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Our Questions

1. Can we make rejection sampling faster?

2. How compact can Lyubashevsky’s signatures get?

3. How to reach this compactness?

4. Bonus:
4.1 Are the proofs in the litterature �awed?

4.2 Similar questions for the BLISS (Ducas et al.; Crypto’13)

variant

5. Can we do rejection sampling with bounded runtime?
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Motivations

• Already implemented in practice.

• NIST PQC standardisation project �nalist:

• Rejection sampling has been widely used since its introduction
in cryptography (Lyubashevsky; AC’09)...

• ... but mostly in a black-box manner, and only with very few
distributions.

J. Devevey - On Rejection Sampling in Lyubashevsky’s Signature Scheme 2



Table of contents

1. De�nitions

2. Lyubashevsky’s Signature Scheme
(Lyubashevsky; AC’09), (Lyubashevsky; EC’11)...

3. Results on Rejection Sampling

4. Minimizing Signature Size

J. Devevey - On Rejection Sampling in Lyubashevsky’s Signature Scheme 3



De�nitions

De�nitions

Lyubashevsky’s Signature Scheme
(Lyubashevsky; AC’09), (Lyubashevsky; EC’11)...

Results on Rejection Sampling

Minimizing Signature Size

J. Devevey - On Rejection Sampling in Lyubashevsky’s Signature Scheme 4



Digital Signature

• KeyGen
• Input: Security parameter 1λ

• Output: Signing key sk and veri�cation key vk

• Sign
• Input: sk and message µ

• Output: Signature σ

• Verify
• Input: vk and µ and σ

• Output: True or False
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Properties of Digital Signatures

• Correctness: Verify( vk , µ , Sign( sk , µ )) returns False with
negligible probability.

• Unforgeability: Without sk , it is hard to produce an unseen
valid pair ( µ∗ , σ∗ ) even with a signing oracle.
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Security Assumption

SISn,m,β
Given uniform A ∈ Zn×mq , �nd nonzero s ∈ Zmq s.t. ‖s‖ ≤ β and

A s = 0

• Post-quantum assumption based on Euclidean Lattices.

• Gets harder when β is smaller.
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KeyGen

sk vk

,A Sn

m

m

k

,A T = A Sn

k

where S is “small.”
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Sign

On input sk, µ, sample a small

y←↩ Q.

A signature σ for a message µ is of the form

c z

=Hc A , µyk +y cS
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Verify

vk c z

,A T = A S H A , µy +y cS

To verify, check that ‖z‖ ≤ γ and that

=Hc A , µz - T c
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Properties

Correctness
∀S, c : Pry←↩Q(‖y + Sc‖ > γ) ≤ negl(λ) =⇒ the scheme is correct.

• Instantiated with Q either Gaussian or Hypercube-Uniform,

• This version is not secure:
the distribution of z heavily depends on S.
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Making the Scheme secure

Ideal signature:

Sign2(µ,A,S) :

1: z←↩ P
2: c← U(C)

3: set H(Az− Tc, µ) = c
4: return (z, c)
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Intuition

• If Q Gaussian, take P = Q with standard deviation such that the
shi� Sc is not noticeable.

• If Q = U([−γ1, γ1]m), reject the signature if z 6∈ [γ2, γ2]m.
• Value of γ1, γ2?

• Generalise for Gaussians and other distributions?
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Making the Scheme secure

Ideal signature:

Sign2(µ,A,S) :

1: z←↩ P
2: c← U(C)

3: set H(Az− Tc, µ) = c
4: return (z, c)

Two solutions:

1. Flooding
• Set the standard deviation of Q

really large
• Consequence: γ is really large
• Used by (Damgård et al.;

CRYPTO12), (Agrawal et al.;

ICALP22)

2. Rejection Sampling
(Lyubashevsky; AC’09)
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Rejection Sampling for Lyubashevsky’s Signatures

• Widely studied and folklore technique from probabilities

• Turns the distribution of (z, c) into P⊗ U(C)

• First used for signatures in (Lyubashevsky; AC’09)

Is the way we use rejection sampling “optimal” (in some sense)?
What distributions can we use?
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Context

• Given access to many samples distributed following D̃...

• ... How to �nd a sample distributed following D?

• B Without modifying the samples!
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Setting

• D, D̃ two probability distributions,
• X1, . . . , Xi, . . . , i.i.d. random variables following D̃.

