
Cryptographic Program Watermarking

Julien Braine
2015 internship with Ron Steinfeld

June 1, 2015 - August 21, 2015

Abstract

Authorship protection, for images or programs for example, is becoming more and
more necessary in the digital world we live in. Providing authorship protection consists
in hiding a mark in the product that should be hard to remove and yet sufficient to
prove authorship.

In practice, the methods to watermark programs use non-cryptographic heuristics to
change the implementation [IN10]. However, the work of Barak et al. [BGI+01] showed
that assuming a cryptographic technique called indistinguishability obfuscation, such
methods are insecure.

Recently, with a proposed construction for indistinguishability obfuscation [GGH+13],
cryptographic approaches that slightly alter program functionality have been studied to
watermark programs [CHV15, NW15]. With this technique, we can watermark a set of
cryptographic functions called puncturable pseudo random functions [CHV15, NW15].

In this internship report, I show that we can only watermark cryptographic func-
tions. Intuitively, this is because non cryptographic functions follow patterns that allow
slight program functionality changes to be detected and removed. This result questions
the usefulness of watermarking as non cryptographic functions can not be watermarked
and we have not yet found an application for cryptographic function watermarking that
can not be done at least as efficiently by other means.

1

Contents
1 Introduction 3

2 Preliminaries 4
2.1 Notations . 4
2.2 Definition of IO [BGI+01] . 5
2.3 Definition of watermarking [CHV15, NW15] 6
2.4 Definition of PPRF [BW13] . 6

3 Existing watermarking constructions 7
3.1 Basic construction [CHV15, NW15] . 7
3.2 Attacks . 8

3.2.1 The distribution attack . 8
3.2.2 The property attack . 9

3.3 Unremovability for PPRF [CHV15, NW15] 9
3.4 Additional goals . 10

3.4.1 Message embedding [NW15] . 10
3.4.2 Protection against chosen watermark attacks [CHV15, NW15] 11
3.4.3 Protection against partial functionality change [NW15] 11
3.4.4 Public verification [CHV15, NW15] 12
3.4.5 Collusion resistance . 12

4 Limits of watermarking 13
4.1 Application . 13
4.2 Watermarkable sets . 13
4.3 Definition of cryptographic functions . 14
4.4 Impossibility proof for non cryptographic functions 14

4.4.1 Learner to remover . 14
4.4.2 From non-cryptographic functions to learning 15

5 Conclusion and Perspectives 19

2

1 Introduction
The digital world around us has made copying, modifying and distributing content very

easy. Under such circumstances, authorship protection is necessary as a potential thief can
just copy the author’s content and redistribute it as theirs. For most content such as
software, images, music and films, authorship protection consists in hiding a mark in the
product that should be hard to remove and yet sufficient to prove authorship.

Company C
Software S

Bob AliceJon
Software S

Figure 1: Goal of Watermarking

To illustrate what we want to achieve, imagine the scenario in figure 1. A company C
sells a software S to Bob and Alice. One day C suspects Jon, who has never bought S from
C to have a copy of S. The goal of authorship protection is to prove that Jon indeed has a
copy of S and that he did not make that software himself. Additionally, C might want to
know who of Bob and Alice gave S to Jon.

There are three basic requirements for watermarking. The first is that a marked object
should be similar to the initial object. The second is that there should be no way of
removing the mark without destroying the initial object. The last is that the presence of
a mark must be deliberate so that its presence can prove ownership.

3

Figure 2: Image watermarking example [PMA11]

Work on watermarking products such as software, images, films and music for example
is very common [PMA11, IN10], but usually use heuristics and do not have a security
framework to work in. Furthermore, in 2001, Barak et al. [BGI+01] proposed a definition
of program obfuscation called indistinguishability obfuscation (IO) that would provide a
general attack on such methods for program watermarking by removing implementation
details, while suggesting a cryptographic approach to watermarking. The recent discovery
of a potential construction for IO [GGH+13] has lead to very recent work on cryptographic
program watermarking [CHV15, NW15] which has given a construction to watermark a
set of cryptographic functions called punctured pseudo random functions (PPRF), in a
cryptographic security framework.

However, although watermarking cryptographic functions has applications and might
lead to ideas for general program watermarking, it does not fulfill the original objective to
protect software authorship as a software’s primary function is rarely cryptographic. In this
internship report, I studied the current methods for cryptographic program watermarking
on cryptographic functions and its applications, and then focused on extending the scheme
to non cryptographic functions.

