
Non-Interactive CCA2-Secure Threshold
Cryptosystems: Achieving Adaptive Security
in the Standard Model Without Pairings

Julien Devevey1 Benoı̂t Libert2,1 Khoa Nguyen3 Thomas Peters4

Moti Yung5

ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France

CNRS, Laboratoire LIP, France

Nanyang Technological University, SPMS, Singapore

FNRS and Université catholique de Louvain, Belgium

Google and Columbia University, USA

Table of contents

1. De�nitions and Building Blocks

2. Constructions

Based on Decision Composite Residuosity

Based on Learning With Errors: Threshold Dual Regev

3. Detecting Corrupted Servers

1

Threshold Cryptography

2

Our goal

Build a Threshold Public-Key Encryption scheme satisfying:

• Compactness: size of C and pk independent of the number of
servers,

• IND-CCA2 security, as in non-threshold PKE,
• ... under adaptive corruptions: the adversary can obtain

any ski, at any time.
• Without using pairings.

3

Main results and previous works

Construction Assumption Adaptive IND-CCA2 Compactness
[SG98] CDH/DDH 7 3 (ROM) 3

[FP01] DDH 3 3 (ROM) 3

[BBH06] DBDH* 7 3 3

[LY12] SXDH* 3 3 3

[BGG+18] FHE (LWE) 7 3 3

This work (1) LWE & DCR 3 3 3

This work (2) LWE 3 3 3

*: In a group with pairings.

Ciphertext size:

• Construction (1): About three times the size of a
Camenisch-Shoup encryption

• Construction (2): Super-polynomial modulus
(but quantum-safe)

4

Main results and previous works

Construction Assumption Adaptive IND-CCA2 Compactness
[SG98] CDH/DDH 7 3 (ROM) 3

[FP01] DDH 3 3 (ROM) 3

[BBH06] DBDH* 7 3 3

[LY12] SXDH* 3 3 3

[BGG+18] FHE (LWE) 7 3 3

This work (1) LWE & DCR 3 3 3

This work (2) LWE 3 3 3

*: In a group with pairings.

Ciphertext size:

• Construction (1): About three times the size of a
Camenisch-Shoup encryption

• Construction (2): Super-polynomial modulus
(but quantum-safe)

4

De�nitions and Building Blocks

Threshold Public-Key Encryption

A compact TPKE is a 5-uple
(KeyGen, Enc,PartDec,PartVerify,Combine) of algorithms that
interact the following way:

Server i Alice Bob
(pk, {ski})← KeyGen(1λ, t)

←− ski pk −→
ct← Enc(pk,m)

←− ct
←− ct

mi ← PartDec(ski, ct)
mi −→

PartVerify(pk, ct,mi)

m′←Combine(pk, {mj}j∈S , ct)
Under the condition that |pk|, |ct| = poly(λ).

It is correct if ∀|S| ≥ t,m = m′ with proba ≥ 1− negl(λ).
5

Threshold Public-Key Encryption

A compact TPKE is a 5-uple
(KeyGen, Enc,PartDec,PartVerify,Combine) of algorithms that
interact the following way:

Server i Alice Bob
(pk, {ski})← KeyGen(1λ, t)

←− ski pk −→
ct← Enc(pk,m)

←− ct
←− ct

mi ← PartDec(ski, ct)
mi −→

PartVerify(pk, ct,mi)

m′←Combine(pk, {mj}j∈S , ct)
Under the condition that |pk|, |ct| = poly(λ).

It is correct if ∀|S| ≥ t,m = m′ with proba ≥ 1− negl(λ).
5

Adaptive IND-CCA2 security for TPKE

No PPT adversary A with a PartDec(ski, ·) oracle for any i ∈ [`] has
non-negligible advantage:

C A
←− t

(pk, {ski}i∈[N])←KeyGen(1λ, t)
pk −→
←− (m0,m1)

b← U({0, 1})
c←Enc(pk,mb)

c −→
←− b′

• A can obtain any ski at any time,
• A can make partial decryption queries (i, c) for the challenge,

as long as it cannot trivially win. Its advantage is |Pr(b = b′)− 1/2|.

6

Building block: Linear Integer Secret Sharing

7

Building block: Linear Integer Secret Sharing

Monotone Access Structure
A family of sets A ⊆ 2[`] is a monotone access structure if ∅ 6∈ A
and

∀A ∈ A,∀B ⊆ [`],A ⊆ B =⇒ B ∈ A.

The threshold family Tt,` := {A ⊆ [`], |A| ≥ t} is a monotone access
structure.

