We consider the product of the polynomials

\[F = f_0 + f_1 X + \cdots + f_{n-1} X^{n-1}, \]
\[G = g_0 + g_1 X + \cdots + g_{n-1} X^{n-1}, \]

where \(n \geq 1 \). When the polynomials have different degrees, we should add zeros to the polynomial of lowest degree. The degree is \(n - 1 \), but the number of coefficients for each polynomial is \(n \).

Notations:

\[\deg(F) = \deg(G) = n - 1, \quad \text{len}(F) = \text{len}(G) = n, \]

will be used hereafter.

The computation of the product \(FG \), which has the properties

\[\deg(FG) = 2(n - 1), \quad \text{len}(FG) = 2n - 1, \]

(I feel lost when there is no text after equations!)
Let’s now cut F and G in two at $k = \lceil n/2 \rceil$

\[F = F_0 + F_1 X^k, \quad G = G_0 + G_1 X^k, \]

and we have

\[\deg(F_0) = \deg(G_0) = k - 1, \quad \deg(F_1) = \deg(G_1) = n - k - 1, \]
\[\text{len}(F_0) = \text{len}(G_0) = k, \quad \text{len}(F_1) = \text{len}(G_1) = n - k. \]

This decomposition is unique.

By adding zeros again, we can assume that n is even. Then we have

\[\text{len}(F_1) = \text{len}(F_0), \quad \text{len}(G_1) = \text{len}(G_0). \]

(How about you?)
By this decomposition, the product writes

\[FG = F_0 G_0 + (F_0 G_1 + F_1 G_0) X^k + F_1 G_1 X^{2k} \]
\[= H_0 + H_1 X^k + H_2 X^{2k}, \] \hfill (1)

and the middle term can be written

\[H_1 = (F_0 G_1 + F_1 G_0) = (F_0 + F_1)(G_0 + G_1) - F_0 G_0 - F_1 G_1, \]

which trades operations \((1 +, 2 \times)\) for \((4 +, 1 \times)\). The sizes are

\[\text{deg}(H_0) = \text{deg}(H_1) = \text{deg}(H_2) = 2(k-1), \]
\[\text{len}(H_0) = \text{len}(H_1) = \text{len}(H_2) = 2k - 1. \]

Remark: in Eq. (1), the high-order terms of \(H_0\) spread over the low-order terms of \(H_1\), and the high-order terms of \(H_1\) spread over the low-order terms of \(H_2\).
To define our recursive algorithm, we also need that sizes of the polynomials F_0, F_1, G_0, and G_1, i.e. k to be even. This leads to n being a power of two.

To design our algorithm, we consider three arrays named p, q, and r. Their sizes are $4k$, $4k$, and $8k$, respectively. The diagram below illustrates the initial memory state.

Each box represents a subarray of size k. The initial polynomials have been placed at the right half of p and q, and hatched boxes represent free boxes. The product will be placed on the left half of r.
In the special case where $k = 1$, we compute the result directly:

\[
\begin{align*}
 r[0] &= p[2] \times q[2]; \\
\end{align*}
\]

Otherwise, follows these steps.
1. Apply algorithm to the following sub arrays

\[
\begin{array}{c}
p: \\
\text{F}_0 \quad \text{F}_1 \\
q: \\
\text{G}_0 \quad \text{G}_1 \\
r: \\
\text{F}_0 \text{G}_0 \\
\end{array}
\]

which places \(\text{F}_0 \text{G}_0 \) in the \(r \) array. Note that we need some free space to perform the sub computation (hatched in red).

2. Copy \(\text{F}_0 \) and \(\text{G}_0 \)

\[
\begin{array}{c}
p: \\
\text{F}_0 \quad \text{F}_0 \quad \text{F}_1 \\
q: \\
\text{G}_0 \quad \text{G}_0 \quad \text{G}_1 \\
\end{array}
\]
3. Apply algorithm to the following sub arrays

- **p:**

 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|

- **q:**

 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|

- **r:**

 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|

which places \(F_1G_1 \) in the \(r \) array and erase original \(F_0 \) and \(G_0 \) data.

4. Add \(F_1 \) to \(F_0 \) and \(G_1 \) to \(G_0 \)

- **p:**

 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|

- **q:**

 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|
 | _ | _ | _ |
 |____|____|____|

\(\text{add} \)
5. Apply algorithm to the following sub arrays

\[p: \begin{array}{c|c}
F_0 + F_1 & F_1 \\
\end{array} \]

\[q: \begin{array}{c|c}
G_0 + G_1 & G_1 \\
\end{array} \]

\[r: \begin{array}{c|c|c}
F_0G_0 & F_1G_1 & (F_0 + F_1)(G_0 + G_1) \\
\end{array} \]

which places \((F_0 + F_1)(G_0 + G_1)\) in the \(r\) array.

6. Subtract \(F_0G_0\) and \(F_1G_1\) to the new term to obtain \(H_1\)
7. Finally add H_1 at the middle of (H_0, H_2).

The result is hold in the four boxes in the left half of r.