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Threshold Cryptography
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Our goal

Build a Threshold Public-Key Encryption scheme satisfying:

• Compactness: size of C and pk independent of the number of
servers,

• IND-CCA2 security, as in non-threshold PKE,
• ... under adaptive corruptions: the adversary can obtain

any ski, at any time.
• Without using pairings.
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Main results and previous works

Construction Assumption Adaptive IND-CCA2 Compactness
[SG98] CDH/DDH 7 3 (ROM) 3

[FP01] DDH 3 3 (ROM) 3

[BBH06] DBDH* 7 3 3

[LY12] SXDH* 3 3 3

[BGG+18] FHE (LWE) 7 3 3

This work (1) LWE & DCR 3 3 3

This work (2) LWE 3 3 3

*: In a group with pairings.

Ciphertext size:

• Construction (1): About three times the size of a
Camenisch-Shoup encryption

• Construction (2): Super-polynomial modulus
(but quantum-safe)
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De�nitions and Building Blocks



Threshold Public-Key Encryption

A compact TPKE is a 5-uple
(KeyGen, Enc,PartDec,PartVerify,Combine) of algorithms that
interact the following way:

Server i Alice Bob
(pk, {ski})← KeyGen(1λ, t)

←− ski pk −→
ct← Enc(pk,m)

←− ct
←− ct

mi ← PartDec(ski, ct)
mi −→

PartVerify(pk, ct,mi)

m′←Combine(pk, {mj}j∈S , ct)
Under the condition that |pk|, |ct| = poly(λ).

It is correct if ∀|S| ≥ t,m = m′ with proba ≥ 1− negl(λ).
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Adaptive IND-CCA2 security for TPKE

No PPT adversary A with a PartDec(ski, ·) oracle for any i ∈ [`] has
non-negligible advantage:

C A
←− t

(pk, {ski}i∈[N])←KeyGen(1λ, t)
pk −→
←− (m0,m1)

b← U({0, 1})
c←Enc(pk,mb)

c −→
←− b′

• A can obtain any ski at any time,
• A can make partial decryption queries (i, c) for the challenge,

as long as it cannot trivially win. Its advantage is |Pr(b = b′)− 1/2|.
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Building block: Linear Integer Secret Sharing
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Building block: Linear Integer Secret Sharing

Monotone Access Structure
A family of sets A ⊆ 2[`] is a monotone access structure if ∅ 6∈ A
and

∀A ∈ A,∀B ⊆ [`],A ⊆ B =⇒ B ∈ A.

The threshold family Tt,` := {A ⊆ [`], |A| ≥ t} is a monotone access
structure.

Integer Span Program (Damg̊ard-Thorbek; PKC’06)

For any monotone access structure A there exist a
matrix M ∈ Zd×e and a surjective map ψ : [d] 7→ [`] such that the
following slide is true.
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Building block: Linear Integer Secret Sharing

LISS (Damg̊ard-Thorbek; PKC’06)

To share an integer s ∈ [−2l, 2l] among parties [`], use M ∈ Zd×e,

• Choose random ρ2, . . . ρe and de�ne ~ρ = (s, ρ2, . . . , ρe)
>

• Compute ~s = (s1, . . . , sd)> = M · ~ρ

• Give si to party ψ(i)

Shares s ∈ Zmq into (sk1, . . . , sk`) ∈ Zd1×m
q × · · · × Zd`×mq such that for

any S, |S| ≥ t, there exist ~λi ∈ {−1,0, 1}di for i ∈ S such that:∑
i∈S

~λ>i · ski = s.
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Building block: OTSS NIZK

A Non-Interactive Zero-Knowledge proof system for a
language L = (Lzk,Lsound) associated to two NP
relations (Rzk,Rsound) is a tuple (Setup,P,V) of algorithms that
interact the following way:

Alice(x ∈ Lzk) Bob((x,w) ∈ Rzk)

crs← Setup(1λ,L, τL)

crs −→
π ← P(crs, x,w, lbl)

←− π, lbl
V(crs, x, π, lbl)

It is complete if V almost always outputs 1 in this case.
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Properties

The proof system is zero-knowledge if there is a
simulator (Sim0, Sim1) such that:

