TD 10 & 11 - Rounding and Primal Dual algorithms

Indication of hardness: from (*) to (****).

1 Rounding

Exercise 1 - 3/4-approximation of SAT (*)

In class, we gave a $\frac{3}{4}$ -approximation algorithm for the maximum satisfiability problem. Give a tight example for this algorithm. In other words, give an instance for which the expected value of the solution returned by the algorithm is $\frac{3}{4}OPT$.

Exercise 2 - Integer Multicommodity Flow (**)

Given a graph G = (V, E) and k pairs (s_i, t_i) (where $s_i, t_i \in V$ for all k = 1, ..., k), our goal is to find a path from s_i to t_i for i = 1, ..., k so that the maximum *edge congestion* is minimized. Let P_i denote the set of all paths from s_i to t_i . We have seen during the lecture the following linear programming relaxation.

$$\min C$$

$$\sum_{p \in P_i} x_p = 1, \quad \text{for all } i = 1, \dots, k,$$

$$\sum_{p:e \in p} x_p \le C, \quad \text{for all } e \in E,$$

$$x_p \ge 0. \qquad (P_{flow}^1)$$

However it might have an exponential number of variables. Consider another linear programming relaxation with a polynomial number of variables. In this relaxation, x_{ie} represents the number of paths using edge e.

$$\min C$$

$$\sum_{e \in \delta^+(v)} x_{ie} = \sum_{e \in \delta^-(v)} x_{ie}, \quad \text{for all } i = 1, \dots, k \text{ and } v \neq s_i, t_i,$$

$$\sum_{e \in \delta^-(s_i)} x_{ie} = \sum_{e \in \delta^+(t_i)} x_{ie} = 1, \quad \text{for all } i = 1, \dots, k,$$

$$\sum_{i=1}^k x_{ie} \leq C, \quad \text{for all } e \in E$$

$$x_{ie} \geq 0. \qquad (P_{flow}^2)$$

Show that relaxations (P_{flow}^1) and (P_{flow}^2) are equivalent in the sense that an optimal solution for (P_{flow}^1) can be converted to an optimal solution for (P_{flow}^2) and vice versa.

Exercise 3 - Minimum Covering Radius (***)

We are considering the following problem. We are given k words on alphabet 0, 1 and the goal is the determine the word that is the closest from all these words in Hamming distance (for instance these k words might be the same word passing through a channel with loss and the goal is to determine the original word. The Hamming distance d(u, v) the number of bits different between u and v. Formally we have:

Input: k words S_1, \ldots, S_k of length n.

Input: The minimum *C* such that there exists *w* such that $d(S_i, w) \leq C$ for every *i*.

- 1. Formulate the problem as an ILP.
- 2. Let x^* be an optimal solution of the fractional relaxation. Let us denote by x_i the variable corresponding to the i-th letter. Now let us set $x_i = 1$ with probability x_i^* and 0 otherwise. Prove that the expected distance from a randomized rounding to the word S_i is at most C for every i.
- 3. Deduce a log(k) approximation algorithm.

2 Primal-Dual algorithms

Exercise 4 - The Hungarian Method for the Assignment Problem (***)

Let G = (V, E) be a bipartite graph whose edge costs are nonnegative integers. There is a bipartition V = (A, B) where |A| = |B| = n and the goal is to assign each element in A(e.g. people) to a unique element in B (e.g. tasks) so as to minimize the total cost of the assignment. In other words, we want to find a minimum cost perfect matching between A and B. The goal of this exercise is to study the following primal-dual algorithm for this problem. Let C denote the $n \times n$ cost matrix, where rows are indexed by vertices in A and columns are indexed by vertices in B.

- 1. For each row in *C*, decrease each value by the cost of the minimum entry in the row. (Then do the same for each column.) Call the resulting cost matrix \bar{C} . Let G_0 denote the subgraph of *G* that consists of edges in *G* whose cost in \bar{C} is zero, i.e. $\bar{c}_{ij} = 0$.
- 2. Find a maximum cardinality matching in G_0 . If this matching has size n, terminate the algorithm.
- 3. Otherwise, find a minimum vertex cover in G_0 . Let $A' \subset A, B' \subset B$ denote the vertices in the vertex cover. Note that |A'| + |B'| < n.
- 4. Let $\alpha = \min_{(i,j):i \notin A', j \notin B'} \bar{c}_{ij}$. Subtract α from every row in \bar{C} that is not in A' and add α to each column in B'. Set $C := \bar{C}$ and goto Step 1.

We will now analyze this algorithm.

(a) Apply this algorithm to the following 5 by 5 matrix.

- (b) Prove that Step 1 of the algorithm does not affect (i.e. change) the optimal assignment.
- (c) Show that the maximum matching in Step 2 can be found efficiently.
- (d) Show that the minimum vertex cover in Step 3 can be found efficiently.
- (e) Prove that the algorithm terminates.
- (f) Write the primal and dual linear programs for the assignment problem.
- (g) Interpret the above algorithm as a primal-dual algorithm.
- (h) Prove that the final solution is a minimum cost perfect matching by providing a dual certificate.

Exercise 5 - Primal-Dual and Dijkstra's Algorithm (*)

Prove that the primal-dual algorithm for shortest *s*-*t*-path is equivalent to Dijkstra's algorithm. That is, in each step, it adds the same edge Dijkstra's algorithm would add.

Exercise 6 - Shortest *s*-*t*-path Tree (*)

Show that the primal-dual algorithm for shortest *s*-*t*-path returns a (possible partial) shortest path tree rooted at *s* before pruning.

Exercise 7 - Minimum Cost Arborescence (**)

Given a (strongly connected) directed graph G = (V, A) and a root vertex $r \in V$, an *arborescence* is a subset of edges $S \subseteq A$ such for each vertex $v \in V$, S contains a directed path from r to v. Suppose that each edge $ij \in A$ has a cost $c_{ij} \ge 0$. The *minimum cost arborescence problem* is to find an arborescence in G of minimum cost.

- (a) Write down the integer program for the minimum cost arborescence problem.
- (b) Relax the integrality constraint in the integer program to obtain a linear programming relaxation. Write the dual for this linear program.
- (c) Give a primal-dual algorithm for the minimum cost arborescence problem. (Use the same framework as for the *s*-*t*-shortest path. For the pruning stage, delete edges in the reverse order they were added.)
- (d) Prove that this algorithm is optimal.