Integer Span Program (Damg̊ard-Thorbek; PKC’06)

For any monotone access structure A there exist a
matrix M ∈ Zd×e and a surjective map ψ : [d] 7→ [`] such that the
following slide is true.

8

Building block: Linear Integer Secret Sharing

LISS (Damg̊ard-Thorbek; PKC’06)

To share an integer s ∈ [−2l, 2l] among parties [`], use M ∈ Zd×e,

• Choose random ρ2, . . . ρe and de�ne ~ρ = (s, ρ2, . . . , ρe)
>

• Compute ~s = (s1, . . . , sd)> = M · ~ρ

• Give si to party ψ(i)

Shares s ∈ Zmq into (sk1, . . . , sk`) ∈ Zd1×m
q × · · · × Zd`×mq such that for

any S, |S| ≥ t, there exist ~λi ∈ {−1,0, 1}di for i ∈ S such that:∑
i∈S

~λ>i · ski = s.

9

Building block: OTSS NIZK

A Non-Interactive Zero-Knowledge proof system for a
language L = (Lzk,Lsound) associated to two NP
relations (Rzk,Rsound) is a tuple (Setup,P,V) of algorithms that
interact the following way:

Alice(x ∈ Lzk) Bob((x,w) ∈ Rzk)

crs← Setup(1λ,L, τL)

crs −→
π ← P(crs, x,w, lbl)

←− π, lbl
V(crs, x, π, lbl)

It is complete if V almost always outputs 1 in this case.

10

Properties

The proof system is zero-knowledge if there is a
simulator (Sim0, Sim1) such that:

C A
b←↩ U({0, 1})
crs← Setup(1λ,L, τL) if b = 0
(crs, τzk)← Sim0(1λ,L, τL) else

crs −→
←− x,w, lbl

π ← P(crs, x,w, lbl) if b = 0
π ← Sim1(crs, x, τzk, lbl) else

π −→
←− b′

|Pr(b′ = b)− 1/2| = negl(λ) for any ppt adversary A.

11

One-Time Simulation Soundness

The proof system is One-Time Simulation Sound if the following
experiment outputs 1 with negligible probability for any ppt A:

C A
(crs, τzk)← Sim0(1λ,L, τL)

crs −→
←− (x, lbl)

π ← Sim1(crs, τzk, x, lbl)
π −→
←− (x∗, lbl∗, π∗)

Output V(crs, x∗, π∗, lbl∗)
if x∗ 6∈ Lsound.

12

Hardness assumptions

ζ-Decision Composite Residuosity assumption [Pai99, DJ01]

Given N = pq and ζ > 1 for primes p,q. The distributions
{x = wNζ mod Nζ+1 | w← U(Z?N)} and {x | x← U(Z?Nζ+1)} are
computationally indistinguishable.

Equivalent to the 1-DCR assumption for any ζ > 1 [DJ01].

13

Hardness assumptions

The Learning-With-Errors (LWE) problem (Regev, STOC’05)

Parameters: dimension n, number of samples m ≥ n, modulus q.

For A ←↩ Zm×nq , s ←↩ Znq and e a small error ≈ αq, distinguish

,A A s
+ e

m

n

,A b
m

n

for uniform b ←↩ Zmq .

14

Constructions

Construction from DCR+LWE: Intuition

• Pairing-free adaptation of [LY12]

• Exploits the entropy of shared secret keys “à la Cramer-Shoup”;
build a DCR-based hash proof system
(similar to Camenisch-Shoup; Crypto’03)

• Ciphertext (C0, C1, π) contains a simulation-sound proof that C0

is an Nζ-th residue in Z∗Nζ+1

• NIZK component instantiated from Fiat-Shamir and CI-hash
functions (implied by LWE, cf. Peikert-Shiehian; Crypto’19)

• We provide a new construction of one-time simulation-sound
(OT-SS) argument from DCR

15

Based on DCR and LWE

• KeyGen(1λ, t):
1. Set N = pq, where p,q, p−1

2 and q−1
2 ≥ 2λ are primes, and ζ ≥ 1.

2. Generate crs← Setup(1λ) for a NIZK ΠOTSS = (Setup,P, V)

for LDCR := {x ∈ Z∗Nζ+1 | ∃w ∈ Z?N : x = wNζ mod Nζ+1}.

3. Sample g0 ←↩ U(Z∗N) and set h = g4Nζ ·x
0 mod Nζ+1, where x←↩ DZ,σ .

4. LISS: key shares are ski =

M ·


x
ρ1
...

ρe−1




j∈ψ−1(i)

∈ Zdi ,∀i ∈ [`],

where ρj ←↩ DZ,σ, ∀j ≤ e− 1.