C A
b←↩ U({0, 1})
crs← Setup(1λ,L, τL) if b = 0
(crs, τzk)← Sim0(1λ,L, τL) else

crs −→
←− x,w, lbl

π ← P(crs, x,w, lbl) if b = 0
π ← Sim1(crs, x, τzk, lbl) else

π −→
←− b′

|Pr(b′ = b)− 1/2| = negl(λ) for any ppt adversary A.
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One-Time Simulation Soundness

The proof system is One-Time Simulation Sound if the following
experiment outputs 1 with negligible probability for any ppt A:

C A
(crs, τzk)← Sim0(1λ,L, τL)

crs −→
←− (x, lbl)

π ← Sim1(crs, τzk, x, lbl)
π −→
←− (x∗, lbl∗, π∗)

Output V(crs, x∗, π∗, lbl∗)
if x∗ 6∈ Lsound.
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Hardness assumptions

ζ-Decision Composite Residuosity assumption [Pai99, DJ01]

Given N = pq and ζ > 1 for primes p,q. The distributions
{x = wNζ mod Nζ+1 | w← U(Z?N)} and {x | x← U(Z?Nζ+1 )} are
computationally indistinguishable.

Equivalent to the 1-DCR assumption for any ζ > 1 [DJ01].
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Hardness assumptions

The Learning-With-Errors (LWE) problem (Regev, STOC’05)

Parameters: dimension n, number of samples m ≥ n, modulus q.

For A ←↩ Zm×nq , s ←↩ Znq and e a small error ≈ αq, distinguish

,A A s
+ e

m

n

,A b
m

n

for uniform b ←↩ Zmq .
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Constructions



Construction from DCR+LWE: Intuition

• Pairing-free adaptation of [LY12]

• Exploits the entropy of shared secret keys “à la Cramer-Shoup”;
build a DCR-based hash proof system
(similar to Camenisch-Shoup; Crypto’03)

• Ciphertext (C0, C1, π) contains a simulation-sound proof that C0

is an Nζ-th residue in Z∗Nζ+1

• NIZK component instantiated from Fiat-Shamir and CI-hash
functions (implied by LWE, cf. Peikert-Shiehian; Crypto’19)

• We provide a new construction of one-time simulation-sound
(OT-SS) argument from DCR
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Based on DCR and LWE

• KeyGen(1λ, t):
1. Set N = pq, where p,q, p−1

2 and q−1
2 ≥ 2λ are primes, and ζ ≥ 1.

2. Generate crs← Setup(1λ) for a NIZK ΠOTSS = (Setup,P, V)

for LDCR := {x ∈ Z∗Nζ+1 | ∃w ∈ Z?N : x = wNζ mod Nζ+1}.

3. Sample g0 ←↩ U(Z∗N) and set h = g4Nζ ·x
0 mod Nζ+1, where x←↩ DZ,σ .

4. LISS: key shares are ski =

M ·


x
ρ1
...

ρe−1




j∈ψ−1(i)

∈ Zdi ,∀i ∈ [`],

where ρj ←↩ DZ,σ, ∀j ≤ e− 1.

Output pk = (N, ζ,g0,h, crs) and (sk1, sk2, . . . , sk`).
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Based on DCR and LWE (2)

• Encrypt(pk,Msg): To encrypt Msg ∈ ZNζ ,
1. Sample r ←↩ U({0, . . . , bN/4c}).

2. Compute
C0 = g0

2Nζ ·r mod Nζ+1 and C1 = (1 + N)Msg · hr mod Nζ+1.

3. Compute ~π ← P
(
crs, C0,g2r

0 mod N, lbl
)
, a proof that C0 ∈ LDCR

using the label lbl = C1.

4. Return ct := (C0, C1, ~π).
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Based on DCR and LWE (3)

• PartDec
(
ski, ct

)
: To decrypt with ski = (sj)j∈ψ−1(i), server i does:

1. If V(crs, C0, ~π, lbl) = 0, return ⊥.

2. For each j ∈ ψ−1(i) = {j1, . . . , jdi}, compute µi,j = C2·sj
0 mod Nζ+1

and return

~µi = (µi,j1 , . . . , µi,jdi
).
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Based on DCR and LWE (4)

• Combine
(
B = (S, |S| ≥ t, {~µi}i∈S), ct = (C0, C1, ~π)

)
: Letting

S = {j1, . . . , jt},
1. LISS: �nd a reconstruction

vector ~λS = [~λ>j1 | . . . | ~λ
>
jt ]> ∈ {−1,0, 1}dS .

