TD6 - Sensitivity analysis

Indication of hardness: from (*) to (****).

1 Sensitivity analysis and Duality

Exercise 1 - Sensitivity Analysis (*)

Solve the following LPs with the Simplex and determine on the optimal tableau:

- (a) the optimal solution;
- (b) the shadow prices on the three constraints;
- (c) the range on the availability of each resource for which the basis of the optimal solution remains the same.

$\max 2x_1 - x_2$	$\max x_1 + x_2$
subject to	suject to
$x_1 + x_2 \ge 5$	$x_1 + x_4 + x_5 - x_6 = 5$
$6x_2 + x_1 \le 11$	$x_2 + 2x_4 - 3x_5 + x_6 = 3$
$3x_1 - x_2 \le 18$	$x_3 - x_4 + 2x_5 - x_6 = -1$

Exercice 2 - Primal and dual solutions. (**)

Consider the following LP: $z = \max c^t x$ suject to

$$Ax \le b$$
$$x \ge 0$$

Let x^* , y^* and z^* be respectively optimal solutions of the primal, dual and the optimal value. Prove that

$$z^* = (y^*)^t A x^*$$

2 Discrete Mathematics

Exercise 3 - Vertex Cover (*)

A *vertex cover* of a graph *G* is a subset of vertices *X* such that every edge of *G* contains at least one vertex of *X*. We have seen during the first lecture a $\frac{1}{2}$ -approximation of the minimum vertex cover problem. Here is another (more complicated) proof of this result using Linear Programming.

- (a) Formulate the Minimun Vertex Cover (MVC) problem as an Integral LP.
- (b) Write down the (Integral) dual of the MVC problem. Which problem is it?
- (c) Using duality theorem, (re)show that there exists a 2-approximation algorithm of the MVC problem.

Exercise 4 - Another approximation algorithm (***)

We have seen during the first lecture a $\frac{1}{2}$ -approximation of the minimum vertex cover problem. Here is another (more complicated) proof of this result using Linear Programming. Let us denote by MVC* the corresponding LP in real numbers. Let x^* be an optimal solution of MVC* of value v^* . It can be interpreted as a weight function on the vertices (why?). A vertex is *saturated* for x^* if the sum of the weights incident to this vertex equal 1.

- (a) Prove that for every edge e = (u, v), u or v are saturated.
- (b) Prove that all the basic feasible solutions are such that all the variables have values in {0, ¹/₂, 1}.

(Show that you can algorithmically transform x^* into that solution).

(c) Deduce a 2-approximation algorithm for Vertex Cover.

Exercise 5 - Shortest Path (**)

The shortest s-t-path problem is defined as follows. Given a graph G = (V, E) with nonnegative edge lengths and two designated vertices, s and t, find the minimum length path from s to t.

- (a) Write an Integer Linear Program for the shortest s t-path problem.
- (b) Prove that the optimal solution of the fractional relaxation of the shortest path problem has the same value as the integral problem.