TD1 - Modelization and Linear Programming

Indication of hardness: from (*) to (****).

1 Modelization (again)

Exercise 1 - Computers production (*)

Pear© produces notebook computers and desktop computers. Pear© would like to know how many of each product to produce in order to maximize profit for the quarter. The major constraints are as follows:

- 1. Each computer (either notebook or desktop) requires a Processing Chip. Due to tightness in the market, the supplier has allocated 10,000 such chips to the company.
- 2. Each computer requires memory. Memory comes in 8GB chip sets. A notebook computer has 8GB memory installed (so needs 1 chip set) while a desktop computer has 16MB (so requires 2 chip sets). Pear[©] received a great deal on chip sets, so have a stock of 15,000 chip sets to use over the next quarter.
- 3. Each computer requires assembly time. Due to tight tolerances, a notebook computer takes more time to assemble: 4 minutes versus 3 minutes for a desktop. There are 38,000 minutes of assembly time available in the next quarter.

Given current market conditions, material cost, and our production system, each notebook computer produced generates \$750 profit, and each desktop produces \$1000 profit.

- (a) Formulate the problem as a Linear Program.
- (b) Solve it geometrically and with the Simplex Algorithm.

Exercise 2 - The world is (still) linear... (***)

(a) We want to maximize the following fraction $\frac{3+2x_1+3x_2+x_3}{1+3x_1+x_2+4x_3}$ subject to the constraints $5x_1 + x_2 + 6x_3 \le 10$ and $x_1 + 2x_2 + x_3 \le 2$ and non negative x_i for every *i*. Show that this problem can be modeled with the following linear program:

$$\max 3t + 2y_1 + 3y_2 + y_3$$

subject to
$$t = 1 - 3y_1 - y_2 - 4y_3$$

$$5y_1 + y_2 + 6y_3 - 10t \le 0$$

$$y_1 + 2y_2 + y_3 \le 0$$

$$t, y_1, y_2, y_3 \ge 0$$

Hint: $t = \frac{1}{1+3x_1+x_2+4x_3}$. (b) Explain how you can generalize it to any fraction.

2 Convex sets

Exercise 3 - Alternative definition of convext sets. (*)

Prove that: a set *X* is convex if and only if any convex combination of a finite number of points of *X* is in *X*.

Exercise 4 - Applications of the definition (*)

Show that:

- A hyperplane is a convex set.
- A polyhedron is a convex set.
- A cone is a convex set.

Exercise 5 - Convex hull is convex. (*)

Let *X* be a set of points of \mathbb{R}^n . Show that the set Conv(X) is convex.

Exercise 6 - Convex hull of the extreme points (**)

Prove that if *P* is a polytope, then P = Conv(V(P)).

Exercise 7 - Operations on convex sets. (*)

- (a) Show that the intersection of any collection (not necessarily finite) of convex sets is convex. What about the union of convex sets?
- (b) Show that for any $X \subseteq \mathbb{R}^n$, the set Conv(X) is the intersection of all convex sets that contain *X*.

Hint: If x, y are in the intersection, show that the "segment" [x, y] also is. 2) Why it is included in Conv(X)? Since the convex set contains X, why does it contain Conv(X)?

Exercise 8 - Convex functions. (*)

- (a) Show that the sum of convex functions is convex.
- (b) Is it also true for the product of convex functions? For their multiplication by a scalar?
- (c) Let $c \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. Show that $f(x) = c^T x + \alpha$ is convex and concave.

3 Polytopes

Exercise 9 - Optimal solution and faces. (*)

Prove that any optimal solution of a LP on a polyhedron *P* has either an infinite optimal value or all every optimal solution is on a face *F* of *P* (strictly contained in *P*).

Exercise 10 - Alternative definition of polytope. (**)

- (a) Prove that any minimal face of a polytope *P* is reduced to a single point.
- (b) Consider the linear programming problem of minimizing $c^t x$ over a non-empty, polytope *P*. Prove that there exists an optimal solution which is an extreme point of P.