2 Preliminaries

2.1 Notations

Program notations: We will call a program both Turing machines and circuits. To say
that a program P has access to an oracle P ′, we will write PP ′ . In this report, A is always

4

probabilistic polynomial time Turing machine that acts as an adversary (or distinguisher)
and C will always be a circuit. We will call I = {0, 1}i the input set of C and for simplicity,
we will assume that the output set O is always {0, 1} (but all results work for any output
set). We will write C 'ε C ′ if circuits C and C ′ differ on less than ε(i) fraction of inputs
and C ≡ C ′ if C and C ′ agree on all inputs. Unlike in complexity theory, the execution
time of an algorithm will not be compared with the length of its input, it will always be
compared to λ, the security parameter. Furthermore, we will be assuming that all circuits
discussed in this article have polynomial size with respect to λ and that i, the size of the
input is of the same order than λ.
Function and distribution notations: A function f : λ → f(λ) ∈ [0, 1] is negligible
if and only if ∃α > 0, ∃N, ∀λ > N, f(λ) ≤ 2−αλ. We will write f(λ) 'λ 0 to say that
f : λ→ f(λ) is negligible. We will write f(λ) 'λ 1 to say that 1−f(λ) 'λ 0. We will write
f(λ) >λ 0 if ∃p polynomial such that f(λ) > 1

p(λ) and f(λ) <λ 1 if 1−f(λ) > 0. We say that
two distributions D1 and D2 are indistinguishable if ∀A, |Pr(A(D1) = 1) − Pr(A(D2) =
1) 'λ 0. We will call U(S) the uniform distribution for set S.
General notations: For two strings s and s′, s||s′ means the concatenation of s and s′.

2.2 Definition of IO [BGI+01]

A polynomial time Turing machine (PPT) iO is an indistinguishability obfuscator for
a set C if and only if

1. iO keeps for functionality: ∀C ∈ C, iO(C) ≡ C.

2. iO hides the implementation: ∀C ∈ C, C ′ ∈ C, (|C| = |C ′| and C ≡ C ′) ⇒ iO(C)
and iO(C ′) indistinguishable

Consequence: Intuitively, this means that iO hides implementation details as once iO is
applied, we can not distinguish two different implementations of the same function. One
way of seeing obfuscated programs, although not entirely correct, is as a mathematical
function. This means we can almost see a program as the string of its concatenated
outputs and thus creates a strong link with image watermarking.
Construction: A way to create an inefficient indistinguishability obfuscator is to enu-
merate all circuits and take the first circuit with same functionality. A complex efficient
candidate construction using puzzles was proposed [GGH+13], but this will not be the
focus of this report.
Remark: We will not be checking the sizes of circuits before applying iO as we can always
use padding to satisfy this constraint. Also, we will be assuming that the set C on which
iO works always contains all our circuits.

5

2.3 Definition of watermarking [CHV15, NW15]

A watermarking scheme W = (Setup,Mark, V erify), where Setup initializes the
scheme, Mark watermarks a circuit and V erify checks if a circuit is marked, for a class
C is ε-secure if and only if :

1. Functionality preserving: Pr(Mark(C, k) ''0 C|k = Setup(), C ←↩ U(C)) 'λ 1.
This guarantees that the marked program only slightly (negligibly compared to the
number of inputs) alters functionality.

2. Correctness: Pr(V erify(Mark(C, k), k) = 1|k = Setup(), C ←↩ U(C)) 'λ 1.
This guarantees that Mark returns a marked program.

3. Unremovability: ∀A,Pr(A(C ′) 'ε C and V erify(A(C ′), k) = 0|C ′ = Mark(C, k), k =
Setup(), C ←↩ U(C)) 'λ 0.
This guarantees that removing the mark implies changing more than ε portion of the
inputs of the original circuit, thus not preserving the functionality.

4. Meaningfulness: ∀A,Pr(V erify(C, k) = 1|C ←↩ U(Circuits), k = Setup()) 'λ 0.
This guarantees that the mark is deliberate: only a negligible number of circuits are
marked.

Remark: We are forced to give a set C for the watermarking scheme as we can not say the
unremovability property is true for all C : we would have a trivial adversary, the one that
outputs the constant circuit C. This makes the definition behave strangely in some cases,
but I have not found a better one, even after reading papers about formalizing human
ignorance [Rog06]. Furthermore, as properties are satisfied for a uniform C ∈ C, one can
see C as the set in which we want to hide the circuits we watermark and λ = log(|C|) is
the security parameter.

2.4 Definition of PPRF [BW13]

A set C = {Ck} is a punctured pseudo random function set if and only if

1. C is a pseudo random function :
∀A, |Pr(ACk() = 1|Ck ←↩ U(C))− Pr(AC() = 1|C ←↩ U(OI))| ' 0.

2. C is puncturable : ∃Punc such that ,∀x∗

(a) ∀x 6= x∗, P r(Punc(x∗, k)(x) = Ck(x)|Ck ←↩ U(C)) = 1
This means that Punc(x∗, k) allows us to evaluate Ck on all input but x∗.

6

(b) ∀A, |Pr(A(Punc(x∗, k), Ck(x∗)) = 1|Ck ←↩ U(C))−Pr(A(Punc(x∗, k), U(O)) =
1|Ck ←↩ U(C))| ' 0
This means that Punc(x∗, k)(x∗) appears random.