Output pk = (N, ζ,g0,h, crs) and (sk1, sk2, . . . , sk`).

16

Based on DCR and LWE

• KeyGen(1λ, t):
1. Set N = pq, where p,q, p−1

2 and q−1
2 ≥ 2λ are primes, and ζ ≥ 1.

2. Generate crs← Setup(1λ) for a NIZK ΠOTSS = (Setup,P, V)

for LDCR := {x ∈ Z∗Nζ+1 | ∃w ∈ Z?N : x = wNζ mod Nζ+1}.

3. Sample g0 ←↩ U(Z∗N) and set h = g4Nζ ·x
0 mod Nζ+1, where x←↩ DZ,σ .

4. LISS: key shares are ski =

M ·


x
ρ1
...

ρe−1




j∈ψ−1(i)

∈ Zdi ,∀i ∈ [`],

where ρj ←↩ DZ,σ, ∀j ≤ e− 1.

Output pk = (N, ζ,g0,h, crs) and (sk1, sk2, . . . , sk`).

16

Based on DCR and LWE

• KeyGen(1λ, t):
1. Set N = pq, where p,q, p−1

2 and q−1
2 ≥ 2λ are primes, and ζ ≥ 1.

2. Generate crs← Setup(1λ) for a NIZK ΠOTSS = (Setup,P, V)

for LDCR := {x ∈ Z∗Nζ+1 | ∃w ∈ Z?N : x = wNζ mod Nζ+1}.

3. Sample g0 ←↩ U(Z∗N) and set h = g4Nζ ·x
0 mod Nζ+1, where x←↩ DZ,σ .

4. LISS: key shares are ski =

M ·


x
ρ1
...

ρe−1




j∈ψ−1(i)

∈ Zdi ,∀i ∈ [`],

where ρj ←↩ DZ,σ, ∀j ≤ e− 1.

Output pk = (N, ζ,g0,h, crs) and (sk1, sk2, . . . , sk`).

16

Based on DCR and LWE (2)

• Encrypt(pk,Msg): To encrypt Msg ∈ ZNζ ,
1. Sample r ←↩ U({0, . . . , bN/4c}).

2. Compute
C0 = g0

2Nζ ·r mod Nζ+1 and C1 = (1 + N)Msg · hr mod Nζ+1.

3. Compute ~π ← P
(
crs, C0,g2r

0 mod N, lbl
)
, a proof that C0 ∈ LDCR

using the label lbl = C1.

4. Return ct := (C0, C1, ~π).

17

Based on DCR and LWE (2)

• Encrypt(pk,Msg): To encrypt Msg ∈ ZNζ ,
1. Sample r ←↩ U({0, . . . , bN/4c}).

2. Compute
C0 = g0

2Nζ ·r mod Nζ+1 and C1 = (1 + N)Msg · hr mod Nζ+1.

3. Compute ~π ← P
(
crs, C0,g2r

0 mod N, lbl
)
, a proof that C0 ∈ LDCR

using the label lbl = C1.

4. Return ct := (C0, C1, ~π).

17

Based on DCR and LWE (3)

• PartDec
(
ski, ct

)
: To decrypt with ski = (sj)j∈ψ−1(i), server i does:

1. If V(crs, C0, ~π, lbl) = 0, return ⊥.

2. For each j ∈ ψ−1(i) = {j1, . . . , jdi}, compute µi,j = C2·sj
0 mod Nζ+1

and return

~µi = (µi,j1 , . . . , µi,jdi
).

18

Based on DCR and LWE (3)

• PartDec
(
ski, ct

)
: To decrypt with ski = (sj)j∈ψ−1(i), server i does:

1. If V(crs, C0, ~π, lbl) = 0, return ⊥.

2. For each j ∈ ψ−1(i) = {j1, . . . , jdi}, compute µi,j = C2·sj
0 mod Nζ+1

and return

~µi = (µi,j1 , . . . , µi,jdi
).

18

Based on DCR and LWE (3)

• PartDec
(
ski, ct

)
: To decrypt with ski = (sj)j∈ψ−1(i), server i does:

1. If V(crs, C0, ~π, lbl) = 0, return ⊥.

2. For each j ∈ ψ−1(i) = {j1, . . . , jdi}, compute µi,j = C2·sj
0 mod Nζ+1

and return

~µi = (µi,j1 , . . . , µi,jdi
).

18

Based on DCR and LWE (4)

• Combine
(
B = (S, |S| ≥ t, {~µi}i∈S), ct = (C0, C1, ~π)

)
: Letting

S = {j1, . . . , jt},
1. LISS: �nd a reconstruction

vector ~λS = [~λ>j1 | . . . | ~λ
>
jt]> ∈ {−1,0, 1}dS .

