
ENS LYON – M1 – INFORMATION THEORY E. OSHURKO, J. SEIF // 2018–2019

TUTORIAL V

1 Lempel-Ziv compression
Previously we have seen Huffman algorithm for various length lossless data compression and have shown
that it achieves the optimal expected length for a distribution PX of a source composed of some symbols
from X . However, there are some disadvantages to it. First of all, it requires prior knowledge of PX , or,
alternatively its estimation. Therefore to be able to apply it when PX is not known we need two passes
through the data we wish to encode. The first pass is used for estimating PX , and the second pass for
actually encoding the data.

The Lempel Ziv algorithm constructs its dictionary on the fly, only going through the data once.
Although there are many variations of Lempel-Ziv compression, in this exercise we will concentrate on
one of its simplest versions. The idea of the procedure is to split an input sequence into distinct phrases, and
in this version it is done greedily. We start with the shortest phrase on the left that we havent seen before
(which will always be a single letter). On each step we delimit the next phrase we have not seen until we run
out of letters. For the sake of simplicity consider a source composed of symbols in X = {0, 1} distributed
according to PX(0) = p and PX(1) = 1 − p. The following example illustrates an input string and the
corresponding splitting into phrases:

0010111010010111011011→ 0|01|011|1|010|0101|11|0110|11

Now we encode the string by constructing a dictionary, where each phrase is assigned to its number. If
a phrase has already been seen, it is in the dictionary, and instead of a phrase itself we can use its number in
the encoding. The following table presents the encoding of our example string (for the sake of convenience
the first empty phrase is encoded with an empty string):

Phrase number 1 2 3 4 5 6 7 8 9
Phrase 0 01 011 1 010 0101 11 0110 11

Encoding ∅0 11 21 01 20 51 41 30 7
Concatenating the last row with the phrase numbers expressed in binary gives the following string (the

dividers and phrase numbers are left in bold for the readability):

00|11|101|001|0100|1011|1001|0110|0111

Note also that starting with the 2k + 1 dictionary element we used k bits, so the number of bits used
to represent a phrase number is always increasing. This ensures that the decoding algorithm knows how to
split a given codeword back into phrases 1.

1. What is the codeword corresponding to Lempel-Ziv encoding of 0n?

2. Let c(n) be the number of phrases in the splitting of a string of length n. Give an upper bound on the
total number of bits of its encoding as a function of c(n).

Now we are interested in giving an upper bound on this result as a function of n in the worst case and
average case scenarios.

1Adapted from http://www-math.mit.edu/ shor/PAM/lempel ziv notes.pdf

http://www-math.mit.edu/~shor/PAM/lempel_ziv_notes.pdf

1.1 Worst case analysis
In this part of the exercise we will discuss what is the maximum number of distinct phrases that a string
of length n can be split into. Let k be the maximal number of bits used to encode a phrase number in a
dictionary.

1. Give one worst case string for k = 2 and k = 3. What about any k > 1?

2. Let nk be the length of the worst case string for k. Show that nk = (k − 1)2k+1 + 2. Give an upper
bound of c(nk) as a function of nk.

3. Now, for an arbitrary length n, we can write n = nk + ∆. Use the previous bound to show that
c(n) ≤ n

log2 c(n)−3
.

4. Using the previous inequality give an upper bound on the total number of bits of the encoding. Does it
make you happy?

1.2 Average case analysis
We now need to show the previous bound in the case of random strings. Let X = X1X2 . . . Xn be a random
string of length n such that Xi for all i ∈ {1, . . . n} are independent and identically distributed according to
PX .

1. Let Q(X) be the probability of a string X . Suppose that X is broken into distinct phrases X =
Y1Y2 . . . Yc(n). Now let cl be the number of phrases Yi of length l. By definition of Lempel-Ziv they are
all distict. Show that

− logQ(X) ≥
∑
l

cl log2 cl.

Hint: Recall that to maximize a product of k terms, given a fixed sum of these terms, the best thing to
do is to make all of these terms equal. Proceed by showing that

∏
|Yi|=l Q(Yi) ≤

(
1
cl

)cl
.

2. Suppose we have mi occurences of i for i ∈ 0, 1 in X , then Q(X) = pm0(1 − p)m1 . Show that
− log2Q(X) ' nH2(p).

3. Show that
∑

l cl log2 cl ≥ c(n) log2 c(n)−O(log2
n

c(n)
). Conclude.

2 Channel capacity
Definition 2.1 (Information capacity). The information capacity of a channel WY |X is given by C(WY |X) =
maxPX

I(X;Y), where the joint distribution of X, Y is defined by PXY (x, y) = PX(x)PY |X(y|x).

1. For a discrete channel WY |X with input alphabet X , output alphabet Y . Let C(W) denote the channel
capacity of W . Show that

(a) C(W) ≥ 0.
(b) C(W) ≤ log2 |X |.
(c) C(W) ≤ log2 |Y|.
(d) I(X;Y) is a continuous concave function of p(x).

2. Given a channel WY |X and channel capacity C(W) = maxp(x) I(X;Y), suppose you apply a
preprocessing step to the output by forming Ỹ = g(Y).

(a) Does it strictly improve the channel capacity?
(b) Under what conditions does the capacity not strictly decrease?

Page 2

	Lempel-Ziv compression
	Worst case analysis
	Average case analysis

	Channel capacity

