Tutorial II

0 Homework 1

1. (Repetition code) Suppose that you have a disk drive where each bit gets flipped with probability $f=0.1$ in a year. In order to be able to correct errors, we take a copy of the full drive $N-1$ times so that we have N copies of the original data (N is odd). After one year, I would like to retrieve a given bit of the original drive. What should I do? Suppose I want the probability of error for this bit to be at most δ, how large should I take N as a function of δ ? How large is this for $\delta=10^{-10}$?
2. Let $X \in \mathbb{N}$ be a discrete random variable and $g: \mathbb{N} \rightarrow \mathbb{N}$. What can you say in general on the relation between $H(X)$ and $H(g(X))$? And in particular, if $g(n)=2^{n}$?

1 Axiomatic approach to the Shannon entropy

If we require certain properties of our uncertainty measure, then it uniquely specifies the Shannon entropy. Let $\Delta_{m}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{R}^{m}: p_{i} \geq 0, \sum_{i} p_{i}=1\right\}$ be the set of distributions on m elements. Let our uncertainty measure $H_{m}: \Delta_{m} \rightarrow \mathbb{R}$ be a sequence of functions satisfying the following desirable properties

1. Symmetry: For any $m \geq 1$ and any permutation π of $\{1, \ldots, m\}, H_{m}\left(p_{1}, \ldots, p_{m}\right)=H_{m}\left(p_{\pi(1)}, \ldots, p_{\pi(m)}\right)$
2. Normalization: $H_{2}\left(\frac{1}{2}, \frac{1}{2}\right)=1$
3. Continuity: For any $m \geq 1, H_{m}$ is a continuous function
4. Grouping: For any $m \geq 2$,

$$
H_{m}\left(p_{1}, \ldots, p_{m}\right)=H_{m-1}\left(p_{1}+p_{2}, p_{3}, \ldots, p_{m}\right)+\left(p_{1}+p_{2}\right) H_{2}\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right)
$$

5. Monotonicity: We have $H_{m}\left(\frac{1}{m}, \ldots, \frac{1}{m}\right) \leq H_{m+1}\left(\frac{1}{m+1}, \ldots, \frac{1}{m+1}\right)$

Prove that $H_{m}\left(p_{1}, \ldots, p_{m}\right)=-\sum_{i=1}^{m} p_{i} \log _{2} p_{i}$.
You can proceed in the following way. Let $g(m)=H_{m}\left(\frac{1}{m}, \ldots, \frac{1}{m}\right)$.

1. Show that $g(n \cdot m)=g(n)+g(m)$.
2. Conclude that $g(m)=\log _{2} m$. (Hint: for any n, let ℓ_{n} be such that $2^{\ell_{n}} \leq m^{n} \leq 2^{\ell_{n}+1}$, show that $\left.\frac{\ell_{n}}{n} \leq g(m) \leq \frac{\ell_{n}+1}{n}\right)$.
3. Use this to compute the value of $H_{2}(p, 1-p)$.
4. Conclude with H_{m}.

2 Data processing inequality for mutual information

Recall that:

$$
H(X \mid Y) \stackrel{\text { def }}{=} \sum_{y \in A_{Y}} P_{Y}(y) H(X \mid Y=y) \quad, \quad H(X, Y)=H(X)+H(Y \mid X) \quad \text { and } \quad I(X ; Y) \stackrel{\text { def }}{=} H(X)-H(X \mid Y)
$$

0 . We know that more information cannot increase uncertainty in the sense that $H(X \mid Y) \leq H(X)$. Show that this is not true if we do not take the average of Y, i.e. give an example of a pair of random variables (X, Y) such that $H(X \mid Y=y)>H(X)$ for some y.

We define the conditional mutual information:

$$
I(X ; Y \mid Z) \stackrel{\text { def }}{=} H(X \mid Z)-H(X \mid Y, Z)
$$

If X and Z are conditionally independent given Y (i.e. $\mathbf{P}_{Z \mid Y, X}=\mathbf{P}_{Z \mid Y}$), we will use the notation $X \rightarrow Y \rightarrow Z$ (this notation is motivated by the theory of Markov chains). Notice that $X \rightarrow Y \rightarrow Z$ implies $Z \rightarrow Y \rightarrow X$ since $\mathbf{P}_{Z \mid Y, X}=\mathbf{P}_{Z \mid Y} \Rightarrow \mathbf{P}_{X \mid Y, Z}=\mathbf{P}_{X \mid Y}$.