2. LISS: compute

µ̂ ,
∏
i∈[t]

∏
k∈[dji]

µ
λji,k
ji,k

= C2x
0 mod Nζ+1.

3. Compute Ĉ1 = C1/µ̂ mod Nζ+1 and return ⊥ if Ĉ1 6≡ 1 (mod N).
Otherwise, return Msg = (Ĉ1 − 1)/N ∈ ZNζ .

19

Based on DCR and LWE (4)

• Combine
(
B = (S, |S| ≥ t, {~µi}i∈S), ct = (C0, C1, ~π)

)
: Letting

S = {j1, . . . , jt},
1. LISS: �nd a reconstruction

vector ~λS = [~λ>j1 | . . . | ~λ
>
jt]> ∈ {−1,0, 1}dS .

2. LISS: compute

µ̂ ,
∏
i∈[t]

∏
k∈[dji]

µ
λji,k
ji,k

= C2x
0 mod Nζ+1.

3. Compute Ĉ1 = C1/µ̂ mod Nζ+1 and return ⊥ if Ĉ1 6≡ 1 (mod N).
Otherwise, return Msg = (Ĉ1 − 1)/N ∈ ZNζ .

19

Security

Theorem
The scheme is CCA2 secure under adaptive corruptions, assuming
that: (i) DCR holds; (ii) The NIZK argument is one-time
simulation-sound.

• We give a one-time simulation sound ΠOTSS for LDCR under the
DCR and LWE assumption.
(shorter public parameters; improves an unbounded SS
construction [LNPY20])

• Security proof exploits the entropy of secret keys (sampled
from a discrete Gaussian) and the properties of a LISS
(similarly to Libert-Stehlé-Titiu; TCC’18).

20

Security

Theorem
The scheme is CCA2 secure under adaptive corruptions, assuming
that: (i) DCR holds; (ii) The NIZK argument is one-time
simulation-sound.

• We give a one-time simulation sound ΠOTSS for LDCR under the
DCR and LWE assumption.
(shorter public parameters; improves an unbounded SS
construction [LNPY20])

• Security proof exploits the entropy of secret keys (sampled
from a discrete Gaussian) and the properties of a LISS
(similarly to Libert-Stehlé-Titiu; TCC’18).

20

Security

Proof idea.

• DCR allows moving to a game that encrypts using
the secret key x

• Message hidden by x mod Nζ

• Conditionally on A’s view, x ∈ Z is Gaussian in a shi� of p′q′ · Z
⇒ The distribution of x mod Nζ is statistically close to U(ZNζ).

21

Construction from LWE: Threshold Dual Regev

• Exploits the entropy of secret R ∈ Zm×L conditionally on public
keys U = A · R ∈ Zn×Lq

• Shares each column of R ∈ Zm×L using a LISS scheme

• Uses noise �ooding in partial decryption shares

• Security proof follows idea from distributed PRFs
(Libert-Stehlé-Titiu; TCC’18)

• Uses a simulation-sound argument that ciphertext components
are of the form (c0, c1)> = B · s+ e mod q
(Libert et al.; Asiacrypt’20)

• Open problem: avoid noise �ooding; use a polynomial modulus
while keeping compact ciphertexts

22

Construction from LWE: Threshold Dual Regev

• Exploits the entropy of secret R ∈ Zm×L conditionally on public
keys U = A · R ∈ Zn×Lq

• Shares each column of R ∈ Zm×L using a LISS scheme

• Uses noise �ooding in partial decryption shares

• Security proof follows idea from distributed PRFs
(Libert-Stehlé-Titiu; TCC’18)

• Uses a simulation-sound argument that ciphertext components
are of the form (c0, c1)> = B · s+ e mod q
(Libert et al.; Asiacrypt’20)

• Open problem: avoid noise �ooding; use a polynomial modulus
while keeping compact ciphertexts

22

Based on LWE solely

Lemma: Proof system [LNPT20, Section 3]
There exist one-time simulation-sound NIZK arguments
ΠOTSS = (Setup,P,V) for the gap language

Lzk = {c : ∃(s, e) ∈ Zn+L
q × Zm+L : ‖e‖ ≤ d̃ ∧ c = Bs+ e}

Lsound = {c : ∃(s, e) ∈ Zn+L
q × Zm+L : ‖e‖ ≤ γd̃ ∧ c = Bs+ e},

for any matrix B ∈ Z(m+L)×(n+L)
q , where m,n, L ∈ poly(λ).