Rejection Sampling Strategy
A family (Ai : Supp(D̃)i → [i] ∪ {⊥})i≥1 of randomized algorithms
such that XJ ←↩ D, where

• i∗ = min{i|Ai(X1, . . . , Xi) 6= ⊥},
• J = Ai∗(X1, . . . , Xi∗).

Goal: minimize E(i∗).
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Standard Rejection Sampling

M · D̃

D

Figure 1: Acceptance zone and sampling domain

Standard Rejection Sampling

Ai : (X1, . . . , Xi) 7→

i w.p. D(Xi)
M·D̃(Xi)

,

⊥ otherwise.

Works if D(x) ≤ M · D̃(x) for all x. In this case E(i∗) = M.
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Imperfect Rejection Sampling (Lyubashevsky; EC’11)

M · D̃

D

Figure 2: Acceptance zone and sampling domain

Ai : (X1, . . . , Xi) 7→

i w.p. min
(

D(Xi)
M·D̃(Xi)

, 1
)
,

⊥ otherwise.

Closeness of Imperfect Rejection Sampling
If Prx←↩D(D(x) ≤ M · D̃(x)) ≥ 1− ε then the resulting distribution PXJ
is such that ∆(PXJ ,D) ≤ ε.
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Rényi Divergence

Let D, D̃ be two probability distributions.

De�nition

R∞(D‖D̃) = sup
x∈Supp(D)

D(x)

D̃(x)
.

Our generalization for any ε > 0:

ε-smooth Rényi divergence

Rε∞(D‖D̃) = inf
S

D(S)≥1−ε

sup
x∈S

D(x)

D̃(x)
.

Example: R∞(Dmσ,c‖Dmσ ) = +∞ whereas Rε∞(Dmσ,c‖Dmσ ) < +∞.
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Optimality of perfect Rejection Sampling

Rejection Sampling Strategy
A family (Ai : Supp(D̃)i → [i] ∪ {⊥})i≥1 of randomized algorithms
such that XJ ←↩ D, where

• i∗ = min{i|Ai(X1, . . . , Xi) 6= ⊥},
• J = Ai∗(X1, . . . , Xi∗).

Contribution: Optimality of the standard strategy
Given any strategy (Ai)i≥1,

E(i∗) ≥ R∞(D‖D̃).

Reached for M = R∞(D‖D̃).
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Imperfect RS in terms of Divergence

Contribution: computing the Divergence

R∞(PXJ‖D) ≤ 1
1− ε .

Comparisons

• PXJ(E) ≤ D(E) + ε with SD.

• PXJ(E) ≤ D(E)
1−ε ≈ (1 + ε) · D(E) with RD.

If Qs signatures are produced,

ε =

{
O(2−λ) with SD,
O(1/Qs) with RD.
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Minimizing Signature Size
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Instantiating Rejection Sampling

Take any discrete P and Q and set

• D̃ distribution of (z, c) where y←↩ Q, c←↩ U(C) and z = y + Sc,

• D = P⊗ U(C),

• D(z,c)

D̃(z,c)
= P(z)

Q(y) .

Set M ≥ Rε∞(D‖D̃) for some ε ≥ 0.
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Generic Signature

Sign(µ,A,S) :

1: y←↩ Q
2: c← H(Ay, µ)

3: z← y + Sc
4: With probability min

(
P(z)
M·Q(y) , 1

)
return (z, c)

5: else go to Step 1

≈ Sign1(µ,A,S) :

1: y←↩ Q
2: c← U(C)

3: z← y + Sc
4: set H(Ay, µ) = c

5: With probability min
(

P(z)
M·Q(y) , 1

)
return (z, c)

6: else go to Step 1

Can be adapted to work with continuous P and Q.
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Contribution: Understanding how to set the Parameters

Probability Preservation Property
If A makes Qs signature queries:

Pr(ASign1 forges) ≤ Pr(ASign2 forges)

(1− ε)Qs
.

Set ε = O(1/Qs) (as opposed to ε = 2−Ω(λ) before).

Multiplicativity

Rε∞(D‖D̃) ≤ max
S,c

Rε∞(P‖QSc).

Set M ≥ maxS,c Rε∞(P‖QSc).
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Our Goal

Let ε ≥ 0 and M > 1, �xing the runtime.
Let Prz←↩P(‖z‖ > γ) = negl(λ).
Goal: �nd P,Q such that maxS,c Rε∞(P‖QSc) ≤ M minimizing γ.