Remark: The puncturing property allows us to say that C(x∗) is completely independent
from all other values C(x). That it to say that there is no specific properties that link the
output values of circuits in C.
Construction: The only known construction is to use the Goldreich-Goldwasser-Micali
construction [GGM86] which works as follows. Take a pseudo random generator f (PRG)
that takes a uniform random string and outputs a string indistinguishable from uniform
with twice the length of the input string. For each k in O, let Ck be the circuit that
creates recursively a random string of size |I||k| (by applying log(|I|) times f) and cuts
that uniform string into |I| parts and gives each part to one input. Let us show that
C = {Ck} is a PPRF set.

k

k0 k1

Ck(00) = k00 Ck(01) = k01 x∗ = Ck(10) = k10 Ck(11) = k11

k0k1 = f(k)

k00k01 = f(k0) k10k11 = f(k1)

Figure 3: PPRF construction

• C is a PRF as f creates strings indistinguishable from uniform and therefore the
first part and the second part of the generated string are each time independent and
uniform.

• C is a puncturable : imagine we are puncturing at x∗. Then Punc(x∗, k) is the
program that uses k0 and k11 instead of k in the example in figure 2.4, thus being
able to evaluate any input but x∗, as k0 allows to evaluate k00 and k01 and k11 allows
to evaluate k11. However, nothing allows to evaluate k10 given only k0 and k11.

3 Existing watermarking constructions

3.1 Basic construction [CHV15, NW15]

The idea is to have a special input x∗ that when queried returns a special output y∗
indicating that the program is marked. The goal would be that the adversary can not find
that special input and thus can not remove the mark. By applying iO, we can hope that

7

an adversary can not look at the implementation of the program and see x∗ in the code.
Therefore, let us consider the following construction, for some distributions D and D′.

Setup ()
x∗ ←↩ D(I)
y∗ ←↩ D′(O)

Mark(C) = return iO (
function :
x∗ → y∗

x → C(x) when x 6= x∗

) ;

Ver i fy (C) = return C(x∗)==y∗

It is easy to check that this construction has the functionality and correctness properties.
However, we do not have meaningfulness as on average, half the circuits will be considered
marked (O = {0, 1}), but this can be addressed by modifying several inputs and have the
set of modified inputs match a pattern. Therefore, achieving meaningfulness is not an issue
and for simplicity, we will be changing only one input for the moment. We must now check
that our scheme has unremovability. But first, I have created a couple of attacks possible
on this scheme, to give better intuition.

3.2 Attacks

3.2.1 The distribution attack

The simplest attack might be to change any point that has a high chance of being an
x∗. Another is detecting something abnormal in the output, thus guessing that output to
be y∗. This leads to the following remover.
UnMark(C) =
function :

x → ⊥ when D(x) big
| x → ⊥ when D′(C(x)) 6= U(C(x))
| x −> C(x) otherwise
) ;

Avoiding attacks on x∗ directly seems pretty straightforward : we can just pick x∗

uniformly from I. Avoiding attacks that detect abnormal output is already harder because
we would need to pick y∗ uniformly from C(x∗). But being able to pick uniformly from
C(x∗) still seems a reasonable assumption.

8

3.2.2 The property attack

However, usually, the sets of circuits we try to watermark C is not completely random
and has some properties. As a simple example, we might have ∀C ∈ C, ∀x, IsEven(x) ⇒
C(x) = C(x+ 1). We would then have the following remover.
UnMark(C) =
function :
x→ ⊥ when IsEven (x) and C(x+ 1) 6= C(x)

| x→ ⊥ when IsOdd (x) and C(x) 6= C(x− 1)
| x→ C(x) otherwise
) ;

A more complex property attack could be if you knew C ∈ C solves a problem in NP.
One could just check if C(x) solves the problem. If it does, it probably is not modified. If
it does not, it must be y∗. This kind of attack seems very hard to avoid as most software
solve a specific problem and therefore have properties related to the problem... However,
it has been proven that this scheme is unremovable for PPRFs [CHV15, NW15], because
their puncturability implies the absence of specific properties.

3.3 Unremovability for PPRF [CHV15, NW15]

Theorem: Let C be a PPRF set. The scheme described in 3.1 is ε-unremovable with
ε ' 0 and D and D′ being the uniform distributions [NW15].
Proof: Let C be a PPRF and the distributions D and D′ used in setup are respectively
U(I) and U(O) = U(C(x∗)). Let us show that our basic scheme is secure. We will prove
this by contradiction and assume we have a remover R. Here are the steps of the proof.

1. FromR, create a distinguisher for the distributions (Mark(C, x∗, y∗), x∗) and (Mark(C, x∗, y∗), U(O))
The intuition is that we can deduce x∗ by looking where R changes the output values.

