Tutorial XII

1 Codes Achieving the Gilbert-Varshamov Bound

The purpose of this exercise is to use the probabilistic method to show that a random linear code lies on the Gilbert-Varshamov bound, with high probability.

1. Given a non-zero vector $\mathbf{m} \in \mathbb{F}_{q}^{k}$ and a uniformly random $k \times n$ matrix \mathbf{G} over \mathbb{F}_{q}, show that the vector $\mathbf{m G}$ is uniformly distributed over \mathbb{F}_{q}^{n}.
2. Let $k=\left(1-H_{q}(\delta)-\varepsilon\right) n$, with $\delta=d / n$. Show that there exists a $k \times n$ matrix \mathbf{G} such that

$$
\text { for every } \mathbf{m} \in \mathbb{F}_{q}^{k} \backslash\{\mathbf{0}\}, w t(\mathbf{m G}) \geq d
$$

where $w t(\mathbf{m})$ is the Hamming weight of the vector \mathbf{m}.
3. Show that \mathbf{G} has full rank (i.e., it has dimension at least $k=\left(1-H_{q}(\delta)-\varepsilon\right) n$)

2 Reed-Solomon codes

Consider the Reed-Solomon code over a field \mathbb{F}_{q} and block length $n=q-1$ defined as

$$
R S[n, k]_{q}=\left\{\left(p(1), p(\alpha), \ldots, p\left(\alpha^{n-1}\right)\right) \mid p \in \mathbb{F}_{q}[X] \text { has degree } \leq k-1\right\}
$$

where α is a generator of the multiplicative group \mathbb{F}_{q}^{*} of \mathbb{F}_{q}

1. Show that for any $k \in[|1 ; n-1|]$, we have

$$
\sum_{i=0}^{n-1} \alpha^{k i}=0
$$

2. Prove that

$$
R S[n, k]_{q} \subseteq\left\{\left(c_{0}, \ldots, c_{n-1}\right) \in \mathbb{F}_{q}^{n} \mid \forall l \in[|1 ; n-k|], c\left(\alpha^{l}\right)=0, \text { where } c(X)=\sum_{i=0}^{n-1} c_{i} X^{i}\right\}
$$

3. Prove that the following matrix is invertible, and compute its inverse.

$$
W(\alpha)=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & \alpha & \ldots & \alpha^{n-1} \\
1 & \alpha^{2} & \ldots & \alpha^{2 n-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & \alpha^{n-1} & \ldots & \alpha^{(n-1)(n-1)}
\end{array}\right)
$$

4. Prove that

$$
R S[n, k]_{q} \supseteq\left\{\left(c_{0}, \ldots, c_{n-1}\right) \in \mathbb{F}_{q}^{n} \mid \forall l \in[|1 ; n-k|], c\left(\alpha^{l}\right)=0, \text { where } c(X)=\sum_{i=0}^{n-1} c_{i} X^{i}\right\}
$$

3 Secret Sharing

Secret sharing is a cryptographic problem of splitting a secret among several participants/players in such a way that the secret cannot be reconstructed unless a sufficient number of shares are combined. More formally, an (ℓ, m)-secret sharing scheme takes as input a set of n players P_{1}, \ldots, P_{n} and a secret $s \in \mathcal{X}$ to be shared among them. The output is a set of shares s_{1}, \ldots, s_{n} where s_{i} corresponds to P_{i}. The scheme must satisfy the following properties.

1. For all $A \subseteq\{1, \ldots, n\}$ with $|A| \geq m,\left\{P_{i}\right\}_{i \in A}$ can recover s from $\left\{s_{i}\right\}_{i \in A}$.
2. For all $B \subseteq\{1, \ldots, n\}$ with $|B|<\ell,\left\{P_{i}\right\}_{i \in B}$ cannot recover s from $\left\{s_{i}\right\}_{i \in B}$. By cannot recover, we mean that s is information theoretically hidden to all parties in B or equivalently, s is equally likely to take on any value in \mathcal{X}.

Shamir's $(\ell, \ell+1)$-secret sharing scheme: Let $\mathcal{X}=\mathbb{F}_{q}$ with $q \geq n$ and $1 \leq \ell \leq n-1$. Pick a random polynomial $f(x) \in \mathbb{F}_{q}[X]$ of degree $\leq \ell$ such that $f(0)=s$. Choose distinct $\alpha_{i} \in \mathbb{F}_{q}^{*}$ and set $s_{i}=\left(f\left(\alpha_{i}\right), \alpha_{i}\right)$.

1. Show that the properties 1 and 2 hold for this scheme.

Linear codes and secret sharing: Consider $\mathcal{X}=\mathbb{F}_{q}$ with $q \geq n$. Let C be an $[n+1, k, d]_{q}$-code and C^{\perp} be its dual $\left[n+1, n+1-k, d^{\perp}\right]_{q}$-code. Consider the following secret sharing scheme: pick a random codeword $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{n}\right) \in C$ and set $s=c_{0}$ and $s_{i}=c_{i}$ for $i \in[1, n]$.

1. Argue that the scheme is correct (that is, any $s \in \mathbb{F}_{q}$ corresponds to some codeword).
2. Show that it is an (ℓ, m)-secret sharing scheme with $\ell \leq d^{\perp}-2$ and $m \geq n-d+2$.

Correspondence to Reed-Solomon?

1. Show that $R S[n, k]^{\perp}=R S[n, n-k]$.
2. Can you represent Shamir's $(\ell, \ell+1)$-scheme as a linear code-based scheme with $C=R S\left[n^{\prime}, k^{\prime}\right]_{q}$ for some n^{\prime}, k^{\prime} ?