Minimize γ
⇓

Cryptanalysis becomes more costly
⇓

Smaller parameters overall for the same level of security
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Current choices of Distributions

P, Q Sampling Rejection O(γ)(ε=0) O(γ)(ε= 1
Qs )

U( ) Easy Deterministic t
√
mm

logM Same

−6 −4 −2 0 2 4 6

0

0.2

0.4

Cumbersome Probabilistic ∞ t
√
m log 1

ε√
logM

(where t = maxS,c‖Sc‖)

The �rst distribution is used in the Dilithium signature scheme.
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Our proposal

Use the uniform continuous distribution over

P, Q Sampling Rejection O(γ)(ε=0) O(γ)(ε= 1
Qs )

U( ) Easy Deterministic t
√
mm

logM Same

−6 −4 −2 0 2 4 6

0

0.2

0.4

Cumbersome Probabilistic ∞ t
√
m log 1

ε√
logM

U( ) Cumbersome Deterministic tm
logM

t
√
m log 1

ε

logM

J. Devevey - On Rejection Sampling in Lyubashevsky’s Signature Scheme 31



Our proposal

Use the uniform continuous distribution over

P, Q Sampling Rejection O(γ)(ε=0) O(γ)(ε= 1
Qs )

U( ) Easy Deterministic t
√
mm

logM Same

−6 −4 −2 0 2 4 6

0

0.2

0.4

Cumbersome Probabilistic ∞ t
√
m log 1

ε√
logM

U( ) Cumbersome Deterministic tm
logM

t
√
m log 1

ε

logM

J. Devevey - On Rejection Sampling in Lyubashevsky’s Signature Scheme 31



Intuition

Hyperballs versus hypercubes:

• {Sc} ≈ Bm(t) ∩ Zm and γ is a bound on the Euclidean norm.

• Factor
√
m gained because of ‖·‖ ≤

√
m‖·‖∞.

Cut and smooth divergence:

• Remove a hyperspherical cap opposed to Sc.

• Volume allowed depends on ε.

Continuous versus discrete hyperballs:

• Easier to study.

• Easier to sample from.
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Optimality

Contribution: Lower bounds on compactness
When ε = 0, for �xed M > 1 and any choice of P and Q such
that maxS,c R∞(P‖QSc) ≤ M:

γ ≥ t(m− 1)

logM
.
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Intuition of the proof

1. Do the proof for continuous distributions then discretize the
result.

2. Model {Sc} as U(Bm(t)).

3. Isotropise P and Q.

4. Deduce a functional inequality on P from the constraint.

5. Solve it.
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Bonus: Fixing the Proofs

De�nitions

Lyubashevsky’s Signature Scheme
(Lyubashevsky; AC’09), (Lyubashevsky; EC’11)...

Results on Rejection Sampling

Minimizing Signature Size
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Claims from the Litterature

Claims
In the standard model for Prz←↩P(‖z‖ ≥ γ) ≤ negl(λ)

and t = maxS,c‖Sc‖, the scheme is

• correct,

• has expected number of iterations M,

thanks to the properties of rejections sampling.
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Flaw

• B D and D̃ are chosen for Sign1.

• H not a random oracle =⇒ z is not distributed following P and
expected number of iterations is not M.

• Correctness and runtime analysis relying on this in the
litterature are �awed.

• There are examples for which the expected runtime is in�nite.
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Properties

Contribution: Fix the proofs
In the Random Oracle Model, for Prz←↩P(‖z‖ ≥ γ) ≤ negl(λ)

and t = maxS,c‖Sc‖, the scheme is

• correct,

• sEU-CMA secure under the SISn,m,2(γ+t) assumption,

• and the number of iterations i∗ of a call to Sign is such that

Pr(i∗ ≥ i) ≤
(

1− 1− ε
M

)i
+ negl(λ).
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Conclusion and Open Questions

Open questions

1. Concrete instantiation?

2. E�cient sampling from the continuous ball?

3. Totally removing rejection while keeping compactness?

4. Automatisation of rejection-based signature design?
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Thank you for your attention!
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BLISS
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BLISS Variant (Ducas et al.; Crypto’13)

Sign(µ,A,S) :

1: y←↩ Q
2: c← H(Adyc, µ)

3: b←↩ U({0, 1})
4: z← y + (−1)bSc
5: With probability

min
(

P(z)
M·(Q(z+Sc)+Q(z−Sc))/2 , 1

)
return (dzc, c)

6: else go to Step 1

• KeyGen and Verify are
adapted to keep
correctness and security,

Contribution: Lower bounds

γ ≥ t
√
m− 2

log(M/2)
.

• Reached for Gaussians and
continuous
Hyperball-Uniforms.
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