## TUTORIAL IV

## 1 Typical sets

Let $X^{n}=X_{1} \ldots X_{n}$ be independent and identically distributed bits with $X_{1} \sim \operatorname{Ber}(p)$, i.e., $P_{X_{1}}(0)=1-p$ and $P_{X_{1}}(1)=p$ (assume that $0<p<1 / 2$ ) and let $\delta>0$ with $p+\delta \leq 1 / 2$.

1. Recall that $h_{2}(p)=-p \log _{2} p-(1-p) \log _{2}(1-p)$. Show that for $k \leq n / 2$ the following inequality holds:

$$
1+\binom{n}{1}+\cdots+\binom{n}{k} \leq 2^{h_{2}(k / n) n}
$$

A: The left hand side of the inequality counts the number of subsets of $\{1, \ldots, n\}$ of size at most $k$, including the empty set. Thus we define $X$ the random variable obtained by choosing a subset of size at most $k$ uniformly at random. We have:

$$
\sum_{i=0}^{k}\binom{n}{i}=2^{H(X)}
$$

Moreover since $X$ represents a subset of $\{1, \ldots, n\}$, so we can write $X=\left(X_{1}, \ldots, X_{n}\right)$ where $X_{i}=1$ if and only if $i$ is in $X$. Then, if $p=\operatorname{Pr}[1 \in X]$ :

$$
H(X) \leq H\left(X_{1}\right)+H\left(X_{2}\right)+\cdots+H\left(X_{n}\right)=n H\left(X_{1}\right)=n h_{2}(p)
$$

Since we choose at most $k$ elements, $k \leq n / 2$ and $h_{2}$ is non-decreasing on $(0,1 / 2]$, we obtain $H(X) \leq$ $n h_{2}(k / n)$. This give:

$$
\sum_{i=0}^{k}\binom{n}{i} \leq 2^{n h_{2}(n / k)}
$$

2. Using the previous inequality show that there exists a set $S_{\delta} \subseteq\{0,1\}^{n}$ with $\left|S_{\delta}\right| \leq 2^{n \cdot h_{2}(p+\delta)}$ satisfying the property that

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left\{X^{n} \in S_{\delta}\right\}=1
$$

A: The set to define is intuitively the set that gives the typical elements that appear. Since $p<1 / 2$, the elements with high probability will have many 0 and few 1 . Let $N_{1}(w)$ be the number of 1 's in a word $w$. Define, for some $k$ fixed later:

$$
S_{\delta}=\left\{w \in\{0,1\}^{n}: N_{1}(w) \leq 1\right\}
$$

Then:

$$
\left|S_{\delta}\right|=\sum_{i=0}^{k}\binom{n}{i} \leq 2^{n h_{2}(k / n)}
$$

Because we want the cardinality to be at most $2^{n h_{2}(p+\delta)}$, and $h_{2}$ is non decreasing, we set $k=\lfloor n(p+\delta)\rfloor$. This gives $\left|S_{\delta}\right| \leq 2^{n h_{2}(p+\delta)}$.

Now let's show that $\lim _{n \leftarrow n} \operatorname{Pr}\left[X^{n} \in S_{\delta}\right]=1$. Let $Y_{n}$ be distributed with a binomial distribution on $(n, p)$. We have $\operatorname{Pr}\left[X^{n} \in S_{\delta}\right] \leq \operatorname{Pr}\left[Y_{n} \leq k\right]$. By Chernoff bound, for $\epsilon>0$ :

$$
\operatorname{Pr}\left[Y_{n}>(1+\epsilon) n p\right] \leq\left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{n p} .
$$

To obtain the good inequality, set $\epsilon=\delta / p$. Then:

$$
\operatorname{Pr}\left[Y_{n} \geq k\right]=\operatorname{Pr}\left[Y_{n} \geq\lfloor n(p+\delta)\rfloor+1\right] \leq \operatorname{Pr}\left[Y_{n} \geq n(p+\delta)\right] \leq\left(e^{\delta / p}\left(\frac{\delta+p}{p}\right)^{-\frac{\delta+p}{p}}\right)^{n p}
$$

Define $f(p, \delta)=e^{\delta / p}\left(\frac{\delta+p}{p}\right)^{-\frac{\delta+p}{p}}$. By studing f we prove $f(p, \delta)<1$, which implies that $\operatorname{Pr}\left[Y_{n} \geq k\right]$ tends to 0 . This gives the wanted limit.