2. From a distinguisher for (Mark(C, x∗, y∗), x∗) and (Mark(C, x∗, y∗), U(O)), create a
distinguisher for the distributions (Mark(1)(C, x∗, y∗), x∗) and (Mark(1)(C, x∗, y∗), U(O)),
with Mark(1) defined by :
Mark(1) (C) = return iO (
function :
x∗ → y∗

x → P uncx∗(C)(x) when x 6= x∗

) ;

The intuition is thatMark(1) andMark have the same functionality and are therefore
indistinguishable thanks to IO. We then just need to use triangular inequality to get
the result.

9

3. From a distinguisher for (Mark(1)(C, x∗, y∗), x∗) and (Mark(1)(C, x∗, y∗), U(O)), cre-
ate a distinguisher for the distributions (Mark(2)(C, x∗, y∗), x∗) and (Mark(2)(C, x∗, y∗), U(O)),
with Mark(2) defined by :

Mark(2) (C) = return iO (
function :
x∗ → C(x∗)
x→ Puncx∗(C)(x) when x 6= x∗

) ;

The intuition is that if Mark(2)(C, x∗, y∗) and Mark(1)(C, x∗, y∗) were distinguish-
able, one could create a PPRF adversary : when given y from U(C)(x∗) or U(O), one
could tell from which distribution it came by creatingMark(1)(C, x∗, y) and applying
the distinguisher on it.

4. From a distinguisher for (Mark(2)(C, x∗, y∗), x∗) and (Mark(2)(C, x∗, y∗), U(O)), cre-
ate a distinguisher for the distributions (Mark(3)(C, x∗, y∗), x∗) and (Mark(3)(C, x∗, y∗), U(O)),
with Mark(3) defined by :

Mark(3) (C) = return iO (C) ;

Again, Mark(2) and Mark(3) have the same functionality and are therefore indistin-
guishable thanks to IO

5. Show that a distinguisher for the distributions (Mark(3)(C, x∗, y∗), x∗) and (Mark(3)(C, x∗, y∗), U(O))
is absurd.
The intuition is that Mark(3)(C, x∗, y∗) does not depend on x∗, therefore distin-
guishing (Mark(3)(C, x∗, y∗), x∗) and (Mark(3)(C, x∗, y∗), U(O)) is equivalent to dis-
tinguishing x∗ from U(I) which is absurd as x∗ ←↩ U(I).

3.4 Additional goals

We now have a basic watermarking scheme for PPRFs, but we might want to add
additional security to it, or add properties such as finding the person who leaked the
program. From now on, x∗ will be a general notation for a special input where the value
is altered or suspected to be altered.

3.4.1 Message embedding [NW15]

The idea is to allow more than just the binary values "the program is marked" or "the
program is unmarked", and add information to the mark. Information could be to whom
the program was given for example, that would allow to trace the content as explained

10

in figure 1. In our definition, we now replace V erify by Extract that must return the
message with which the program was marked or ⊥ when the program is unmarked.

First, let us assume we want to add a message m of length n. The idea is to change y∗
to y∗⊕m. y∗⊕m still has same distribution as y∗, so this would not alter unremovability.
Extract now returns C(x∗) ⊕ y∗. As y∗ might only be one bit if O = {0, 1}, we need to
use several x∗ and y∗ and have m written over the set of the queried x∗. This only alters
functionality at a negligible number of points as |m| is assumed polynomial in λ.

The only problem with this construction is that we break meaningfulness as all programs
are marked. To avoid this problem, we can add a string of zeros at the beginning of m.
This way, we know that if the message extracted does not start by this string of zeros, then
the program is not watermarked.

3.4.2 Protection against chosen watermark attacks [CHV15, NW15]

We now assume that the adversary has Mark(P) and P for some program P (for
example one your old employees now works for a rival company). He is now presented C ′
and wishes to unmark it. To do so, he could use the following remover.

UnMark(C) =
function :
x→ ⊥ when P (x) 6= Mark(P)(x)

| x→ C(x) otherwise
) ;

To avoid this attack from working, the idea is to make x∗ depend on C. For example,
now instead of changing the value of C at point x∗, we change it at C(x∗) (we might
cut or use several x∗ to have the same length as the input). V erify will now check that
C(C(x∗)) = y∗. Of course, we might have an issue if C(x∗) is also changed, but this
happens with negligible probability.

3.4.3 Protection against partial functionality change [NW15]

We now assume that the adversary does not mind having the program not work on
some big portion of inputs. Let us construct an ε-unremovable scheme, for ε < 1 from our
' 0-unremovable scheme. The attack we need to avoid is the adversary changing randomly
half the inputs for example and thus removing the mark with probability 1

2 . The idea to
avoid such an attack and make our scheme ε < 1-unremovable, is to use n marks and
requiring only one of the marks to be in the circuit for the circuit to be considered marked.
Of course, n is a polynomial number in λ to keep functionality. The adversary’s probability
of removing will then become 1

2n which is negligible.

