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TUTORIAL X

1 Finite fields
In this exercise, we will prove some properties of finite fields. In the following, we will denote by Fq a
finite field of cardinality q (we will see that there exists a unique field of cardinality q so Fq is in fact “the”
finite field of cardinality q).
We recall that a field K is a ring, with a neutral element 0 for the addition and a neutral element 1 for the
multiplication (0 6= 1), and such that every non zero element in K has an inverse for the multiplication.
We also want that the multiplication is commutative in K (and of course also the addition is commutative
but this is always the case in a ring).

1. Let n ≥ 2, show that Z/nZ is a field if and only if n is a prime.

2. Prove that there exists a prime p such that Fq contains Z/pZ.

3. Prove that there is an n ≥ 1 such that q = pn.

So far, we have proven that if Fq is a finite field of cardinality q, then q is a prime power. Now
we prove the converse. Assume that q = pn for some prime n, we will construct a finite field of
cardinality q.

4. Let K be a field and P ∈ K[X] a polynomial with coefficients in K. Show that K[X]/(P ) is a field
if and only if P is irreducible in K[X].

5. We admit that, in (Z/pZ)[X], there exist irreducible polynomials of any degree. Construct a finite
field of cardinality q.

So far, we have proven that there exist finite field of cardinality pn for any prime p and n ≥ 1 and
that there are the unique possible cardinality for finite fields. We will now show that for a given
q = pn there is a unique field of cardinality q up to isomorphism (and then we can call it Fq without
ambiguity).

6. (Optional) We admit that for any prime p, there exist an algebraic closure of Z/pZ, that is a
field Fp that contains Z/pZ and such that any polynomial in Fp[X] has a root in Fp (we also
want that all elements of Fp are algebraic on Z/pZ but this is not important here). Show that
Fq = {a ∈ Fp, a

q = a}.
This proves the unicity of Fq.

2 Error-correcting VS error-detecting codes
Show that the following statements are equivalent for a code C:

1. C has minimum distance d ≥ 2.

2. If d is odd, C can correct (d− 1)/2 errors.

3. If d is even, C can correct d/2− 1 errors.

4. C can detect d− 1 errors.

5. C can correct d − 1 erasures (in the erasure model, the receiver knows where the errors have
occurred).



3 Generalized Hamming bound
Prove the following bound: for any (n, k, d)q code C ⊆ (Σ)n with |Σ| = q,

k ≤ n− logq

b
(d−1)

2 c∑
i=0

(
n

i

)
(q − 1)i



4 Parity check matrix
Let C be a [n, k, d]q-linear code and G ∈ Fk×n

q be a generator matrix. That is, C = {xG, x ∈ Fk
q}. We

call a parity check matrix of the code C a matrix H ∈ F(n−k)×n
q such that for all c ∈ Fn

q we have cHT = 0
if and only if c ∈ C. The objective of this exercise is to show how to construct a parity check matrix from
a generator matrix.

1. Show that H is a parity check matrix if and only if GHT = 0 and rank(H) = n− k.

2. Show that, from G we can construct a generator matrix G′ of the form G′ = [Ik|P ] for some
P ∈ Fk×(n−k)

q . (If n is not optimal, we may have to permute the coefficients of the vectors).

3. Construct a parity check matrix from G′.

4. Construct a parity check matrix of the code given by the generator matrix G =

(
1 1 0 1 1
1 0 1 0 1

)
in

F2.

5 (Optional) Almost-universal hash-functions: link between almost-
universal hash-functions and codes with a good distance

A hash function is generally a function from a large space to a small one. A desirable property for a
hash function is that there are few collisions. A family of functions {fy}y∈Y from fy : X → Z is called
ε-almost universal if for any x 6= x′, we have P

y
{fy(x) = fy(x

′)} ≤ ε for a uniformly chosen y ∈ Y . In

other words, for any x 6= x′,

|{y ∈ Y : fy(x) = fy(x
′)}| ≤ ε|Y| . (1)

The objective of the exercise is to show that almost-universal hash-functions and codes with a good
distance are equivalent: from one you can construct the other efficiently.

Definition 5.1. Let H = {f1, . . . , fn} be a family of hash-functions, where for each 1 ≤ i ≤ n,
fi : X → Z . We define the code CH = X → Zn by

CH(x) = (f1(x), . . . , fn(x))

for all x ∈ X .
On the contrary, given a code C : X → Zn, we define the family of hash-functions HC =

{f1, . . . , fn}, from X to Z by
fi(x) = C(x)i

where x ∈ X and C(x)i is the i-th letter of C(x) in the alphabet Z .

1. LetH = {f1, . . . , fn} be a family of ε-almost universal hash-functions. Prove that CH has minimum
distance (1− ε)n.

2. On the other way, let C be a code from X to Zn with minimum distance δn, prove thatHC is a family
of (1− δ)-almost universal hash-functions.
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