23

Based on LWE solely

• KeyGen(1λ, t):
1. Set pp = {m,n,q,p, L,LLISS}, with p prime and q = p · K. Pick two

Gaussian parameters β, βs ∈ (0, 1).

2. Sample A←↩ U(Zn×mq), R←↩ Dm×LZ,σ and compute U := AR ∈ Zn×Lq .
De�ne pk′ := (A,U), sk := R.

3. Set γ, d̃. Generate crs← Setup(1λ) for B =

[
A> 0m×L

U> K · IL

]
.

4. LISS: parse R as R =
[
r1 | r2 | · · · | rL

]
∈ Zm×L. Set

Rτ = M · [rτ |~̄ρ>τ]> ∈ Zd×m,where ~̄ρτ ←↩ (DZ,σ)(e−1)×m,∀τ ∈ [L].

De�ne the key shares as ski =
{
Rτ,ψ−1(i) ∈ Zdi×m

}
τ∈[L]
∀i ∈ [`].

Finally, return (pp,pk := (pk′, crs), sk1, sk2, . . . , sk`).

24

Based on LWE solely

• KeyGen(1λ, t):
1. Set pp = {m,n,q,p, L,LLISS}, with p prime and q = p · K. Pick two

Gaussian parameters β, βs ∈ (0, 1).

2. Sample A←↩ U(Zn×mq), R←↩ Dm×LZ,σ and compute U := AR ∈ Zn×Lq .
De�ne pk′ := (A,U), sk := R.

3. Set γ, d̃. Generate crs← Setup(1λ) for B =

[
A> 0m×L

U> K · IL

]
.

4. LISS: parse R as R =
[
r1 | r2 | · · · | rL

]
∈ Zm×L. Set

Rτ = M · [rτ |~̄ρ>τ]> ∈ Zd×m,where ~̄ρτ ←↩ (DZ,σ)(e−1)×m, ∀τ ∈ [L].

De�ne the key shares as ski =
{
Rτ,ψ−1(i) ∈ Zdi×m

}
τ∈[L]
∀i ∈ [`].

Finally, return (pp,pk := (pk′, crs), sk1, sk2, . . . , sk`).

24

Based on LWE solely

• KeyGen(1λ, t):
1. Set pp = {m,n,q,p, L,LLISS}, with p prime and q = p · K. Pick two

Gaussian parameters β, βs ∈ (0, 1).

2. Sample A←↩ U(Zn×mq), R←↩ Dm×LZ,σ and compute U := AR ∈ Zn×Lq .
De�ne pk′ := (A,U), sk := R.

3. Set γ, d̃. Generate crs← Setup(1λ) for B =

[
A> 0m×L

U> K · IL

]
.

4. LISS: parse R as R =
[
r1 | r2 | · · · | rL

]
∈ Zm×L. Set

Rτ = M · [rτ |~̄ρ>τ]> ∈ Zd×m,where ~̄ρτ ←↩ (DZ,σ)(e−1)×m, ∀τ ∈ [L].

De�ne the key shares as ski =
{
Rτ,ψ−1(i) ∈ Zdi×m

}
τ∈[L]
∀i ∈ [`].

Finally, return (pp,pk := (pk′, crs), sk1, sk2, . . . , sk`).

24

Based on LWE solely (2)

• Encrypt(pp,pk,Msg): To encrypt Msg ∈ ZLp,
1. Sample s←↩ Znq, e0 ←↩ DZm,βq, e1 ←↩ DZL,2β·

√
mσ·q

2. Compute:
c0 = A> · s + e0 ∈ Zmq and c1 = U> · s + e1 + K ·Msg ∈ ZLq

and a proof ~π ← P
(
crs, (c>0 | c>1)>,

(
s̄, ē
))

using the witnesses
s̄ = (s> | Msg>)> ∈ Zn+L

q , ē = (e>0 | e>1)> ∈ Zm+L.

3. Return ct := (c0, c1, ~π).

25

Based on LWE solely (2)

• Encrypt(pp,pk,Msg): To encrypt Msg ∈ ZLp,
1. Sample s←↩ Znq, e0 ←↩ DZm,βq, e1 ←↩ DZL,2β·

√
mσ·q

2. Compute:
c0 = A> · s + e0 ∈ Zmq and c1 = U> · s + e1 + K ·Msg ∈ ZLq

and a proof ~π ← P
(
crs, (c>0 | c>1)>,

(
s̄, ē
))

using the witnesses
s̄ = (s> | Msg>)> ∈ Zn+L

q , ē = (e>0 | e>1)> ∈ Zm+L.