2. LISS: compute

µ̂ ,
∏
i∈[t]

∏
k∈[dji ]

µ
λji,k
ji,k

= C2x
0 mod Nζ+1.

3. Compute Ĉ1 = C1/µ̂ mod Nζ+1 and return ⊥ if Ĉ1 6≡ 1 (mod N).
Otherwise, return Msg = (Ĉ1 − 1)/N ∈ ZNζ .
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3. Compute Ĉ1 = C1/µ̂ mod Nζ+1 and return ⊥ if Ĉ1 6≡ 1 (mod N).
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Security

Theorem
The scheme is CCA2 secure under adaptive corruptions, assuming
that: (i) DCR holds; (ii) The NIZK argument is one-time
simulation-sound.

• We give a one-time simulation sound ΠOTSS for LDCR under the
DCR and LWE assumption.
(shorter public parameters; improves an unbounded SS
construction [LNPY20])

• Security proof exploits the entropy of secret keys (sampled
from a discrete Gaussian) and the properties of a LISS
(similarly to Libert-Stehlé-Titiu; TCC’18).
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Security

Proof idea.

• DCR allows moving to a game that encrypts using
the secret key x

• Message hidden by x mod Nζ

• Conditionally on A’s view, x ∈ Z is Gaussian in a shi� of p′q′ · Z
⇒ The distribution of x mod Nζ is statistically close to U(ZNζ ).
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Construction from LWE: Threshold Dual Regev

• Exploits the entropy of secret R ∈ Zm×L conditionally on public
keys U = A · R ∈ Zn×Lq

• Shares each column of R ∈ Zm×L using a LISS scheme

• Uses noise �ooding in partial decryption shares

• Security proof follows idea from distributed PRFs
(Libert-Stehlé-Titiu; TCC’18)

• Uses a simulation-sound argument that ciphertext components
are of the form (c0, c1)> = B · s+ e mod q
(Libert et al.; Asiacrypt’20)

• Open problem: avoid noise �ooding; use a polynomial modulus
while keeping compact ciphertexts
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Based on LWE solely

Lemma: Proof system [LNPT20, Section 3]
There exist one-time simulation-sound NIZK arguments
ΠOTSS = (Setup,P,V) for the gap language

Lzk = {c : ∃(s, e) ∈ Zn+L
q × Zm+L : ‖e‖ ≤ d̃ ∧ c = Bs+ e}

Lsound = {c : ∃(s, e) ∈ Zn+L
q × Zm+L : ‖e‖ ≤ γd̃ ∧ c = Bs+ e},

for any matrix B ∈ Z(m+L)×(n+L)
q , where m,n, L ∈ poly(λ).
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Based on LWE solely

• KeyGen(1λ, t):
1. Set pp = {m,n,q,p, L,LLISS}, with p prime and q = p · K. Pick two

Gaussian parameters β, βs ∈ (0, 1).

2. Sample A←↩ U(Zn×mq ), R←↩ Dm×LZ,σ and compute U := AR ∈ Zn×Lq .
De�ne pk′ := (A,U), sk := R.

3. Set γ, d̃. Generate crs← Setup(1λ) for B =

[
A> 0m×L

U> K · IL

]
.

4. LISS: parse R as R =
[
r1 | r2 | · · · | rL

]
∈ Zm×L. Set

Rτ = M · [rτ |~̄ρ>τ ]> ∈ Zd×m,where ~̄ρτ ←↩ (DZ,σ)(e−1)×m,∀τ ∈ [L].

De�ne the key shares as ski =
{
Rτ,ψ−1(i) ∈ Zdi×m

}
τ∈[L]
∀i ∈ [`].

Finally, return (pp,pk := (pk′, crs), sk1, sk2, . . . , sk`).
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Based on LWE solely (2)

• Encrypt(pp,pk,Msg): To encrypt Msg ∈ ZLp,
1. Sample s←↩ Znq, e0 ←↩ DZm,βq, e1 ←↩ DZL,2β·

√
mσ·q

2. Compute:
c0 = A> · s + e0 ∈ Zmq and c1 = U> · s + e1 + K ·Msg ∈ ZLq

and a proof ~π ← P
(
crs, (c>0 | c>1 )>,

(
s̄, ē
))

using the witnesses
s̄ = (s> | Msg>)> ∈ Zn+L

q , ē = (e>0 | e>1 )> ∈ Zm+L.

