TUTORIAL IV

1 Typical sets

Let $X^n = X_1 \dots X_n$ be independent and identically distributed bits with $X_1 \sim \text{Ber}(p)$, i.e., $P_{X_1}(0) = 1 - p$ and $P_{X_1}(1) = p$ (assume that $0) and let <math>\delta > 0$ with $p + \delta \le 1/2$.

1. Recall that $h_2(p) = -p \log_2 p - (1-p) \log_2(1-p)$. Show that for $k \le n/2$ the following inequality holds:

$$1 + \binom{n}{1} + \dots + \binom{n}{k} \le 2^{h_2(k/n)n}$$

A: The left hand side of the inequality counts the number of subsets of $\{1, ..., n\}$ of size at most k, including the empty set. Thus we define X the random variable obtained by choosing a subset of size at most k uniformly at random. We have:

$$\sum_{i=0}^{k} \binom{n}{i} = 2^{H(X)}$$

Moreover since X represents a subset of $\{1, ..., n\}$, so we can write $X = (X_1, ..., X_n)$ where $X_i = 1$ if and only if i is in X. Then, if $p = \Pr[1 \in X]$:

$$H(X) \le H(X_1) + H(X_2) + \dots + H(X_n) = nH(X_1) = nh_2(p)$$

Since we choose at most k elements, $k \leq n/2$ and h_2 is non-decreasing on (0, 1/2], we obtain $H(X) \leq nh_2(k/n)$. This give:

$$\sum_{i=0}^k \binom{n}{i} \le 2^{nh_2(n/k)}$$

2. Using the previous inequality show that there exists a set $S_{\delta} \subseteq \{0,1\}^n$ with $|S_{\delta}| \leq 2^{n \cdot h_2(p+\delta)}$ satisfying the property that

$$\lim_{n \to \infty} \mathbf{P} \left\{ X^n \in S_\delta \right\} = 1 \,.$$

A: The set to define is intuitively the set that gives the typical elements that appear. Since p < 1/2, the elements with high probability will have many 0 and few 1. Let $N_1(w)$ be the number of 1's in a word w. Define, for some k fixed later:

$$S_{\delta} = \{w \in \{0, 1\}^n : N_1(w) \le 1\}$$

Then:

$$|S_{\delta}| = \sum_{i=0}^{k} \binom{n}{i} \le 2^{nh_2(k/n)}$$

Because we want the cardinality to be at most $2^{nh_2(p+\delta)}$, and h_2 is non decreasing, we set $k = \lfloor n(p+\delta) \rfloor$. This gives $|S_{\delta}| \leq 2^{nh_2(p+\delta)}$.

Now let's show that $\lim_{n \leftarrow n} \Pr[X^n \in S_{\delta}] = 1$. Let Y_n be distributed with a binomial distribution on (n, p). We have $\Pr[X^n \in S_{\delta}] \leq \Pr[Y_n \leq k]$. By Chernoff bound, for $\epsilon > 0$:

$$\Pr[Y_n > (1+\epsilon)np] \le \left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{np}$$

To obtain the good inequality, set $\epsilon = \delta/p$. Then:

$$\Pr[Y_n \ge k] = \Pr[Y_n \ge \lfloor n(p+\delta) \rfloor + 1] \le \Pr[Y_n \ge n(p+\delta)] \le \left(e^{\delta/p} \left(\frac{\delta+p}{p}\right)^{-\frac{\delta+p}{p}}\right)^{np}$$

Define $f(p, \delta) = e^{\delta/p} \left(\frac{\delta+p}{p}\right)^{-\frac{\delta+p}{p}}$. By studing f we prove $f(p, \delta) < 1$, which implies that $\Pr[Y_n \ge k]$ tends to 0. This gives the wanted limit.