Exercise 11 - An example (*)

Give an example of convex set which is not the convex hull of its extreme points.

Hint: It is not a polytope (why?), thus...

Exercise 12 - Lines and Extreme Points. ()**

We say that a polyhedron *P* contains a line if there exists a point $x \in P$ and a nonzero vector $d \in \mathbb{R}^n$ such that $x + \lambda d \in P$ for all scalars λ .

- (a) Prove the following: Let *P* be a non-empty polyhedron. Show that if *P* does not contain a line, then *P* contains an extreme point.
- (b) Is the converse also true? Proof or counter-example.

4 Harder exercises on polytopes

Exercise 13 - Extremal points of the unit disk (***)

We want to prove formally that the set of extremal points of the unit disk

$$C = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \text{ such that } x^2 + y^2 \le 1 \right\}$$

is the set of points satisfying $x^2 + y^2 = 1$.

- (a) Let $\binom{x_0}{y_0}$ be a point satisfying $x_0^2 + y_0^2 = 1$. Give an equation of the line tangent to the sphere at point $\binom{x_0}{y_0}$ as $\alpha x + \beta y = c$ (explicit α, β and c).
- (b) Maximize $\alpha x + \beta y$ on *C*. What is the optimal value? Show that $\binom{x_0}{y_0}$ is the unique point reaching the optimal value.
- (c) Let *X* be a subset of *C* such that $\binom{x_0}{y_0} \notin X$. What can you say about the optimal value of the objective function in Conv(X)? Conclude.
- (d) Recall why it implies that *C* is not a polytope.
- (e) How can you adapt this proof for higher dimensional spaces?

Hint for (b): We denote by $(u|v) = \sum_{i} u_i v_i$ the scalar product of two vectors u and v. Recall that (Cauchy-Schwarz theorem)

$$|(u|v)| \le ||u|| \cdot ||v||$$

And the equality case happens if and only if $u = \lambda v$ for $\lambda \ge 0$.

Exercise 14 - Extended formulations - The cross polytope (***)

Consider the following polytope:

 $C_d = \{x \text{ such that } \|x\|_1 = 1\} = \{x \in \mathbb{R}^d \text{ such that } \pm x_1 \pm x_2 \dots \pm x_d \le 1\}$

- (a) Represent C_d when d = 2 and d = 3.
- (b) Show that no constraint of the following polyhedron is useless. In other words, prove that none of the constraints $\pm x_1 \pm x_2 \dots \pm x_d \leq 1$ can be deleted without modifying the polytope.

What is the number of facets of this polytope?

(c) Find an extended formulation C_d with a linear number of constraints.

Hint for (c): How did we transform absolute values into variables in TD1?

5 Simplex algorithm

Exercise 15 - Solve the following LP	Exercise 16 - Solve the following LP
(**) Solve the following linear pro-	(**)
grams using the simplex algorithm:	
	$\max 3x_1 + 3x_2 + 4x_3$ subject to:
$\max 6x_1 + 8x_2 + 5x_3 + 9x_4$ subject to:	$x_1 + x_2 + 2x_3 \le 4$
$2x_1 + x_2 + x_3 + 3x_4 \le 5$	$2x_1 + 3x_3 \le 5$
$x_1 + 3x_2 + x_3 + 2x_4 \le 3$	$2x_1 + x_2 + 3x_3 \le 7$
$x_1, x_2, x_3, x_4 \ge 0.$	$x_1, x_2, x_3 \ge 0.$

Exercise 17 - Solve the following LP (**)

$$\max 2x_1 + x_2 \text{ subject to:} 2x_1 + x_2 \le 3 2x_1 + x_2 \le 1 2x_1 + x_2 \le 4 2x_1 + x_2 \le 5 x_1, x_2 \ge 0$$