On Rejection Sampling in Lyubashevsky's Signature Scheme

Julien Devevey¹ Omar Fawzi^{1,2} Alain Passelègue^{1,2} Damien Stehlé¹

ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France

INRIA, Laboratoire LIP, France

- 1. Lower bounds on the compactness of Lyubashevsky's signatures
- 2. Proposal of distributions reaching them
- 3. Optimality of rejection sampling runtime
- 4. Similar results for the BLISS (Ducas et al.; Crypto'13) variant
- 5. Proposal of a variant with bounded runtime

Rejection Sampling for Lyubashevsky's Signatures

- Widely studied and folklore technique from probabilities,
- Used for signatures in (Lyubashevsky; AC'09),
- Widely used since then, but almost as a black-box and only with Gaussians/Hypercubes-Uniforms,
- Implemented in a NIST PQC finalist (Dilithium).

Is the way we use rejection sampling "optimal" (in some sense)? Could we use other distributions? Which ones are the best suited for the task?

Lyubashevsky's Signature Scheme

Intuition

A signature σ for a message μ is comprised of

Intuition

A signature σ for a message μ is comprised of

To verify, check that $\|\mathbf{z}\| \leq \gamma$ and that

$$\mathbf{C} = \mathbf{H} \left(\begin{array}{c} \mathbf{A} \end{array} \mathbf{z} - \mathbf{T} \mathbf{c}, \mu \right)$$

The security relies on the hardness of

SIS_{n,m, β} Given uniform $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find nonzero $\mathbf{s} \in \mathbb{Z}_q^m$ s.t. $\|\mathbf{s}\| \le \beta$ and $\mathbf{A} = \mathbf{o}$

To verify, check that $\|\mathbf{z}\| \leq \gamma$ and that

$$\mathbf{C}$$
=H $\left(\mathbf{A} \mathbf{z} - \mathbf{T} \mathbf{c}, \mu \right)$

The security relies on the hardness of

SIS_{*n*,*m*, β Given uniform $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$, find nonzero $\mathbf{s} \in \mathbb{Z}_q^m$ s.t. $\|\mathbf{s}\| \le \beta$ and $\mathbf{A} = \mathbf{o}$}

$Sign(\mu, \mathbf{A}, \mathbf{S})$:

- 1: **y** ← Q
- 2: $\mathbf{C} \leftarrow H(\mathbf{Ay}, \mu)$
- 3: $\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$
- 4: With probability min $\left(\frac{P(z)}{M \cdot Q(y)}, 1\right)$, return (z, c)
- 5: **else** go to Step 1

- *P* and *Q* are either Gaussian or Hypercubes-Uniforms,
- Most of the correctness, runtime and security proofs are *flawed*.

$Sign(\mu, \mathbf{A}, \mathbf{S})$:

- 1: **y** ← Q
- 2: $\mathbf{C} \leftarrow H(\mathbf{Ay}, \mu)$
- 3: $\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$
- 4: With probability min $\left(\frac{P(\mathbf{z})}{M \cdot Q(\mathbf{y})}, 1\right)$, return (\mathbf{z}, \mathbf{c})
- 5: **else** go to Step 1

- *P* and *Q* are either Gaussian or Hypercubes-Uniforms,
- Most of the correctness, runtime and security proofs are *flawed*.

Rejection Sampling

Let *P*, *Q* be two probability distributions.

Definition

$$R_{\infty}(P||Q) = \sup_{x \in \operatorname{Supp}(P)} \frac{P(x)}{Q(x)}.$$

Our generalization for any $\varepsilon > 0$:

 ε -smooth Rényi divergence

$$R^{\varepsilon}_{\infty}(P||Q) = \inf_{\substack{S\\ P(S) \geq 1-\varepsilon}} \sup_{x \in S} \frac{P(x)}{Q(x)}.$$

Example: $R_{\infty}(D_{\sigma,\mathbf{c}}^m || D_{\sigma}^m) = +\infty$ whereas $R_{\infty}^{\varepsilon}(D_{\sigma,\mathbf{c}}^m || D_{\sigma}^m) < +\infty$.

- P, Q two probability distributions,
- X_1, \ldots, X_i, \ldots , i.i.d. random variables following Q.

Rejection Sampling Strategy

A family $(A_i : \operatorname{Supp}(Q)^i \to [i] \cup \{\bot\})_{i \ge 1}$ of randomized algorithms such that $X_j \leftarrow P$, where

- $i^* = \min\{i|A_i(X_1,\ldots,X_i) \neq \bot\}$,
- $J = A_{i^*}(X_1, \ldots, X_{i^*}).$

Example

Figure 1: Acceptance zone and sampling domain

Usual Rejection Sampling $A_i : (X_1, \dots, X_i) \mapsto \begin{cases} X_i & \text{w.p.} \ \frac{P(X_i)}{R_{\infty}(P||Q) \cdot Q(X_i)}, \\ \text{o otherwise.} \end{cases}$

In this case $\mathbb{E}(i^*) = R_{\infty}(P || Q)$.

