TD5 - Duality

Indication of hardness: from (*) to (****).

1 Simplex algorithm (again)

Exercise 1 - One cannot improve the solution. (**)

- Given an example of tableau of LP where the algorithm cannot improve the current solution for any possible choice of pivot with respect to the current solution.
- Give a geometrical example (on two dimensions) where the same condition is satisfied.

Exercise 2 - A last simplex algorithm (**)

Use the Simplex Algorithm to show that the following problem is unbounded:

$$\max z = -x_1 + 2x_2 + x_3$$

subject to:
$$3x_1 + x_2 - 4x_3 \leq 4$$
$$x_1 - x_2 - x_3 \leq 10$$
$$x_1 - 2x_2 + 6x_3 \leq 9$$
$$x_1, x_2, x_3 \geq 0$$

2 Duality

Exercise 3 - Computing duals (*)

Give the dual of the following LPs:

$\max 2x_1 + 3x_2 + x_3$		$\max 1000x_1 + 1200x_2$			
subject to			subject to		
Subject to	/	40	$10x_1 + 5x_2$	\leq	200
$x_1 + x_2 + x_3$	\leq	40	$2x_1 + 3x_2$	=	60
$2x_1 + x_2 - x_3$	\geq	10	r1	<	19
$-x_2 + x_3$	\geq	10	x_1		12
x_1, x_2, x_3	>	0	x_2	2	0
	_		x_1, x_2	\geq	0

$\max x_1 + 5x_2 - x_3$			$\max x_1$		
subject to			subject to		
$x_1 + 5x_2 + 3x_3$	=	12	$-5x_1 + 3x_2$	=	200
$x_1 - x_3$	\leq	5	$11x_1 + 3x_2$	=	60
$x_2 - 5x_3$	\geq	1	x_2	\geq	6
x_1	\geq	0	x_1	\geq	0

Exercise 4 - Determining the dual (*)

- (a) Show that the dual of a non-positive variable is a \leq constraint.
- (b) Show that the dual of a free variable is an equality constraint.
- (c) Show that the dual of $a \ge constraint$ is a non positive variable.

Exercise 5 - Unboundedness and feasibility (*)

- (a) Find a linear program (P) such that both (P) and its dual (D) are not feasible.
- (b) Find a linear program (P) such that (P) is not feasible and (D) is unbounded.

Exercise 6 - Self duality (**)

Consider the LP (P)

$$\min q^{t}z$$

subject to
$$Mz \ge -q$$

$$z \ge 0$$

in which the matrix *M* is *skew symmetric*; i.e. $M = -M^t$.

(a) Prove that the dual of this problem is itself.

(b) Show that (P) is feasible iff its optimal value is bounded.

Certificate of optimality

Exercise 7 - Certificate of optimality

(a)

(b)

$\max x_1 + x_2$			$\max x_1 + 7x_2 + 3x_3$		
subject to			subject to		
$x_1 + 2x_2$	\leq	4	$-x_1 + 3x_2 - 2x_3$	\leq	0
$4x_1 + 2x_2$	\geq	12	$x_1 - 4x_2 + 2x_3$	\leq	0
$-x_1 + x_2$	\geq	1	$x_2 + 2x_2 + 3x_3$	\leq	5
x_1, x_2	\geq	0	x_1,x_2,x_3	\geq	0

Compute the dual of these LP and determine if:

- Are the points (2/3, 5/3), (3,0) or (8/3, 2/3) optimal for (a)?
- Is the point (3, 1, 0) optimal for (b)?

3 Dualite in Discrete Mathematics

Exercise 8 - Dominating Set

A *dominating set* is a subset X of vertices of G such that for every v in V, then $v \in X$ or v is incident to a vertex of X.

- (a) Formulate the Minimum Dominating Set (MDS) problem as an ILP.
- (b) Prove that the integrality gap cannot be bounded by any constant (i.e. the ratio between the optimal value and the fractional optimal value can be larger than any constant).
- (c) What is the dual of the MDS problem? Interpret it as a "generalization" of an independent set problem.