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Our Results

1. Lower bounds on the compactness of Lyubashevsky’s
signatures

2. Proposal of distributions reaching them

3. Optimality of rejection sampling runtime

4. Similar results for the BLISS (Ducas et al.; Crypto'13) variant

5. Proposal of a variant with bounded runtime
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Rejection Sampling for Lyubashevsky’s Signatures

• Widely studied and folklore technique from probabilities,

• Used for signatures in (Lyubashevsky; AC'09),

• Widely used since then, but almost as a black-box and only
with Gaussians/Hypercubes-Uniforms,

• Implemented in a NIST PQC finalist (Dilithium).

Is the way we use rejection sampling “optimal” (in some sense)?
Could we use other distributions?

Which ones are the best suited for the task?
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Lyubashevsky’s Signature
Scheme



Intuition

sk vk

,A Sn

m

m

k

,A T = A Sn

k

where S is “small.”

A signature σ for a message µ is comprised of

c z

=Hc A , µyk +y cS
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Intuition (2)

To verify, check that ∥z∥ ≤ γ and that

=Hc A , µz - T c

The security relies on the hardness of

SISn,m,β

Given uniform A ∈ Zn×mq , find nonzero s ∈ Zmq s.t. ∥s∥ ≤ β and

A s = 0
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Signature Scheme (Lyubashevsky; AC'09),(Lyubashevsky; EC'11),...

Sign(µ,A,S) :

1: y←↩ Q
2: c← H(Ay, µ)
3: z← y+ Sc
4: With probability min

(
P(z)
M·Q(y) , 1

)
,

return (z, c)
5: else go to Step 1

• P and Q are either Gaussian
or Hypercubes-Uniforms,

• Most of the correctness,
runtime and security proofs
are flawed.
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Rejection Sampling



Rényi Divergence

Let P,Q be two probability distributions.

Definition

R∞(P∥Q) = sup
x∈Supp(P)

P(x)
Q(x) .

Our generalization for any ε > 0:

ε-smooth Rényi divergence

Rε∞(P∥Q) = inf
S

P(S)≥1−ε

sup
x∈S

P(x)
Q(x) .

Example: R∞(Dmσ,c∥Dmσ ) = +∞ whereas Rε∞(Dmσ,c∥Dmσ ) < +∞.
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Setting

• P,Q two probability distributions,
• X1, . . . , Xi, . . . , i.i.d. random variables following Q.

Rejection Sampling Strategy
A family (Ai : Supp(Q)i → [i] ∪ {⊥})i≥1 of randomized algorithms
such that XJ ←↩ P, where

• i∗ = min{i|Ai(X1, . . . , Xi) ̸= ⊥},
• J = Ai∗(X1, . . . , Xi∗).
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Example

R∞(P∥Q) · Q

P

Figure 1: Acceptance zone and sampling domain

Usual Rejection Sampling

Ai : (X1, . . . , Xi) 7→

Xi w.p. P(Xi)
R∞(P∥Q)·Q(Xi) ,

0 otherwise.

In this case E(i∗) = R∞(P∥Q).
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Optimality

Rejection Sampling Strategy
A family (Ai : Supp(Q)i → [i] ∪ {⊥})i≥1 of randomized algorithms
such that XJ ←↩ P, where

• i∗ = min{i|Ai(X1, . . . , Xi) ̸= ⊥},
• J = Ai∗(X1, . . . , Xi∗).

Contribution: Optimality of the usual strategy
Given any strategy (Ai)i≥1,

E(i∗) ≥ R∞(P∥Q).
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Imperfect Rejection Sampling

Rε
∞(P∥Q) · Q

P

Figure 2: Acceptance zone and sampling domain

Imperfect Rejection Sampling

Ai : (X1, . . . , Xi) 7→

Xi w.p. min
(

P(Xi)
Rε∞(P∥Q)·Q(Xi) , 1

)
,

0 otherwise.

Resulting distribution: PXJ such that R∞(PXJ∥P) ≤ 1
1−ε .
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Back to the Signature Scheme



Modified Scheme

Sign(µ,A,S) :

1: y←↩ Q
2: c← H(A⌈y⌋, µ)
3: z← y+ Sc
4: With probability min

(
P(z)
M·Q(y) , 1

)
return (⌈z⌋, c)

5: else go to Step 1

Figure 3: Modified Signature
Algorithm.

• P,Q two (possibly
continuous) distributions,

• ∀S, c : Rε∞(P∥QSc) ≤ M,

• Prz←↩P(∥⌈z⌋∥ ≥ γ) ≤ negl(λ).
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Properties

Contribution: Fix the proofs
In the Random Oracle Model, for ε = 1/Qs and t = maxS,c∥Sc∥, the
scheme is

• correct,

• sEU-CMA secure under the SISn,m,2(γ+t) assumption,

• and the number of iterations i∗ of a call to Sign is such that

Pr(i∗ ≥ i) ≤
(
1− 1− ε

M

)i
+ negl(λ).
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Our Goal

Minimize γ

⇓
Reduction from harder SIS

⇓
Smaller parameters overall for the same level of security
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Current choices of Distributions

P, Q Sampling Rejection O(γ)(ε=0) O(γ)(ε= 1
Qs )

U( ) Easy Deterministic t
√
mm

logM Same

−6 −4 −2 0 2 4 6

0

0.2

0.4

Cumbersome Probabilistic ∞ t
√
m
√

log 1
ε√

logM

(where t = maxS,c∥Sc∥)

The first distribution is used in the Dilithium signature scheme.
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Our proposal

Use the uniform continuous distribution over

P, Q Sampling Rejection O(γ)(ε=0) O(γ)(ε= 1
Qs )

U( ) Easy Deterministic t
√
mm

logM Same

−6 −4 −2 0 2 4 6

0

0.2

0.4

Cumbersome Probabilistic ∞ t
√
m
√

log 1
ε√

logM

U( ) Cumbersome Deterministic tm
logM

t
√
m
√

log 1
ε

logM
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Optimality

Contribution: Lower bounds on compactness
When ε = 0, for fixed M > 1 and any choice of P and Q such
that maxS,c R∞(P∥QSc) ≤ M:

γ ≥ t(m− 1)
logM .
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Conclusion and Open Questions

Open questions:

1. Concrete instantiation?

2. Efficient sampling from the continuous ball?

3. Totally removing rejection while keeping compactness?

4. Automatisation of rejection-based signature design?
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Thank you for your attention!
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