Rejection Sampling Strategy

A family $(A_i : \text{Supp}(Q)^i \to [i] \cup \{\bot\})_{i \ge 1}$ of randomized algorithms such that $X_j \longleftarrow P$, where

• $i^* = \min\{i|A_i(X_1,\ldots,X_i) \neq \bot\}$,

•
$$J = A_{i^*}(X_1, \ldots, X_{i^*}).$$

Contribution: Optimality of the usual strategy

Given any strategy $(A_i)_{i \ge 1}$,

 $\mathbb{E}(i^*) \geq R_{\infty}(P \| Q).$

Imperfect Rejection Sampling

Figure 2: Acceptance zone and sampling domain

Resulting distribution: P_{X_j} such that $R_{\infty}(P_{X_j} || P) \leq \frac{1}{1-\varepsilon}$.

Back to the Signature Scheme

$\mathsf{Sign}(\mu,\mathbf{A},\mathbf{S}):$

- 1: **y** ← Q
- 2: $\mathbf{C} \leftarrow H(\mathbf{A}[\mathbf{y}], \mu)$
- 3: $\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$
- 4: With probability $\min\left(\frac{P(\mathbf{z})}{M \cdot Q(\mathbf{y})}, 1\right)$ return ($[\mathbf{z}], \mathbf{c}$)
- 5: **else** go to Step 1

Figure 3: Modified Signature Algorithm.

- P, Q two (possibly continuous) distributions,
- $\forall \mathbf{S}, \mathbf{c} : R^{\varepsilon}_{\infty}(\mathbf{P} \| \mathbf{Q}_{\mathbf{Sc}}) \leq M$,
- $\Pr_{\mathbf{z}\leftrightarrow\mathbf{P}}(\|\lceil\mathbf{z}\rfloor\| \geq \gamma) \leq \operatorname{negl}(\lambda).$

$\mathsf{Sign}(\mu,\mathbf{A},\mathbf{S}):$

- 1: **y** ← Q
- 2: $\mathbf{C} \leftarrow H(\mathbf{A}[\mathbf{y}], \mu)$
- 3: $\mathbf{z} \leftarrow \mathbf{y} + \mathbf{Sc}$
- 4: With probability min $\left(\frac{P(z)}{M \cdot Q(y)}, 1\right)$ return ([z], c)
- 5: **else** go to Step 1

Figure 3: Modified Signature Algorithm.

- P, Q two (possibly continuous) distributions,
- $\forall \mathbf{S}, \mathbf{c} : R^{\varepsilon}_{\infty}(\mathbf{P} \| \mathbf{Q}_{\mathbf{Sc}}) \leq M$,
- $\Pr_{\mathbf{z} \leftrightarrow \mathbf{P}}(\|\lceil \mathbf{z} \rfloor\| \ge \gamma) \le \operatorname{negl}(\lambda).$

Contribution: Fix the proofs

In the Random Oracle Model, for $\varepsilon = 1/Q_s$ and $t = \max_{s,c} ||Sc||$, the scheme is

- correct,
- sEU-CMA secure under the SIS_{n,m,2(γ+t)} assumption,
- and the number of iterations *i** of a call to Sign is such that

$$\Pr(i^* \ge i) \le \left(1 - \frac{1 - \varepsilon}{M}\right)^i + \operatorname{negl}(\lambda).$$

P, Q	Sampling	Rejection	$O(\gamma)_{(\varepsilon=0)}$	$O(\gamma)_{(\varepsilon=rac{1}{Q_{s}})}$
U (🗇)	Easy	Deterministic	$\frac{t\sqrt{m}m}{\log M}$	Same
	Cumbersome	Probabilistic	∞	$\frac{t\sqrt{m}\sqrt{\log\frac{1}{\varepsilon}}}{\sqrt{\log M}}$

(where $t = \max_{\mathbf{S}, \mathbf{c}} ||\mathbf{S}\mathbf{c}||$)

The first distribution is used in the Dilithium signature scheme.

Use the uniform continuous distribution over

P, Q	Rejection	

Use the uniform continuous distribution over

P, Q	Sampling	Rejection	$O(\gamma)_{(\varepsilon=0)}$	$O(\gamma)_{(\varepsilon=\frac{1}{Q_{s}})}$
U (🗘)	Easy	Deterministic	$\frac{t\sqrt{m}m}{\log M}$	Same
	Cumbersome	Probabilistic	∞	$\frac{t\sqrt{m}\sqrt{\log\frac{1}{\varepsilon}}}{\sqrt{\log M}}$
U(@)	Cumbersome	Deterministic	<u>tm</u> log M	$\frac{t\sqrt{m}\sqrt{\log\frac{1}{\varepsilon}}}{\log M}$

Contribution: Lower bounds on compactness

When $\varepsilon = 0$, for fixed M > 1 and any choice of P and Q such that $\max_{\mathbf{S},\mathbf{c}} R_{\infty}(P || Q_{\mathbf{Sc}}) \leq M$:

 $\gamma \geq \frac{\mathsf{t}(\mathsf{m}-\mathsf{l})}{\log \mathsf{M}}.$

Open questions:

- 1. Concrete instantiation?
- 2. Efficient sampling from the continuous ball?
- 3. Totally removing rejection while keeping compactness?
- 4. Automatisation of rejection-based signature design?

Thank you for your attention!

