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TD7 - Duality of Linear Programming

Indication of hardness: from (*) to (****).

1 Totally unimodular matrices

Exercise 1 - Basic facts on total unimodularity (*)

(a) Show that the transpose of a totally unimodular matrix is totally unimodular.
(b) Show that if M is totally unimodular then

(
M I

)
is totally unimodular.

(c) Show that a submatrix of a totally unimodular matrix is unimodular.

Exercise 2 - Permutation matrix (*)
A 0− 1-quare matrix is a permutation matrix if exactly one coefficient on each row and
on each column equals 1 and all the other coefficients equal 0.
Show that a permutation matrix is totally unimodular.

Exercise 3 - Discrepency (***)
Let A be an integer matrix. The discrepancy of A is the minimum d for which there
exists a vector y with all its coefficients in {−1, 1} such that (1 denotes the vector of 1):

−d · 1 ≤ Ay ≤ d · 1

(a) Give an upper bound on the discrepancy of any matrix.
(b) Show that if a matrix M is totally unimodular, then its discrepancy is at most 1.
(c) Show that if all submatrices of M have discrepancy at most 1, then M is totally

unimodular.

Exercise 4 - Total unimodularity and integral solutions (**)

(a) Suppose A is totally unimodular matrix. Let b be any integer vector. Then every
basic feasible solution of P = {x : Ax ≤ b} has integer coefficients.

(b) Suppose A is totally unimodular matrix. Let b, c be two integer vectors. Then every
basic feasible solution of P = {x : Ax ≤ b, 0 ≤ x ≤ c} has integer coefficients.

Exercise 5 - Characterization of incidence matrices that are TU (*)

(a) Prove that the incidence matrix of an odd cycle is not TU.

(b) Dedude that a matrix with exactly two 1s on each row is TU iff there is a partition
I1, I2 of the columns such that each row has exactly one 1 on the set of columns of
I1 and exactly one 1 on the set of columns of I2.
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2 Max-Flow Min-Cut

Exercise 6 - MaxFlow-MinCut
We are given a directed graph D = (V,A), where V = {1, . . . , N, s, t} is the set of nodes
(or vertices but we will prefer node to avoid confusion) and A is the set of directed arcs
(an arc is an ordered pair of vertices). Let s, t be two special nodes where s is called the
source and the node t is called the sink of the graph. We assume that there are no arcs
going into the source s, and there are no arcs coming out of the sink t. For every arc
(i, j) (i.e. arc from i to j), we are given also a capacity cij ≥ 0. Suppose that we want
to send units of ‘flow’ (representing e.g. water or data packets) along the arcs (in the
direction of the arc) from node to node, injecting flow into the network at s (the source)
and taking flow out of the network at t (the sink). We assume that there is no leakage
in the system, so that the amount of flow that goes into an vertex equals the amount
of flow that goes out of it and. Also, the amount of flow on arc (i, j) can be at most its
capacity cij .

(a) Let xa be an variable for each arc a. Prove that the following LP characterizes max-
flow:

max
∑

a=(s,u)

xa

subject to
∑

v/uv∈A

x(uv) =
∑

v/vu∈A

x(vu) for all u ∈ V \ {s, t}

xa ≤ ca for all a ∈ A

xa ≥ 0 for all a ∈ A

(b) Prove that the constraint matrix of this LP is TU. Does it mean that it has integral
solutions?

(c) Prove that the following LP is the ILP of a minimum st-cut:

z∗ = min
∑
a∈A

caya

subject to yu − yv − ya ≤ 0 for every a = (u, v)

ys = 1

yt = 0

yu, yuv ∈ {0, 1}

(d) Prove that the dual of the Max-Flow LP is the fractional relaxation of the ILP min
st-cut.

(e) Conclude.
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Exercise 7 - Applications of Max-Flow Min-Cut theorem (*)
Let D = (V,A) be a (unweighted) directed graph. A in-neighbor (resp. out-neighbor) of
v is a vertex u such that uv is an arc (resp. vu is an arc).
(a) Show that if there is an ordering of V such that s is the first vertex, t is the last vertex

and every vertex v has an in-neighbor before it in the order and an out-neighbor
after it in the order then there is a path from s to t passing through v.

(b) Let s, s′, t, t′ be four vertices of D. We want to count the flow from {s, s′} to {t, t′}
(i.e. the number of paths starting in {s, s′} and ending in {t, t′}). Free to transform
D can you express this problem with a MaxFlow problem?

(c) A directed circuit is a path which starts and ends at the same point. Two circuits
are arc-disjoint if no arc of one is included in the other. Let v ∈ V (D). Free to
introduce a new graph D′ can you show that the number of arc-disjoint directed
circuit containing v can be expressed as max-flow problem in D′.

3 Other applications of TU matrices

Exercise 8 - Transportation problem
Consider the following transportation problem: F is a set of warehouses that are owned
by our company, G is a set of different goods and C is a set of clients (all sets are
finite). Let sij ≥ 0 be the amount of good i ∈ G, that is available in warehouse j ∈ F .
Furthermore dik ≥ 0 denotes the amount of good i ∈ G, that client k ∈ C requests. It
costs cijk ≥ 0 to transport one unit of good i ∈ G from warehouse j to customer k ∈ C.

All quantities are integer. (We assume that the costs grow linear with the amount
and goods are splittable in integer quantities).

(a) Formulate an integer program that determines the cheapest way to transport the
goods to the clients such that: The demand of each client is satisfied and the sup-
plies of the warehouses are not exceeded.

(b) What can you say about the constraint matrix?

(c) Conclude.
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