11

3.4.4 Public verification [CHV15, NW15]

Assume I am sold a program by a company C and I know another company has a very
similar program. I would like to check that C is indeed the owner of the program they
are selling me. To do so, we would need a scheme with public V erify, that is to say that
everyone has access to the V erify function instead of just the selling company. However,
an adversary can then run V erify, see where it queries C and deduce where x∗ is.

To avoid this, we change the functionality on an exponential number of x∗ and at each
call to V erify, we only query a subset of the x∗ chosen at random. This way, if the
adversary wants to remove the mark, he must change a non negligible portion of the x∗
which will be of exponential size. However, the adversary must run in polynomial time,
so he can not change that many values without having a short description of those values,
and the scheme stays secure.

More precisely, we duplicate information on all inputs of the form PRF (r)||r for some
PRF kept secret. Notice that this is still a negligible portion of the inputs, so we keep
functionality. V erify now chooses an r at random and queries at PRF (r)||r. Of course,
V erify will use IO, otherwise, the adversary could find the PRF used and remove all
inputs of the form PRF (r)||r.

Remark: A full construction with message embedding, chosen watermark attacks, pro-
tection against partial functionality change and public verification is available in [NW15]

3.4.5 Collusion resistance

Let us go back to figure 1 with Bob and Alice having a marked program and wanting
to give an unmarked program to Jon. In our construction, we only assumed that Bob
or Alice would try to give an unmarked program to Jon alone. But what if they were
to collude and together tried to construct an unmarked program for Jon. We say that a
watermarking scheme is collusion resistant if any set of users given a marked program can
not create together an unmarked program. Although collusion resistance does not seem to
have been studied in the previous articles, I believe collusion resistance to be one of the
most important additional goals.

In the case where we do not use messages, there is no problem as both Bob and Alice
have the same marked program, therefore they do not learn anything more from being
together.

However, in the case of message embedding, Bob and Alice might analyze their differ-
ences to find and, change or remove, the message. This might not enable them to remove
the mark as both Bob’s and Alice’s messages start with a string of zeros indicating that the
program is marked and therefore there are no differences in the beginning of the message
making the beginning unremovable. However, they might be able to remove the message
content or even frame someone else, so that they are not accused of giving the program to
Jon.

12

First, we can prove that Bob and Alice can only find x∗ where they do not have the
same C(x∗). Intuitively, this is because only the differences Bob and Alice have can help
them find the x∗. Now let us assume we have n users that have legal copies of the program
(each marked with a user id).

Now let us say n− 1 users collude to try and frame the last user, that is to say give to
Jon a program marked with the last user’s id. To prevent that, we need to have at least an
x∗ where all the n− 1 users have the same values and the last one a different, so that they
can not change the value specific to the last user. We must have that for each group of
n−1 users, so the message length is at least in the number of users. It is easy to show that
if the message for each user is of length n and has a 1 in position user id and 0 everywhere
else, stops anyone from framing anyone else [BS96]. However, they can still remove the
user id by erasing all the 1s.

What would be great is to be able to find for sure at least one of the colluders. This
has been achieved in O(n4) [BS96] and we know that all algorithms are Ω(n2) [BS96].

4 Limits of watermarking

4.1 Application

We have found only one application to PPRF watermarking: traitor tracing. Imagine a
TV company broadcasting an encrypted TV show as in figure 4.1. Each subscriber receives
a PPRF to decrypt the signal marked with the id of the subscriber. Now, if Jon wishes to
decrypt that signal, he will receive a program marked with the id of the person who gave
it to him, allowing to find the "traitor" who gave the program to Jon.

Company
Broadcast signal

Bob AliceJon
read signal

Figure 4: Traitor Tracing Illustration

However, collusion resistance has strong complexity with our scheme and another
scheme which has Poly(log(n), λ) message length has been found using IO [BZ14]. This
encourages us to try and watermark more than PPRFs.

4.2 Watermarkable sets

Given the different attacks I found, the limitation to PPRFs seems unjustified when
all we needed is resistance to property attacks and a uniform picking in C(x∗). Property

13

attacks convinced us of the need for puncturability, this is all the more the case that not all
PRFs are watermarkable [CHV15]. However, there is no reason why puncturability should
always be on random functions. We now change the definition of puncturable in 2.4 so that
instead of Punc(x∗, C)(x∗) being indistinguishable from U(O), it is now indistinguishable
from U(C(x∗)).

We can now prove that any puncturable (in the new sense) set is watermarkable. The
proof is exactly the same and only the question of existence and utility of puncturable non
PPRF functions remains. Existence is easy to prove as the following set is puncturable
and is not a PPRF.

Let {fk} and {gk} be a PPRF. Let C = {Ck, Ck(x) = fk(x)||1} is watermarkable.
However, we have found no use for such sets as they seem very tied to cryptography and
do not offer much more than PPRFs. Considering the property attack, this gave me the
intuition that we can not watermark sets of programs that are not cryptographic functions.

