)))-
approximation.
Remark. This algorithm can be implemented in the case of weighted vertices. The only
thing that might be harder is that the fractional optimal may be huge compared to the
number of vertices. However this problem is solved in [1].

4 Attempts on the covering of even dicycles
In this section we give some results about the even cycle problem and our attemps

on the covering of even cycles in a graph. More formally it gives the different strategy
used to find a polynomial function fe such that ecc 6 fe(ecc∗).

4.1 Difficulties of the problem

Finding an even dicycle is much more difficult than finding an odd dicycle. As said
in [6], the reason for that is that once we find a odd circuit in a digraph, we know that
at least one of the cycles that decompose this circuit is odd. However an even circuit
can be composed of an even number of odd dicycles.

If we look at the proof of Section 2 for the odd dicycle problem, we note that most
of the proof can be adapted for the even cycle problem. Indeed, the graph made in
Section 2.1 is still valid in the case of the even dicycle problem and has the same proper-
ties transposed to even dicycles. And if we manage to make layers of distances, we can
divide the digraph and then make a recursion. The hard part here is to make layers of
distances.
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Indeed, because of the problem of the division of circuits, we cannot apply the method
used in the proof of Theorem 5. If we take the smallest even dicycle, Figure 7 shows that
a point in this dicycle and its opposite can both have little layers. Here the smallest even
cycle is of length 12, u has only 3 layers, and v has 5 layers which is less than 12/2 = 6.
And we can generalize this graph by adding vertices in the third and fourth layer: we
obtain a cycle of length 4 · l with still 3 layers for u and 5 for v.

u v

Figure 7: A graph in which most vertices do not have many layers.

However we remark that some vertices still have many layers. If we try to obtain few
layers for all the vertices of this graph we get the graph in Figure 8. One observation
we made is that this graph, on the contrary of all the others found up until now, is not
planar. Therefore we made Conjecture 1.

u v

Figure 8: A graph with few layers for all vertices.

Conjecture 1. Let H be a strongly connected digraph with at least 2 vertices. We
assume that H is a planar graph and that all even dicycles of H are of length at least n
(n even).
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Then there are two vertices u and v in V (H) such that the shortest path between u
and v is at least n/2.

With the remarks made before in the section, if this conjecture is proved, then
we have a difference between the integer covering problem and the fractional covering
problem that is of the same order as in the odd dicycle case. However we did not prove
this conjecture yet. We tried a few ideas such as adapting the odd cycle paths proof, or
using tree decomposition.

4.2 Some interesting approachs

In this section we discuss a few other non working ideas to solve the problem in the
even cycle case.

4.2.1 Using connectivity

The first method tried was to divide the digraph into two parts A and B, where one
of the two parts, say A, does not contain even dicycles. The main problem when we
cut into two parts is that there can be even dicycles that are shared by A and B but
not covered by the covering sets of A and B. The idea we had was to use the following
theorem proved by McCuaig:

Theorem 12 (McCuaig [3]). D7 (see Figure 9) is the only strongly 2-connected digraph
with no even cycle

Figure 9: D7 graph.

We can decompose A into 2-connected components, that form a directed acyclic
graph. Theorem 12 implies that the 2-connected components composing the node of the
DAG are either single node or D7 digraphs because A does not contain even cycle (see
Figure 10). We tried to use that shape to erase all the shared even cycles but it is hard
to control because we cannot quantify the number of vertices going from B to the DAG,
and the converse.

4.2.2 Planar separator

We assume that we have a graph G with a fractional even dicycle covering of weight
k. As for the odd dicycle case, we can make a graph H such that all the even cycles of
H are bigger that |V (H)|

k+1 = n.
Following the idea of the article’s proof in the general case of all dicycles, we want

to divide V (H) into three sets A, B and C such that:
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A node or D7A B

Figure 10: Graph divided with a part without even dicycle.

- C is small compared to A and B,
- A and B are well balanced,
- removing C cuts all the cycles shared by A and B.
This seemed close to the following planar separator theorem:

Theorem 13 (Lipton, Tarjan [2]). Let G be a planar graph (not directed).
Then V (G) can be separated into 3 sets A, B and C such that there is no edge between

A and B, A and B contains less that 2
3 |V (G)| vertices and C contains O(

√
|V (G)|)

vertices.

We wanted to apply this theorem to H but the main problem we had was that we do
not know how small k is compared to |V (H)|. Therefore the set C can be much bigger
than expected.

Conclusion
We tried to study the covering of odd and even dicycles in a digraph.
Adapting the covering result for odd cycle was not straightforward, but still possible.

The problem is that not all cycles were large, and therefore all the vertices could be at
a close distance to each other. But we managed to show that this cannot happen. This
led us to an approximation algorithm for the odd cycle covering set problem with same
ratio as for the general cycle covering vertex set problem. We can wonder if there is
better approximation for this problem, since for the general case better approximations
exist when the graph is unweighted.

However in the case of even dicycle, it appears that all the vertices can actually be
close. The reason for that is the one that makes the even cycle problem difficult: an
even circuit can be the sum of only odd dicycles. Therefore all vertices can be close
as long as they just form small odd cycles. That is why we tried to solve it in the
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case of planar graphs. We are trying many different tools to tackle the problem (planar
separator, connectivity, tree decomposition) but none of them gave us yet a good link
between fractional and integer covering.
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