3. Return ct := (c0, c1, ~π).

25

Based on LWE solely (3)

• PartDec
(
pp, ski, ct

)
: Given ct = (c0, c1, ~π) and

ski = {Rτ,ψ−1(i)}τ∈[L], server i does:
1. If V(crs, (c0, c1), ~π) = 0, return ⊥.

2. Otherwise, compute ~̄µi,τ = R>τ,ψ−1(i) · c0 ∈ Zdiq ,∀τ ∈ [`]. Sample
e′i,τ ←↩ DZ

di
q ,βs·q

, ∀τ ∈ [L] and return

~µi = {~µi,τ}τ∈[L] := {~̄µi,τ + e′i,τ}τ∈[L].

26

Based on LWE solely (3)

• PartDec
(
pp, ski, ct

)
: Given ct = (c0, c1, ~π) and

ski = {Rτ,ψ−1(i)}τ∈[L], server i does:
1. If V(crs, (c0, c1), ~π) = 0, return ⊥.

2. Otherwise, compute ~̄µi,τ = R>τ,ψ−1(i) · c0 ∈ Zdiq ,∀τ ∈ [`]. Sample
e′i,τ ←↩ DZ

di
q ,βs·q

, ∀τ ∈ [L] and return

~µi = {~µi,τ}τ∈[L] := {~̄µi,τ + e′i,τ}τ∈[L].

26

Based on LWE solely (3)

• PartDec
(
pp, ski, ct

)
: Given ct = (c0, c1, ~π) and

ski = {Rτ,ψ−1(i)}τ∈[L], server i does:
1. If V(crs, (c0, c1), ~π) = 0, return ⊥.

2. Otherwise, compute ~̄µi,τ = Rτ,ψ−1(i) · c0 ∈ Zdiq , ∀τ ∈ [`]. Sample
e′i,τ ←↩ DZ

di
q ,βs·q

, ∀τ ∈ [L] and return

~µi = {~µi,τ}τ∈[L] := {~̄µi,τ + e′i,τ}τ∈[L].

26

Based on LWE solely (3)

• PartDec
(
pp, ski, ct

)
: Given ct = (c0, c1, ~π) and

ski = {Rτ,ψ−1(i)}τ∈[L], server i does:
1. If V(crs, (c0, c1), ~π) = 0, return ⊥.

2. Otherwise, compute ~̄µi,τ = Rτ,ψ−1(i) · c0 ∈ Zdiq , ∀τ ∈ [`]. Sample
e′i,τ ←↩ DZ

di
q ,βs·q

, ∀τ ∈ [L] and return

~µi = {~µi,τ}τ∈[L] := {~̄µi,τ + e′i,τ}τ∈[L].

26

Based on LWE solely (4)

• Combine
(
pp,B = (S, |S| ≥ t, {~µi = {~µi,τ}τ∈[L]}i∈S), (c0, c1)

)
:

1. LISS: �nd a reconstruction vector
~λS = [~λ>j1 | . . . | ~λ

>
jt]> ∈ {−1,0, 1}dS .

2. LISS: compute

~µτ ,
∑
i∈S

〈~λi, ~µi,τ 〉 = 〈rτ , c0〉+
∑
i∈S

〈~λi, e′i,τ 〉︸ ︷︷ ︸
=:e′′[τ]

∀τ ∈ [L].

3. Compute

v := c1 − R>c0 − e′′ = K ·Msg + e1 − R>e0 − e′′ ∈ ZLq.

4. Return Msg ∈ ZLp s.t. |v[i]− K ·Msg[i]| is minimal ∀i ∈ [L].

27

Based on LWE solely (4)

• Combine
(
pp,B = (S, |S| ≥ t, {~µi = {~µi,τ}τ∈[L]}i∈S), (c0, c1)

)
:

1. LISS: �nd a reconstruction vector
~λS = [~λ>j1 | . . . | ~λ

>
jt]> ∈ {−1,0, 1}dS .

2. LISS: compute

~µτ ,
∑
i∈S

〈~λi, ~µi,τ 〉 = 〈rτ , c0〉+
∑
i∈S

〈~λi, e′i,τ 〉︸ ︷︷ ︸
=:e′′[τ]

∀τ ∈ [L].

3. Compute

v := c1 − R>c0 − e′′ = K ·Msg + e1 − R>e0 − e′′ ∈ ZLq.

4. Return Msg ∈ ZLp s.t. |v[i]− K ·Msg[i]| is minimal ∀i ∈ [L].

27

Based on LWE solely (4)

• Combine
(
pp,B = (S, |S| ≥ t, {~µi = {~µi,τ}τ∈[L]}i∈S), (c0, c1)

)
:

1. LISS: �nd a reconstruction vector
~λS = [~λ>j1 | . . . | ~λ

>
jt]> ∈ {−1,0, 1}dS .