4.3 Definition of cryptographic functions

All cryptography is based on the existence of one way functions. A one way function
is a function for which it is easy to compute f(x), but given f(x), it is hard to find an
element in the pre-image. The idea for defining non-cryptographic functions is to have a
particular function that is not one way.

Let n be of polynomial size. Let f : (S = {x1, ..., xn}, C)→ ((C(x1), ..., C(xn)), x1, ..., xn).
C is non-cryptographic if and only if ∃A,∀S ⊂ I, |S| = n,∀C ∈ C, P r(f(A(f(S,C))) =
f(S,C)) > 0

4.4 Impossibility proof for non cryptographic functions

Theorem: If C is a non cryptographic set, there exists no ε-secure watermarking scheme
for ε > 0.
Proof: Let C be a non-cryptographic set, S ⊂ I, |S| = n, F−1(C(S), S) be the pre-image
set of (C(S), S) by f and f−1 : (C(S), S) → (S,C) one of the functions that calculate an
element in the pre-image of f .

The idea behind the proof is to create from f−1 a program called a learner that with
oracle access to a circuit in C can recover the original circuit. This allows us to remove the
mark as we get access to the original circuit.

Formally, we say L is a learner if and only if Pr(LC() ' C|C ←↩ U(C)) > 0. Let us
first prove that when we have a learner, we have a remover, under the assumption that the
learner has high entropy on the variables it queries.

4.4.1 Learner to remover

If the learner never queries at x∗, then the learner will find the original circuit which is
unmarked. Therefore we would have a remover. However, if the learner queries the oracle

14

at x∗, it might not learn the original circuit as the value has been modified and having a
remover seems hard. Let us consider a few different cases :

1. The distribution of the x∗ has very high entropy, that is to say close to uniform. The
number of x∗ is negligible compared to the number of inputs, therefore the probability
that the learner queries at one of the x∗ is negligible and we have a remover.

2. The distribution of the x∗ has very low entropy: x∗ is conveniently chosen exactly
where the learner queries. We just change those positions and remove the mark,
there is no need to use the learner.

3. One of the x∗ has high entropy and another x∗ is at a position the learner queries.
We do not have a solution in the current context, the only viable option is to assume
that the points the learner queries have high entropy, thus putting us back to the
first setting.

Let Q(C) be the random variable describing the set of queries LC() makes and X∗ the
random variable describing the set of inputs changed by Mark
Assumptions: Q(Mark(U(C))) is a polynomial size uniform set and V erify(C) can be
defined as V erifyC().
Lemma: Pr(LC′() ' C|C ′ = Mark(C), C ←↩ C) > 0.
Proof: Pr(LC′() ' C|C ′ = Mark(C), C ←↩ C)
≥ Pr(LC′() ' C and Q(C ′) ∩X∗ = ∅|C ′ = Mark(C), C ←↩ C)
≥ Pr(LC() ' C|C ←↩ C)Pr(Q(C ′) ∩X∗ = ∅|C ′ = Mark(C), C ←↩ C)
≥ Pr(LC() ' C|C ←↩ C)(1− poly(λ)Pr(X ∈ X∗|X ∈ Q(C ′), C ′ = Mark(C), C ←↩ C))
≥ Pr(LC() ' C|C ←↩ C)(1− poly(λ)Pr(X ∈ X∗) as Q(C ′) is uniform
≥ Pr(LC() ' C|C ←↩ C)︸ ︷︷ ︸

>0

(1− poly(λ) Pr(X ∈ X∗)︸ ︷︷ ︸
'0: Mark keeps functionality︸ ︷︷ ︸

'0

)

︸ ︷︷ ︸
'1︸ ︷︷ ︸

>0

The idea behind the proof is that when picking |Q(Mark(U(C)))| random elements in
I, we have very low probability for even one of them landing in X∗ as |X∗| is negligible
because of functionality preservation. The proof can probably be extended to distributions
close to uniform instead of exactly uniform, but that result will not be necessary to get the
impossibility result.

4.4.2 From non-cryptographic functions to learning

The basic idea

15

The idea is to query (x1, ..., xn) in the circuit and return f−1((C(x1), ..., C(xn)), x1, ...xn).
The hope is that F−1((C(x1), ..., C(xn)), x1, ...xn) has only one element, the circuit C. We
will be assuming that O = {0, 1} for simplicity.

C
{C|C(x1) = 0}

{C|C(x1) = 1}

{C|C(x2) = 0}{C|C(x2) = 1}

The idea is to query x1. The result divides the initial space into two parts : F−1(0, x1) =
{C|C(x1) = 0} and F−1(1, x1) = {C|C(x1) = 1}. Then we keep on querying on x2, ..., xn,
splitting the space into 2n parts. The hope is that for n polynomial, those parts become
of size 1 so that we get the original circuit. To simplify notations, we write Cx1=y1,...xn=yn
instead of F−1((y1, ...yn), x1, ...xn) and f−1(Cx1=y1,...xn=yn) is an element in Cx1=y1,...xn=yn .
The learning algorithm would then look like this.