3. Return ct := (c0, c1, ~π).
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Based on LWE solely (3)

• PartDec
(
pp, ski, ct

)
: Given ct = (c0, c1, ~π) and

ski = {Rτ,ψ−1(i)}τ∈[L], server i does:
1. If V(crs, (c0, c1), ~π) = 0, return ⊥.

2. Otherwise, compute ~̄µi,τ = R>τ,ψ−1(i) · c0 ∈ Zdiq ,∀τ ∈ [`]. Sample
e′i,τ ←↩ DZ

di
q ,βs·q

, ∀τ ∈ [L] and return

~µi = {~µi,τ}τ∈[L] := {~̄µi,τ + e′i,τ}τ∈[L].
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: Given ct = (c0, c1, ~π) and

ski = {Rτ,ψ−1(i)}τ∈[L], server i does:
1. If V(crs, (c0, c1), ~π) = 0, return ⊥.

2. Otherwise, compute ~̄µi,τ = Rτ,ψ−1(i) · c0 ∈ Zdiq , ∀τ ∈ [`]. Sample
e′i,τ ←↩ DZ

di
q ,βs·q

, ∀τ ∈ [L] and return
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Based on LWE solely (4)

• Combine
(
pp,B = (S, |S| ≥ t, {~µi = {~µi,τ}τ∈[L]}i∈S), (c0, c1)

)
:

1. LISS: �nd a reconstruction vector
~λS = [~λ>j1 | . . . | ~λ

>
jt ]> ∈ {−1,0, 1}dS .

2. LISS: compute

~µτ ,
∑
i∈S

〈~λi, ~µi,τ 〉 = 〈rτ , c0〉+
∑
i∈S

〈~λi, e′i,τ 〉︸ ︷︷ ︸
=:e′′[τ ]

∀τ ∈ [L].

3. Compute

v := c1 − R>c0 − e′′ = K ·Msg + e1 − R>e0 − e′′ ∈ ZLq.

4. Return Msg ∈ ZLp s.t. |v[i]− K ·Msg[i]| is minimal ∀i ∈ [L].
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Results

Properties of the scheme
The scheme is compact, correct and adaptive-CCA secure under
the LWE assumption.
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Did we forget something?
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Detecting Corrupted Servers



Consistency

Assume that there is a public map Φ, such that Φ(PartDec(ski, ct, µ))

is deterministic and Combine only needs it to recover µ. No PPT
adversary A has non-negligible advantage in the game:

C A
←− t

(pk, {ski}i∈[N])←KeyGen(1λ, t)
(pk, sk1, . . . , sk`) −→

←− (ct∗, µ∗i , i)
Output 1 if

Φ(µ∗i ) 6= Φ(PartDec(pk, ski, ct∗))

and PartVerify(pk, ct∗, µ∗i ) = 1.

The advantage of A is Pr(C outputs 1).
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Robustness

No PPT adversary A has non-negligible advantage in the game:

C A
←− t

(pk, {ski}i∈[N])←KeyGen(1λ, t)
(pk, sk1, . . . , sk`) −→

←− (ct∗, {µ0
i }i∈S0 ,S0, {µ1

j }j∈S1 ,S1)

Output 1 if ∀b ∈ {0, 1}, i ∈ Sb
PartVerify(pk, ct∗, µbi ) = 1 and
Combine(pk, (S0, {µ0

i }), ct∗)
6= Combine(pk, (S1, {µ1

j }), ct∗).

The advantage of A is Pr(C outputs 1).

Consistency implies robustness.
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A recipe to attain consistency/robustness

• Add a commitment to the secret key shares in the public key.
• Add a proof that the decryption was done with the committed

key share.
• PartVerify checks both the proof of good encryption and the

proof of good decryption.
• Witness-Indistinguishability is important to keep the IND-CCA

security under adaptive corruptions.
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The DCR case

• The commitment is vk := {g4Nζski,j
0 ,∀j ∈ ψ(−1)(i)∀i ∈ [`]}

• We build a WI Σ-protocol, which can be turned into a
NIWI/NIZK argument system for the language

