TUTORIAL XI

1 Homework 4

1. Let $A_{q}(n, d)$ be the largest k such that a code over alphabet $\{1, \ldots, q\}$ of block length n, dimension k and minimum distance d exists (recall that this corresponds to the notation $(n, k, d)_{q}$). Determine $A_{2}(3, d)$ for all integers $d \geq 1$.
2. Suppose C is a $(n, k, d)_{2}$-code with d odd. Construct using C a code C^{\prime} that is a $(n+1, k, d+1)_{2^{-}}$ code.
3. By constructing the columns of a parity check matrix in a greedy fashion, show that there exists a binary linear code $[n, k, d]_{2}$ provided that

$$
\begin{equation*}
2^{n-k}>1+\binom{n-1}{1}+\cdots+\binom{n-1}{d-2} \tag{1}
\end{equation*}
$$

This is a small improvement compared to the general Gilbert-Varshamov bound. In particular, it is tight for the $[7,4,3]_{2}$ Hamming code.
4. The Hadamard code has a nice property that it can be locally decoded. Let $C_{H a d, r}:\{0,1\}^{r} \rightarrow$ $\{0,1\}^{2^{r}}$ be the encoding function of the Hadamard code. Suppose you are interested only in the i-th bit x_{i} of the message $x \in\{0,1\}^{r}$. The challenge is that you only have access to $y \in\{0,1\}^{2^{r}}$ such that $\Delta\left(C_{\text {Had,r }}(x), y\right) \leq \frac{2^{r}}{10}$ and you would like to look only at a few bits of y. Show that by querying only 2 well-chosen positions (the choice will involve some randomization) of y, you can determine x_{i} correctly with probability $4 / 5$ (the probability here is over the choice of the queries, in particular x, y and i are fixed).
Hint: You might want to query y at the position labelled by $u \in\{0,1\}^{r}$ at random and the position $u+e_{i}$ where $e_{i} \in\{0,1\}^{r}$ is the binary representation of i.

2 Parity check matrix

Let C be a $[n, k, d]_{q}$-linear code and $G \in \mathbb{F}_{q}^{k \times n}$ be a generator matrix. That is, $C=\left\{x G, x \in \mathbb{F}_{q}^{k}\right\}$. We call a parity check matrix of the code C a matrix $H \in \mathbb{F}_{q}^{(n-k) \times n}$ such that for all $c \in \mathbb{F}_{q}^{n}$ we have $c H^{T}=0$ if and only if $c \in C$. The objective of this exercise is to show how to construct a parity check matrix from a generator matrix.

1. Show that H is a parity check matrix if and only if $G H^{T}=0$ and $\operatorname{rank}(H)=n-k$.
2. Show that, from G we can construct a generator matrix G^{\prime} of the form $G^{\prime}=\left[I_{k} \mid P\right]$ for some $P \in \mathbb{F}_{q}^{k \times(n-k)}$. (If n is not optimal, we may have to permute the coefficients of the vectors).
3. Construct a parity check matrix from G^{\prime}.
4. Construct a parity check matrix of the code given by the generator matrix $G=\left(\begin{array}{lllll}1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1\end{array}\right)$ in \mathbb{F}_{2}.

3 Singleton Bound

For every $(n, k, d)_{q}$-code, show that $k \leq n-d+1$.

4 Weights of Codewords

Let C be an $[n, k, d]$-linear code over \mathbb{F}_{q}. Prove the following.

1. For $q=2$, either all the codewords have even weight or exactly half have even weight and the rest have odd weight.
2. For any q, either all the codewords begin with 0 or exactly a fraction $1 / q$ of the codewords begin with 0 . In general, for a given position $1 \leq i \leq n$, either all codewords contain 0 at the i-th position or each $\alpha \in \mathbb{F}_{q}$ appears at the i-th position of exactly $1 / q$ of the codewords in C.
3. The following inequality holds for the minimum distance d of C.

$$
d \leq \frac{n(q-1) q^{k-1}}{q^{k}-1}
$$

5 Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector $\mathbf{m} \in \mathbb{F}_{q}^{k}$ and a uniformly random $k \times n$ matrix \mathbf{G} over \mathbb{F}_{q}, show that the vector $\mathbf{m G}$ is uniformly distributed over \mathbb{F}_{q}^{n}.
2. Let $k=\left(1-H_{q}(\delta)-\varepsilon\right) n$, with $\delta=d / n$. Show that there exists a $k \times n$ matrix G such that

$$
\text { for every } \mathbf{m} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\}, w t(\mathbf{m} \mathbf{G}) \geq d
$$

where $w t(\mathbf{m})$ is the Hamming weight of the vector \mathbf{m}.
3. Show that \mathbf{G} has full rank (i.e., it has dimension at least $k=\left(1-H_{q}(\delta)-\varepsilon\right) n$)

