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TUTORIAL II

0 Homework 1
1. (Repetition code) Suppose that you have a disk drive where each bit gets flipped with probability
f = 0.1 in a year. In order to be able to correct errors, we take a copy of the full drive N − 1 times
so that we have N copies of the original data (N is odd). After one year, I would like to retrieve a
given bit of the original drive. What should I do? Suppose I want the probability of error for this bit
to be at most δ, how large should I take N as a function of δ? How large is this for δ = 10−10?

2. Let X ∈ N be a discrete random variable and g : N → N. What can you say in general on the
relation between H(X) and H(g(X))? And in particular, if g(n) = 2n?

1 Axiomatic approach to the Shannon entropy

If we require certain properties of our uncertainty measure, then it uniquely specifies the Shannon entropy.
Let ∆m = {(p1, . . . , pm) ∈ Rm : pi ≥ 0,

∑
i pi = 1} be the set of distributions on m elements. Let

our uncertainty measure Hm : ∆m → R be a sequence of functions satisfying the following desirable
properties

1. Symmetry: For anym ≥ 1 and any permutation π of {1, . . . ,m},Hm(p1, . . . , pm) = Hm(pπ(1), . . . , pπ(m))

2. Normalization: H2(
1
2
, 1
2
) = 1

3. Continuity: For any m ≥ 1, Hm is a continuous function

4. Grouping: For any m ≥ 2,

Hm(p1, . . . , pm) = Hm−1(p1 + p2, p3, . . . , pm) + (p1 + p2)H2(
p1

p1 + p2
,

p2
p1 + p2

)

5. Monotonicity: We have Hm( 1
m
, . . . , 1

m
) ≤ Hm+1(

1
m+1

, . . . , 1
m+1

)

Prove that Hm(p1, . . . , pm) = −
∑m

i=1 pi log2 pi.

You can proceed in the following way. Let g(m) = Hm( 1
m
, . . . , 1

m
).

1. Show that g(n ·m) = g(n) + g(m).

2. Conclude that g(m) = log2m. (Hint: for any n, let `n be such that 2`n ≤ mn ≤ 2`n+1, show that
`n
n
≤ g(m) ≤ `n+1

n
).

3. Use this to compute the value of H2(p, 1− p).

4. Conclude with Hm.



2 Data processing inequality for mutual information
Recall that:

H(X|Y )
def
=
∑
y∈AY

PY (y)H(X|Y = y) , H(X, Y ) = H(X)+H(Y |X) and I(X;Y )
def
= H(X)−H(X|Y )

0. We know that more information cannot increase uncertainty in the sense that H(X|Y ) ≤ H(X).
Show that this is not true if we do not take the average of Y , i.e. give an example of a pair of random
variables (X, Y ) such that H(X|Y = y) > H(X) for some y.

We define the conditional mutual information:

I(X;Y |Z)
def
= H(X|Z)−H(X|Y, Z)

If X and Z are conditionally independent given Y (i.e. PZ|Y,X = PZ|Y ), we will use the notation
X → Y → Z (this notation is motivated by the theory of Markov chains). Notice that X → Y → Z
implies Z → Y → X since PZ|Y,X = PZ|Y ⇒ PX|Y,Z = PX|Y .

1. Show that I(X;Y |Z) is the average over Z of I(X;Y ), ie: I(X;Y |Z) =
∑

z P(Z = z)I(X|Z =
z;Y |Z = z).

2. Show that I(X; (Y, Z)) = I(X;Z) + I(X;Y |Z)

3. For any X → Y → Z, show that the conditional mutual information I(X;Z|Y ) is 0.

4. Using question 2 and 3, show the data processing inequality: I(X;Y ) ≥ I(X;Z) for any X → Y →
Z.

5. Show that for any function g, we have I(X;Y ) ≥ I(X; g(Y )).

3 Code for unknown distribution
Recall that we can build a code C that achieves an expected length within 1 bit of the lower bound, that is:

H(X) ≤ E(|C(X)|) < H(X) + 1

This is done either by using Huffman’s algorithm or using the following choice of word lengths: lx =⌈
log 1

p(x)

⌉
, where p is the distribution of X . In some cases, we don’t know the true distribution p, but only

have an approximation q, and still want to find a code.

1. Show that if we use the same choice of word lengths: li =
⌈
log 1

qi

⌉
, we have:

H(p) +D(p‖q) ≤ E(|C(X)|) < H(p) +D(p‖q) + 1

Extra for those who know Huffman’s algorithm: What about Huffman’s algorithm?
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4 Entropy of Markov chains
A Markov chain is an indexed sequence {Xi} of random variables such that the variableXn+1 only depends
on the value of Xn. In other terms:

P(Xn+1 = xn+1|Xn = xn, . . . , X1 = x1) = P(Xn+1 = xn+1|Xn = xn)

In the following, we will always assume that the Markov chains are time-independant, ie the following
holds:

P(Xn+1 = a|Xn = b) = P(X1 = a|X0 = b)

In this case, the evolution of the system depends only on the conditional distribution P (X1|X0), and we
will usually describe this distribution using a probability transition matrix P = [Pij], where Pij = P(X1 =
j|X0 = i). If all theXi’s can only take a finite number of values, we usually representXi by its distribution
pi = (P(Xi = 0),P(Xi = 1), . . . ,P(Xi = l)).

Those notations allow us to use the tools of linear algebra, since we can describe the dependency
between Xi+1 and Xi using the matrix product: pi+1 = pi · P = p0 · P i. For instance, under reasonable
assumptions, we know that P i converges to a certain matrix P∞, and that the resulting limit distribution
p∞ = p0 · P∞ is the only fixpoint of P (i.e. the only p such that p = p · P ).

1. Find the stationary/limit distribution of a two-states Markov chain with a probability transition matrix
of the form: (

1− α α
β 1− β

)

0 11− α

α

1− β

β
2. In the case of a system with memory, the basic notion of entropy don’t capture the dependency between

states. Thus, we define another notion of entropy: the entropy rate is defined as

H(X ) = lim
n→+∞

H(Xn|Xn−1, . . . , X0) = lim
n→+∞

1

n
H(X1, . . . , Xn)

In the case of Markov chain, we thus have: H(X ) = limn→+∞H(Xn|Xn−1). If we are in a convergent
case, we have: H(X ) = H(X1|X0), where the conditional entropy is calculated using the stationary
distribution, ie with X0 ∼ µ.
Compute the entropy rate of the Markov chain of question 1.

3. What is the maximum value of H(X ) in this example?

4. We now take the special case where β = 1. Give a simplified expression of the entropy rate.

5. Find the maximum value ofH(X ) in this case. Is it normal that this maximum is achieved for α < 1/2?

6. Let N(t) be the number of allowable state sequences of length t for the Markov chain (with β = 1).
Find N(t) and calculate:

H0(X ) = lim
t→+∞

1

t
H0(X0, . . . , Xt−1) = lim

t→+∞

1

t
logN(t)

Why is H0 an upper bound on the entropy rate of the Markov chain? Compare H0 with the maximum
entropy found in the previous question.
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