TUTORIAL X

1 Finite fields

In this exercise, we will prove some properties of finite fields. In the following, we will denote by \mathbb{F}_q a finite field of cardinality q (we will see that there exists a unique field of cardinality q so \mathbb{F}_q is in fact "the" finite field of cardinality q).

We recall that a field K is a ring, with a neutral element 0 for the addition and a neutral element 1 for the multiplication $(0 \neq 1)$, and such that every non zero element in K has an inverse for the multiplication. We also want that the multiplication is commutative in K (and of course also the addition is commutative but this is always the case in a ring).

- 1. Let $n \ge 2$, show that $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is a prime.
- 2. Prove that there exists a prime p such that \mathbb{F}_q contains $\mathbb{Z}/p\mathbb{Z}$.
- 3. Prove that there is an $n \ge 1$ such that $q = p^n$.

So far, we have proven that if \mathbb{F}_q is a finite field of cardinality q, then q is a prime power. Now we prove the converse. Assume that $q = p^n$ for some prime n, we will construct a finite field of cardinality q.

- 4. Let K be a field and $P \in K[X]$ a polynomial with coefficients in K. Show that K[X]/(P) is a field if and only if P is irreducible in K[X].
- 5. We admit that, in $(\mathbb{Z}/p\mathbb{Z})[X]$, there exist irreducible polynomials of any degree. Construct a finite field of cardinality q.

So far, we have proven that there exist finite field of cardinality p^n for any prime p and $n \ge 1$ and that there are the unique possible cardinality for finite fields. We will now show that for a given $q = p^n$ there is a unique field of cardinality q up to isomorphism (and then we can call it \mathbb{F}_q without ambiguity).

6. (Optional) We admit that for any prime p, there exist an algebraic closure of $\mathbb{Z}/p\mathbb{Z}$, that is a field $\overline{\mathbb{F}_p}$ that contains $\mathbb{Z}/p\mathbb{Z}$ and such that any polynomial in $\overline{\mathbb{F}_p}[X]$ has a root in $\overline{\mathbb{F}_p}$ (we also want that all elements of $\overline{\mathbb{F}_p}$ are algebraic on $\mathbb{Z}/p\mathbb{Z}$ but this is not important here). Show that $\mathbb{F}_q = \{a \in \overline{\mathbb{F}_p}, a^q = a\}.$

This proves the unicity of \mathbb{F}_q .

2 Error-correcting VS error-detecting codes

Show that the following statements are equivalent for a code C:

- 1. C has minimum distance $d \ge 2$.
- 2. If d is odd, C can correct (d-1)/2 errors.
- 3. If d is even, C can correct d/2 1 errors.
- 4. C can detect d 1 errors.
- 5. C can correct d 1 erasures (in the erasure model, the receiver knows where the errors have occurred).

3 Generalized Hamming bound

Prove the following bound: for any $(n, k, d)_q$ code $C \subseteq (\Sigma)^n$ with $|\Sigma| = q$,

$$k \le n - \log_q \left(\sum_{i=0}^{\lfloor \frac{(d-1)}{2} \rfloor} {n \choose i} (q-1)^i \right)$$

4 Parity check matrix

Let C be a $[n, k, d]_q$ -linear code and $G \in \mathbb{F}_q^{k \times n}$ be a generator matrix. That is, $C = \{xG, x \in \mathbb{F}_q^k\}$. We call a parity check matrix of the code C a matrix $H \in \mathbb{F}_q^{(n-k) \times n}$ such that for all $c \in \mathbb{F}_q^n$ we have $cH^T = 0$ if and only if $c \in C$. The objective of this exercise is to show how to construct a parity check matrix from a generator matrix.

- 1. Show that H is a parity check matrix if and only if $GH^T = 0$ and rank(H) = n k.
- 2. Show that, from G we can construct a generator matrix G' of the form $G' = [I_k|P]$ for some $P \in \mathbb{F}_q^{k \times (n-k)}$. (If n is not optimal, we may have to permute the coefficients of the vectors).
- 3. Construct a parity check matrix from G'.
- 4. Construct a parity check matrix of the code given by the generator matrix $G = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$ in \mathbb{F}_2 .

5 (Optional) Almost-universal hash-functions: link between almostuniversal hash-functions and codes with a good distance

A hash function is generally a function from a large space to a small one. A desirable property for a hash function is that there are few collisions. A family of functions $\{f_y\}_{y \in \mathcal{Y}}$ from $f_y : \mathcal{X} \to \mathcal{Z}$ is called ϵ -almost universal if for any $x \neq x'$, we have $\Pr_y \{f_y(x) = f_y(x')\} \leq \epsilon$ for a uniformly chosen $y \in \mathcal{Y}$. In other words, for any $x \neq x'$,

$$|\{y \in \mathcal{Y} : f_y(x) = f_y(x')\}| \le \epsilon |\mathcal{Y}| . \tag{1}$$

The objective of the exercise is to show that almost-universal hash-functions and codes with a good distance are equivalent: from one you can construct the other efficiently.

Definition 5.1. Let $\mathcal{H} = \{f_1, \ldots, f_n\}$ be a family of hash-functions, where for each $1 \leq i \leq n$, $f_i : \mathcal{X} \to \mathcal{Z}$. We define the code $C_{\mathcal{H}} = \mathcal{X} \to \mathcal{Z}^n$ by

$$C_{\mathcal{H}}(x) = (f_1(x), \dots, f_n(x))$$

for all $x \in \mathcal{X}$.

On the contrary, given a code $C : \mathcal{X} \to \mathcal{Z}^n$, we define the family of hash-functions $\mathcal{H}_C = \{f_1, \ldots, f_n\}$, from \mathcal{X} to \mathcal{Z} by

$$f_i(x) = C(x)_i$$

where $x \in \mathcal{X}$ and $C(x)_i$ is the *i*-th letter of C(x) in the alphabet \mathcal{Z} .

- 1. Let $\mathcal{H} = \{f_1, \ldots, f_n\}$ be a family of ϵ -almost universal hash-functions. Prove that $C_{\mathcal{H}}$ has minimum distance $(1 \epsilon)n$.
- 2. On the other way, let C be a code from \mathcal{X} to \mathcal{Z}^n with minimum distance δn , prove that \mathcal{H}_C is a family of (1δ) -almost universal hash-functions.