C, x1

Cx1=0, x20 Cx1=1, x21

f−1(Cx1=0,x20 =0,...) f−1(Cx1=0,x20 =1,...) f−1(Cx1=1,x21 =1,...)f−1(Cx1=1,x21 =0,...)

The first question, is how should we chose the xi. If we could, we would like to choose
the next query x so that it splits the set at the current node into to sets of identical size,
so that whatever the outcome, the size of the set at the next node is divided by 2. If that
was possible, we would be making exactly λ queries as |C| = 2λ, but we can not make
that assumption. Instead, let us assume for the moment that we have an oracle Best that
returns the best query x to make at the current node, that is to say that Best(Cset) is the
query that splits our current set Cset into two sets with as similar a size as possible.

We still seem to run into problems: assume C = {Cα, α ∈ I} with Cα the circuit that
returns 1 on input α and 0 otherwise. Even with an oracle such as Best there is a path of
exponential length in the tree, therefore our algorithm will not run in polynomial time on
some inputs... This seems to completely destroy our attempt to learn using f−1.

However, all circuits in C are similar, therefore, returning any of the circuits in C works.
A generalization of this idea is possible as if all x do not split the current set into similar
sizes, than that means that all circuits are similar.

16

Let us assume for a moment that we also have an oracle returning the size of F−1(C(S), S)
for any S and C. We could then imagine the following algorithm for some predefined
p < 0.5.

LC () =
Cset = C
x = Best(Cset)
while (|Csetx=0| > p|Cset| and |Csetx=1| > p|Cset|)
Cset = |Csetx=C(x)
x = Best(Cset)

return f−1(Cset)

Lemma: The runtime of such an algorithm is O(λp).
Proof: The set at the current node always decreases by at least a factor 1−p at each step.
Therefore, after n steps, the current set has at most size 2λ

(1−p)n and the algorithm stops at
worst when the current set has size 1. But, 2λ(1− p)n = 1⇒ n = − λ

log(1−p) = O(λp)

Assumption: Assume f−1(Cset) returns a uniform element in Cset.
Lemma: This program is a learner: Pr(LC() 'ε C) ≥ (1− 2pε)2

Proof: As long as we are not reaching a leaf of the tree, we do not lose any information,
therefore, we keep correctness. Formally, assume by induction that our theorem is valid
for the sets at nodes beneath the current one, we than have:
Pr(LC() 'ε C|we are currently at node Cset)
= Pr(C(x) = 0)Pr(LC() 'ε C|C(x) = 0,we are currently at node Cset) + Pr(C(x) =
1)Pr(LC() 'ε C|C(x) = 1,we are currently at node Cset) ≥ (Pr(C(x) = 0) + Pr(C(x) =
1))(1− 2pε)2 = (1− 2pε)2.

We now need to prove that our program learns correctly a the leaves. Assume we
reach a leaf. That means that ∀x, |Csetx=0| < p|Cset| or |Csetx=1| < p|Cset|. Intuitively,
this means most circuits agree with Perfect(x) = (|Csetx=0| < |Csetx=1|) and returning
Perfect would work. However, we can not return Perfect as Perfect might not be of
polynomial size. Therefore, we also need to show that the random circuit returned is sim-
ilar to Perfect.

Pr(f−1(Cset) 'ε C|We are at leaf Cset) ≥ 1
|Cset|

∑
C∈Cset

Pr(f−1(Cset) 'ε C)

≥ 1
|Cset|

∑
C∈Cset

Pr(f−1(Cset) 'ε/2 Perfect and Perfect 'ε/2 C)

≥ Pr(f−1(Cset) 'ε/2 Perfect) 1
|Cset| |{C|Perfect 'ε/2 C}|

≥ (1
|Cset| |{C|Perfect 'ε/2 C}|)2 because f−1(Cset) is a uniform element in Cset

≥ (1− |{C|Perfect 6'ε/2C}|
|Cset|)2

17

Now we want to prove that most circuits are similar to Perfect. So let us count the
number of circuits that are far from Perfect.
Let W (Cset) = {C ∈ Cset|Perfect 6'ε/2 C}
Let Err(Cset) = {(C, x) ∈ Cset× I|Perfect(x) 6= C(x)}
We have |Err(Cset)| ≤ |I|p|Cset| because for each x ∈ I, there is at most p portion of the
circuits that disagree with Perfect.
We also have |Err(Cset)| ≥ |W (Cset)||I|ε/2 because each circuit in W (Cset) "uses" |I|ε/2
elements of Err(Cset).
Therefore, |W (Cset)| ≤ 2pε |Cset| and 1− |{C|Perfect 6'ε/2C}|

|Cset| ≥ 1−2pε . And we get our result
: Pr(f−1(Cset) 'ε C|We are at leaf Cset) ≥ (1− 2pε)2.
Consequence: By choosing p(λ) = ε(i)

poly(λ) , we have a learner that runs in polynomial
time assuming:

• We have a uniform inverter : f−1(Cset) = U(F−1(Cset)).

