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TUTORIAL X

1 Finite fields

In this exercise, we will prove some properties of finite fields. In the following, we will denote by I, a
finite field of cardinality ¢ (we will see that there exists a unique field of cardinality ¢ so I, is in fact “the”
finite field of cardinality q).

We recall that a field K is a ring, with a neutral element O for the addition and a neutral element 1 for the
multiplication (0 # 1), and such that every non zero element in K has an inverse for the multiplication.
We also want that the multiplication is commutative in K (and of course also the addition is commutative
but this is always the case in a ring).

1. Let n > 2, show that Z/nZ is a field if and only if n is a prime.
2. Prove that there exists a prime p such that [F, contains Z /pZ.

3. Prove that there is an n > 1 such that ¢ = p".

So far, we have proven that if I, is a finite field of cardinality ¢, then ¢ is a prime power. Now
we prove the converse. Assume that ¢ = p" for some prime n, we will construct a finite field of
cardinality gq.

4. Let K be a field and P € K[X] a polynomial with coefficients in K. Show that K [X]/(P) is a field
if and only if P is irreducible in K [X].

5. We admit that, in (Z/pZ)[X], there exist irreducible polynomials of any degree. Construct a finite
field of cardinality q.

So far, we have proven that there exist finite field of cardinality p" for any prime p and n > 1 and
that there are the unique possible cardinality for finite fields. We will now show that for a given
q = p" there is a unique field of cardinality ¢ up to isomorphism (and then we can call it F, without
ambiguity).

6. (Optional) We admit that for any prime p, there exist an algebraic closure of Z/pZ, that is a
field F, that contains Z/pZ and such that any polynomial in F,[X] has a root in F, (we also
want that all elements of F, are algebraic on Z/pZ but this is not important here). Show that
F,={a € F,,a? = a}.

This proves the unicity of [F,.

2 Error-correcting VS error-detecting codes

Show that the following statements are equivalent for a code C"

1. C has minimum distance d > 2.

2. If dis odd, C can correct (d — 1)/2 errors.
3. If dis even, C can correct d/2 — 1 errors.
4. C' can detect d — 1 errors.
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. C can correct d — 1 erasures (in the erasure model, the receiver knows where the errors have
occurred).



3 Generalized Hamming bound

Prove the following bound: for any (n, k, d), code C' C (X)" with || = ¢,
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4 Parity check matrix

Let C be a [n, k, d],-linear code and G € F¥*" be a generator matrix. That is, C' = {zG,z € F}. We

(n—k)xn

call a parity check matrix of the code C' a matrix H € F, such that for all ¢ € Fj we have ¢l =0
if and only if ¢ € C'. The objective of this exercise is to show how to construct a parity check matrix from
a generator matrix.

1. Show that H is a parity check matrix if and only if GH? = 0 and rank(H) = n — k.

2. Show that, from G we can construct a generator matrix G’ of the form G’ = [[|P] for some
P e ]FSX("_k). (If n 1s not optimal, we may have to permute the coefficients of the vectors).

3. Construct a parity check matrix from G’.

—_ =

0
1

4. Construct a parity check matrix of the code given by the generator matrix G = ( é (1) 1) in

F.

5 (Optional) Almost-universal hash-functions: link between almost-
universal hash-functions and codes with a good distance

A hash function is generally a function from a large space to a small one. A desirable property for a

hash function is that there are few collisions. A family of functions { f, },cy from f, : X — Z is called

e-almost universal if for any x # 2/, we have P { f,(x) = f,(2")} < € for a uniformly chosen y € ). In
v

other words, for any = # 2/,

{y e ¥: fylx) = f(@)}H < €Y. (1)

The objective of the exercise is to show that almost-universal hash-functions and codes with a good
distance are equivalent: from one you can construct the other efficiently.

Definition 5.1. Ler H = {f1,..., fu} be a family of hash-functions, where for each 1 < i < n,
fi : X — Z. We define the code Cy, = X — Z™ by

Cn(x) = (fi(2),. ., ful2))

forallx € X.
On the contrary, given a code C : X — 2", we define the family of hash-functions Ho =

{fi,.--, fn}, from X to Z by
filz) = C(z);
where v € X and C(x); is the i-th letter of C(x) in the alphabet Z.
1. Let H = {fi,..., fn} be a family of e-almost universal hash-functions. Prove that C; has minimum
distance (1 — €)n.

2. On the other way, let C' be a code from X to Z™ with minimum distance dn, prove that H is a family
of (1 — §)-almost universal hash-functions.
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