Tutorial X

1 Finite fields

In this exercise, we will prove some properties of finite fields. In the following, we will denote by \mathbb{F}_{q} a finite field of cardinality q (we will see that there exists a unique field of cardinality q so \mathbb{F}_{q} is in fact "the" finite field of cardinality q).
We recall that a field K is a ring, with a neutral element 0 for the addition and a neutral element 1 for the multiplication $(0 \neq 1)$, and such that every non zero element in K has an inverse for the multiplication. We also want that the multiplication is commutative in K (and of course also the addition is commutative but this is always the case in a ring).

1. Let $n \geq 2$, show that $\mathbb{Z} / n \mathbb{Z}$ is a field if and only if n is a prime.
2. Prove that there exists a prime p such that \mathbb{F}_{q} contains $\mathbb{Z} / p \mathbb{Z}$.
3. Prove that there is an $n \geq 1$ such that $q=p^{n}$.

So far, we have proven that if \mathbb{F}_{q} is a finite field of cardinality q, then q is a prime power. Now we prove the converse. Assume that $q=p^{n}$ for some prime n, we will construct a finite field of cardinality q.
4. Let K be a field and $P \in K[X]$ a polynomial with coefficients in K. Show that $K[X] /(P)$ is a field if and only if P is irreducible in $K[X]$.
5. We admit that, in $(\mathbb{Z} / p \mathbb{Z})[X]$, there exist irreducible polynomials of any degree. Construct a finite field of cardinality q.
So far, we have proven that there exist finite field of cardinality p^{n} for any prime p and $n \geq 1$ and that there are the unique possible cardinality for finite fields. We will now show that for a given $q=p^{n}$ there is a unique field of cardinality q up to isomorphism (and then we can call it \mathbb{F}_{q} without ambiguity).
6. (Optional) We admit that for any prime p, there exist an algebraic closure of $\mathbb{Z} / p \mathbb{Z}$, that is a field $\overline{\mathbb{F}_{p}}$ that contains $\mathbb{Z} / p \mathbb{Z}$ and such that any polynomial in $\overline{\mathbb{F}_{p}}[X]$ has a root in $\overline{\mathbb{F}_{p}}$ (we also want that all elements of $\overline{\mathbb{F}_{p}}$ are algebraic on $\mathbb{Z} / p \mathbb{Z}$ but this is not important here). Show that $\mathbb{F}_{q}=\left\{a \in \overline{\mathbb{F}_{p}}, a^{q}=a\right\}$.
This proves the unicity of \mathbb{F}_{q}.

2 Error-correcting VS error-detecting codes

Show that the following statements are equivalent for a code C :

1. C has minimum distance $d \geq 2$.
2. If d is odd, C can correct $(d-1) / 2$ errors.
3. If d is even, C can correct $d / 2-1$ errors.
4. C can detect $d-1$ errors.
5. C can correct $d-1$ erasures (in the erasure model, the receiver knows where the errors have occurred).

3 Generalized Hamming bound

Prove the following bound: for any $(n, k, d)_{q}$ code $C \subseteq(\Sigma)^{n}$ with $|\Sigma|=q$,

$$
k \leq n-\log _{q}\left(\sum_{i=0}^{\left\lfloor\frac{(d-1)}{2}\right\rfloor}\binom{n}{i}(q-1)^{i}\right)
$$

4 Parity check matrix

Let C be a $[n, k, d]_{q}$-linear code and $G \in \mathbb{F}_{q}^{k \times n}$ be a generator matrix. That is, $C=\left\{x G, x \in \mathbb{F}_{q}^{k}\right\}$. We call a parity check matrix of the code C a matrix $H \in \mathbb{F}_{q}^{(n-k) \times n}$ such that for all $c \in \mathbb{F}_{q}^{n}$ we have $c H^{T}=0$ if and only if $c \in C$. The objective of this exercise is to show how to construct a parity check matrix from a generator matrix.

1. Show that H is a parity check matrix if and only if $G H^{T}=0$ and $\operatorname{rank}(H)=n-k$.
2. Show that, from G we can construct a generator matrix G^{\prime} of the form $G^{\prime}=\left[I_{k} \mid P\right]$ for some $P \in \mathbb{F}_{q}^{k \times(n-k)}$. (If n is not optimal, we may have to permute the coefficients of the vectors).
3. Construct a parity check matrix from G^{\prime}.
4. Construct a parity check matrix of the code given by the generator matrix $G=\left(\begin{array}{lllll}1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1\end{array}\right)$ in \mathbb{F}_{2}.

5 (Optional) Almost-universal hash-functions: link between almostuniversal hash-functions and codes with a good distance

A hash function is generally a function from a large space to a small one. A desirable property for a hash function is that there are few collisions. A family of functions $\left\{f_{y}\right\}_{y \in \mathcal{Y}}$ from $f_{y}: \mathcal{X} \rightarrow \mathcal{Z}$ is called ϵ-almost universal if for any $x \neq x^{\prime}$, we have $\mathbf{P}_{y}\left\{f_{y}(x)=f_{y}\left(x^{\prime}\right)\right\} \leq \epsilon$ for a uniformly chosen $y \in \mathcal{Y}$. In other words, for any $x \neq x^{\prime}$,

$$
\begin{equation*}
\left|\left\{y \in \mathcal{Y}: f_{y}(x)=f_{y}\left(x^{\prime}\right)\right\}\right| \leq \epsilon|\mathcal{Y}| \tag{1}
\end{equation*}
$$

The objective of the exercise is to show that almost-universal hash-functions and codes with a good distance are equivalent: from one you can construct the other efficiently.
Definition 5.1. Let $\mathcal{H}=\left\{f_{1}, \ldots, f_{n}\right\}$ be a family of hash-functions, where for each $1 \leq i \leq n$, $f_{i}: \mathcal{X} \rightarrow \mathcal{Z}$. We define the code $C_{\mathcal{H}}=\mathcal{X} \rightarrow \mathcal{Z}^{n}$ by

$$
C_{\mathcal{H}}(x)=\left(f_{1}(x), \ldots, f_{n}(x)\right)
$$

for all $x \in \mathcal{X}$.
On the contrary, given a code $C: \mathcal{X} \rightarrow \mathcal{Z}^{n}$, we define the family of hash-functions $\mathcal{H}_{C}=$ $\left\{f_{1}, \ldots, f_{n}\right\}$, from \mathcal{X} to \mathcal{Z} by

$$
f_{i}(x)=C(x)_{i}
$$

where $x \in \mathcal{X}$ and $C(x)_{i}$ is the i-th letter of $C(x)$ in the alphabet \mathcal{Z}.

1. Let $\mathcal{H}=\left\{f_{1}, \ldots, f_{n}\right\}$ be a family of ϵ-almost universal hash-functions. Prove that $C_{\mathcal{H}}$ has minimum distance $(1-\epsilon) n$.
2. On the other way, let C be a code from \mathcal{X} to \mathcal{Z}^{n} with minimum distance δn, prove that \mathcal{H}_{C} is a family of $(1-\delta)$-almost universal hash-functions.