• We have a Best oracle that chooses our next query

• We have a |Cset| oracle gives us the size of Cset

Now, we would like to remove those assumptions.

Removing assumptions for learning

• Uniform inverter: Now, we want f−1(Cset) 'ε/2 Perfect(x). We know that
|W (Cset)| ≤ 2p

ε . We would like to make |W (Cset)| = 0 with non negligible proba-
bility so that ∀f−1, P r(f−1(Cset) 'ε/2) > 0 .
The idea behind this is instead of returning f−1(Cset), we return
f−1(Csetu1=Perfect(u1),...,uk=Perfect(uk)) with ui picked at uniformly in I. As we can
not evaluate Perfect(ui) easily, we replace it by C(ui). This does not change much
as Pr(C(ui) 6= Perfect(ui)) ' 0.
Now, we know that for each ui we add, we remove at least 2p

ε portions of the circuits in
W (Cset) on average as circuits inW (Cset) differ with Perfect on at least 2p

ε portion
of the inputs. Therefore, that means that |W (Csetu1=Perfect(u1),...,uk=Perfect(uk))| is
on average |W (Cset)|(1 − 2p

ε)k. Thus k = O(log(|W |) ε
2p) = O(λ ε

2p) = O(λpoly(λ))
to reduce |W (Csetu1=Perfect(u1),...,uk=Perfect(uk))| to zero.

• Best oracle: The idea is to estimate Best(Cset) instead of having Best(Cset).
To do that, we pick x1, ..., xk at random and we chose the best x within x1, ..., xk.
This still requires the |Cset| oracle. The probability that the best x within x1, ..., xk,
with k = poly(λ), does not split the current set into two sets with more than p|Cset|
elements when such an x ∈ I exists is negligible (proof is done using the Tchebychev
inequality). Therefore, estimating the best x instead of having the best x still works.

18

• |Cset| oracle: The idea is that over-splitting does not change correctness. There-
fore, in the previous scheme, instead of estimating the best x and splitting only for
that x each time, we split for all the x’s tried. This still takes polynomial time and
does not change correctness: we just have some useless splittings. But this avoids the
need to have |Cset| as we do not need to know whether the splitting at x is useful
we only need the probability that one of the splits is good to be high.

Now, let us look back to what our scheme looks like when we remove those assumptions.
LC() = f−1(Csetx1,1 = C(x1,1), ..., x1,k = C(x1,k)︸ ︷︷ ︸

Estimates the first best x

, ..., xO(λ
p

),1 = C(xO(λ
p

),1), ..., xO(λ
p

),k = C(xO(λ
p

),k)

︸ ︷︷ ︸
We arrive at a leaf

,

u1 = C(u1), ..., un = C(un)︸ ︷︷ ︸
Returns a circuit similar to Perfect

)

All these inputs are chosen at random, so the learner has the entropy required by
the remover. The only assumption left is the fact that V erify(C) can be written as
V erifyC(). This is because an adversary can use iO to hide anything that is special to
C’s implementation, so only functionality can be checked.

Therefore, we have finished our proof and proven that non-cryptographic function sets
can not be securely watermarked.

5 Conclusion and Perspectives
The need for cryptographic watermarking seems quite close as IO might become prac-

tical. Although we can watermark cryptographic functions called PPRFs [CHV15, NW15],
and I have shown that we can watermark any puncturable function, the applications of wa-
termarking these functions seem limited to traitor tracing that we can already do more effi-
ciently [BZ14]. Furthermore, the existence of the property attack makes non-cryptographic
functions not watermarkable, destroying our initial goal of general software watermarking.

This seems to end most research paths on cryptographic watermarking. However,
there are still things to do: finding a definition for watermarking that fits our intuition
better, finding other cryptographic applications to watermarking such as traitor tracing
and studying the case of Turing machines instead of circuits.

19

References
[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai,

Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
2001.

[BS96] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data.
1996.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications, 2013.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. 2014.

[CHV15] Aloni Cohen, Justin Holmgren, and Vinod Vaikuntanathan. Publicly verifiable
software watermarking. 2015.

[GGH+13] Shelly Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Anant Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional en-
cryption for all circuits. 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. 1986.

[IN10] A.N. Fionov I.V. Nechta. Digital watermarks for c/c++ programs. 2010.

[NW15] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs
against arbitrary removal strategies. 2015.

[PMA11] Ante Poljicak, Lidija Mandic, and Darko Agic. Discrete fourier transform–based
watermarking method with an optimal implementation radius. 2011.

[Rog06] Phillip Rogaway. Formalizing human ignorance. 2006.

20