1. Show that $I(X ; Y \mid Z)$ is the average over Z of $I(X ; Y)$, ie: $I(X ; Y \mid Z)=\sum_{z} \mathbf{P}(Z=z) I(X \mid Z=$ $z ; Y \mid Z=z)$.
2. Show that $I(X ;(Y, Z))=I(X ; Z)+I(X ; Y \mid Z)$
3. For any $X \rightarrow Y \rightarrow Z$, show that the conditional mutual information $I(X ; Z \mid Y)$ is 0 .
4. Using question 2 and 3, show the data processing inequality: $I(X ; Y) \geq I(X ; Z)$ for any $X \rightarrow Y \rightarrow$ Z.
5. Show that for any function g, we have $I(X ; Y) \geq I(X ; g(Y))$.

3 Code for unknown distribution

Recall that we can build a code C that achieves an expected length within 1 bit of the lower bound, that is:

$$
H(X) \leq \mathbb{E}(|C(X)|)<H(X)+1
$$

This is done either by using Huffman's algorithm or using the following choice of word lengths: $l_{x}=$ $\left\lceil\log \frac{1}{p(x)}\right\rceil$, where p is the distribution of X. In some cases, we don't know the true distribution p, but only have an approximation q, and still want to find a code.

1. Show that if we use the same choice of word lengths: $l_{i}=\left\lceil\log \frac{1}{q_{i}}\right\rceil$, we have:

$$
H(p)+D(p \| q) \leq \mathbb{E}(|C(X)|)<H(p)+D(p \| q)+1
$$

Extra for those who know Huffman's algorithm: What about Huffman's algorithm?

4 Entropy of Markov chains

A Markov chain is an indexed sequence $\left\{X_{i}\right\}$ of random variables such that the variable X_{n+1} only depends on the value of X_{n}. In other terms:

$$
\mathbf{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \ldots, X_{1}=x_{1}\right)=\mathbf{P}\left(X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right)
$$

In the following, we will always assume that the Markov chains are time-independant, ie the following holds:

$$
\mathbf{P}\left(X_{n+1}=a \mid X_{n}=b\right)=\mathbf{P}\left(X_{1}=a \mid X_{0}=b\right)
$$

In this case, the evolution of the system depends only on the conditional distribution $P\left(X_{1} \mid X_{0}\right)$, and we will usually describe this distribution using a probability transition matrix $P=\left[P_{i j}\right]$, where $P_{i j}=\mathbf{P}\left(X_{1}=\right.$ $j \mid X_{0}=i$). If all the X_{i} 's can only take a finite number of values, we usually represent X_{i} by its distribution $p_{i}=\left(\mathbf{P}\left(X_{i}=0\right), \mathbf{P}\left(X_{i}=1\right), \ldots, \mathbf{P}\left(X_{i}=l\right)\right)$.

Those notations allow us to use the tools of linear algebra, since we can describe the dependency between X_{i+1} and X_{i} using the matrix product: $p_{i+1}=p_{i} \cdot P=p_{0} \cdot P^{i}$. For instance, under reasonable assumptions, we know that P^{i} converges to a certain matrix P^{∞}, and that the resulting limit distribution $p_{\infty}=p_{0} \cdot P^{\infty}$ is the only fixpoint of P (i.e. the only p such that $p=p \cdot P$).

1. Find the stationary/limit distribution of a two-states Markov chain with a probability transition matrix of the form:

$$
\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)
$$

2. In the case of a system with memory, the basic notion of entropy don't capture the dependency between states. Thus, we define another notion of entropy: the entropy rate is defined as

$$
H(\mathcal{X})=\lim _{n \rightarrow+\infty} H\left(X_{n} \mid X_{n-1}, \ldots, X_{0}\right)=\lim _{n \rightarrow+\infty} \frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right)
$$

In the case of Markov chain, we thus have: $H(\mathcal{X})=\lim _{n \rightarrow+\infty} H\left(X_{n} \mid X_{n-1}\right)$. If we are in a convergent case, we have: $H(\mathcal{X})=H\left(X_{1} \mid X_{0}\right)$, where the conditional entropy is calculated using the stationary distribution, ie with $X_{0} \sim \mu$.
Compute the entropy rate of the Markov chain of question 1.
3. What is the maximum value of $H(\mathcal{X})$ in this example?
4. We now take the special case where $\beta=1$. Give a simplified expression of the entropy rate.
5. Find the maximum value of $H(\mathcal{X})$ in this case. Is it normal that this maximum is achieved for $\alpha<1 / 2$?
6. Let $N(t)$ be the number of allowable state sequences of length t for the Markov chain (with $\beta=1$). Find $N(t)$ and calculate:

$$
H_{0}(\mathcal{X})=\lim _{t \rightarrow+\infty} \frac{1}{t} H_{0}\left(X_{0}, \ldots, X_{t-1}\right)=\lim _{t \rightarrow+\infty} \frac{1}{t} \log N(t)
$$

Why is H_{0} an upper bound on the entropy rate of the Markov chain? Compare H_{0} with the maximum entropy found in the previous question.