2. LISS: compute

~µτ ,
∑
i∈S

〈~λi, ~µi,τ 〉 = 〈rτ , c0〉+
∑
i∈S

〈~λi, e′i,τ 〉︸ ︷︷ ︸
=:e′′[τ]

∀τ ∈ [L].

3. Compute

v := c1 − R>c0 − e′′ = K ·Msg + e1 − R>e0 − e′′ ∈ ZLq.

4. Return Msg ∈ ZLp s.t. |v[i]− K ·Msg[i]| is minimal ∀i ∈ [L].

27

Results

Properties of the scheme
The scheme is compact, correct and adaptive-CCA secure under
the LWE assumption.

28

Did we forget something?

29

Detecting Corrupted Servers

Consistency

Assume that there is a public map Φ, such that Φ(PartDec(ski, ct, µ))

is deterministic and Combine only needs it to recover µ. No PPT
adversary A has non-negligible advantage in the game:

C A
←− t

(pk, {ski}i∈[N])←KeyGen(1λ, t)
(pk, sk1, . . . , sk`) −→

←− (ct∗, µ∗i , i)
Output 1 if

Φ(µ∗i) 6= Φ(PartDec(pk, ski, ct∗))

and PartVerify(pk, ct∗, µ∗i) = 1.

The advantage of A is Pr(C outputs 1).

30

Robustness

No PPT adversary A has non-negligible advantage in the game:

C A
←− t

(pk, {ski}i∈[N])←KeyGen(1λ, t)
(pk, sk1, . . . , sk`) −→

←− (ct∗, {µ0
i }i∈S0 ,S0, {µ1

j }j∈S1 ,S1)

Output 1 if ∀b ∈ {0, 1}, i ∈ Sb
PartVerify(pk, ct∗, µbi) = 1 and
Combine(pk, (S0, {µ0

i }), ct∗)
6= Combine(pk, (S1, {µ1

j }), ct∗).

The advantage of A is Pr(C outputs 1).

Consistency implies robustness.

31

A recipe to attain consistency/robustness

• Add a commitment to the secret key shares in the public key.
• Add a proof that the decryption was done with the committed

key share.
• PartVerify checks both the proof of good encryption and the

proof of good decryption.
• Witness-Indistinguishability is important to keep the IND-CCA

security under adaptive corruptions.

32

A recipe to attain consistency/robustness

• Add a commitment to the secret key shares in the public key.
• Add a proof that the decryption was done with the committed

key share.
• PartVerify checks both the proof of good encryption and the

proof of good decryption.
• Witness-Indistinguishability is important to keep the IND-CCA

security under adaptive corruptions.

32

The DCR case

• The commitment is vk := {g4Nζski,j
0 ,∀j ∈ ψ(−1)(i)∀i ∈ [`]}

• We build a WI Σ-protocol, which can be turned into a
NIWI/NIZK argument system for the language

Llog
i := {(g1, {hi,j, µi,j}j∈ψ(−1)(i)|

∀j ∈ ψ(−1)(i),∃sj ∈ [−B∗,B∗] : hi,j = g4Nζsj
0 ∧ µi,j = g2sj

1 }

• Use a transformation to turn it into a trapdoor Σ-protocol, due
to Ciampi et al.; SCN’20

• Compile it into a NIWI/NIZK unbounded simulation-sound
argument system (Setuplog,Plog

i ,Vlog
i)

33

Description of the modi�ed DCR scheme

• KeyGen′(1λ, t):
1. Run (pp,pk, sk1, . . . , sk`)← KeyGen(1λ, t).
2. Generate crslog = (Setuplog(1λ)) the global CRS.
3. Update the public key to

pk′ = (pk, crslog, vk := {g2Nζski,j
0 }(i,j)∈[`]×ψ(−1)(i)).

4. Return (pp,pk′, sk1, . . . sk`).

• PartDec′(pp, ski, ct = (C0, C1, ~π)):
1. Run ~µi ← PartDec(pp, ski, ct).
2. Then, generate

πi = Plog
i (crslog, (C0, vkψ(−1)(i), ~µi), ski).

3. Return ~µ′i = (~µi, πi).

34

Description of the modi�ed DCR scheme

• KeyGen′(1λ, t):
1. Run (pp,pk, sk1, . . . , sk`)← KeyGen(1λ, t).
2. Generate crslog = (Setuplog(1λ)) the global CRS.
3. Update the public key to

pk′ = (pk, crslog, vk := {g2Nζski,j
0 }(i,j)∈[`]×ψ(−1)(i)).