Llog
i := {(g1, {hi,j, µi,j}j∈ψ(−1)(i)|

∀j ∈ ψ(−1)(i),∃sj ∈ [−B∗,B∗] : hi,j = g4Nζsj
0 ∧ µi,j = g2sj

1 }

• Use a transformation to turn it into a trapdoor Σ-protocol, due
to Ciampi et al.; SCN’20

• Compile it into a NIWI/NIZK unbounded simulation-sound
argument system (Setuplog,Plog

i ,Vlog
i )
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Description of the modi�ed DCR scheme

• KeyGen′(1λ, t):
1. Run (pp,pk, sk1, . . . , sk`)← KeyGen(1λ, t).
2. Generate crslog = (Setuplog(1λ)) the global CRS.
3. Update the public key to

pk′ = (pk, crslog, vk := {g2Nζski,j
0 }(i,j)∈[`]×ψ(−1)(i)).

4. Return (pp,pk′, sk1, . . . sk`).

• PartDec′(pp, ski, ct = (C0, C1, ~π)):
1. Run ~µi ← PartDec(pp, ski, ct).
2. Then, generate

πi = Plog
i (crslog, (C0, vkψ(−1)(i), ~µi), ski).

3. Return ~µ′i = (~µi, πi).
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Description of the modi�ed DCR scheme (2)

• PartVerify(pp,pk, ct, ~µ′i = (~µi, πi):
1. Check that ct = (C0, C1, ~π) is a valid ciphertext by running

V(crs, (c0, c1), ~π). If it is not, return 0.

2. If Vlog
i (crslog, ~µi, πi) = 0, then return 0.

3. Else, return 1.
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The LWE case

• The commitment is Vi,τ := A · Rτ,Ψ(−1)(i) ∈ Zn×diq

• We build a WI trapdoor Σ-protocol, which can be turned into a
NIZK/NIWI argument system (Setuplwe

i ,Plwe
i ,Vlwe

i ) for the
language Llwe

i = (Llwe
i,zk ,L

lwe
i,sound), where

Llwe
i,c =

{
(c0,Vi,τ , µi,τ )|∃ski,τ ∈ Zdi×m,Vi,τ = Aski,τ

∧ ‖µ>i,τ − c
>
0 ski,τ‖ ≤ Bce

∧ ‖(ski,τ )j‖ ≤ Bcr ,∀j ∈ [m]
}
,

for c ∈ {zk, sound}, using the construction from Libert et al.;

Asiacrypt’20.
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Description of the modi�ed LWE scheme

• KeyGen′(1λ, t):
1. Run (pp,pk, sk1, . . . , sk`)← KeyGen(1λ, t).
2. Generate crslwe = (Setuplwe

i (1λ))i∈[`] the global CRS.
3. Update the public key to

pk′ = (A,U, crs, crslwe, {Vi,τ = A · R>τ,ψ−1(i), (i, τ) ∈ [`]× [L]}).

4. Return (pp,pk′, sk1, . . . sk`).

• PartDec′(pp, ski, ct = (c0, c1, ~π)):
1. Run ~µi = {~µi,τ}τ∈[L] ← PartDec(pp, ski, ct).
2. Then, for each τ ∈ [L], generate

πi,τ = Plwe
i (crslwe, ~µi,τ ,Rτ,ψ−1(i)).

3. Return ~µ′i = {~µi,τ , πi,τ}τ∈[L].
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Description of the modi�ed LWE scheme (2)

• PartVerify(pp,pk, ct, ~µ′i = {~µi,τ , πi,τ}τ∈[L]):
1. Check that ct = (c0, c1, ~π) is a valid ciphertext by running

V(crs, (c0, c1), ~π). If it is not, return 0.

2. For every τ ∈ [L], if Vlwe
i,τ (crslwe, ~µi,τ , πi,τ ) = 0, then return 0.

3. Else, return 1.
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Properties

Security of the modi�ed DCR-based scheme
The modi�ed scheme is IND-CCA secure under adaptive
corruptions and consistent.

Security of the modi�ed LWE-based scheme
The modi�ed scheme is IND-CCA secure under adaptive
corruptions and robust.

39



Properties

Security of the modi�ed DCR-based scheme
The modi�ed scheme is IND-CCA secure under adaptive
corruptions and consistent.

Security of the modi�ed LWE-based scheme
The modi�ed scheme is IND-CCA secure under adaptive
corruptions and robust.

39



Thank you for your attention!
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