4. Return (pp,pk′, sk1, . . . sk`).

• PartDec′(pp, ski, ct = (C0, C1, ~π)):
1. Run ~µi ← PartDec(pp, ski, ct).
2. Then, generate

πi = Plog
i (crslog, (C0, vkψ(−1)(i), ~µi), ski).

3. Return ~µ′i = (~µi, πi).

34

Description of the modi�ed DCR scheme (2)

• PartVerify(pp,pk, ct, ~µ′i = (~µi, πi):
1. Check that ct = (C0, C1, ~π) is a valid ciphertext by running

V(crs, (c0, c1), ~π). If it is not, return 0.

2. If Vlog
i (crslog, ~µi, πi) = 0, then return 0.

3. Else, return 1.

35

The LWE case

• The commitment is Vi,τ := A · Rτ,Ψ(−1)(i) ∈ Zn×diq

• We build a WI trapdoor Σ-protocol, which can be turned into a
NIZK/NIWI argument system (Setuplwe

i ,Plwe
i ,Vlwe

i) for the
language Llwe

i = (Llwe
i,zk ,L

lwe
i,sound), where

Llwe
i,c =

{
(c0,Vi,τ , µi,τ)|∃ski,τ ∈ Zdi×m,Vi,τ = Aski,τ

∧ ‖µ>i,τ − c
>
0 ski,τ‖ ≤ Bce

∧ ‖(ski,τ)j‖ ≤ Bcr ,∀j ∈ [m]
}
,

for c ∈ {zk, sound}, using the construction from Libert et al.;

Asiacrypt’20.

36

Description of the modi�ed LWE scheme

• KeyGen′(1λ, t):
1. Run (pp,pk, sk1, . . . , sk`)← KeyGen(1λ, t).
2. Generate crslwe = (Setuplwe

i (1λ))i∈[`] the global CRS.
3. Update the public key to

pk′ = (A,U, crs, crslwe, {Vi,τ = A · R>τ,ψ−1(i), (i, τ) ∈ [`]× [L]}).

4. Return (pp,pk′, sk1, . . . sk`).

• PartDec′(pp, ski, ct = (c0, c1, ~π)):
1. Run ~µi = {~µi,τ}τ∈[L] ← PartDec(pp, ski, ct).
2. Then, for each τ ∈ [L], generate

πi,τ = Plwe
i (crslwe, ~µi,τ ,Rτ,ψ−1(i)).

3. Return ~µ′i = {~µi,τ , πi,τ}τ∈[L].

37

Description of the modi�ed LWE scheme

• KeyGen′(1λ, t):
1. Run (pp,pk, sk1, . . . , sk`)← KeyGen(1λ, t).
2. Generate crslwe = (Setuplwe

i (1λ))i∈[`] the global CRS.
3. Update the public key to

pk′ = (A,U, crs, crslwe, {Vi,τ = A · R>τ,ψ−1(i), (i, τ) ∈ [`]× [L]}).

4. Return (pp,pk′, sk1, . . . sk`).

• PartDec′(pp, ski, ct = (c0, c1, ~π)):
1. Run ~µi = {~µi,τ}τ∈[L] ← PartDec(pp, ski, ct).
2. Then, for each τ ∈ [L], generate

πi,τ = Plwe
i (crslwe, ~µi,τ ,Rτ,ψ−1(i)).

3. Return ~µ′i = {~µi,τ , πi,τ}τ∈[L].

37

Description of the modi�ed LWE scheme (2)

• PartVerify(pp,pk, ct, ~µ′i = {~µi,τ , πi,τ}τ∈[L]):
1. Check that ct = (c0, c1, ~π) is a valid ciphertext by running

V(crs, (c0, c1), ~π). If it is not, return 0.

2. For every τ ∈ [L], if Vlwe
i,τ (crslwe, ~µi,τ , πi,τ) = 0, then return 0.

3. Else, return 1.

38

Properties

Security of the modi�ed DCR-based scheme
The modi�ed scheme is IND-CCA secure under adaptive
corruptions and consistent.

Security of the modi�ed LWE-based scheme
The modi�ed scheme is IND-CCA secure under adaptive
corruptions and robust.

39

Properties

Security of the modi�ed DCR-based scheme
The modi�ed scheme is IND-CCA secure under adaptive
corruptions and consistent.

Security of the modi�ed LWE-based scheme
The modi�ed scheme is IND-CCA secure under adaptive
corruptions and robust.

39

Thank you for your attention!

40

	Definitions and Building Blocks
	Constructions
	Based on Decision Composite Residuosity
	Based on Learning With Errors: Threshold Dual Regev

	Detecting Corrupted Servers

