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2 Integration theory
The first sections, Section 2.1 and Section 2.2 are presented as complements only. We will
not discuss these topics in the course, but you may find it useful later to have them here. In
particular, the formulation of the Riesz representation theorem (by measure), Theorem 2.3, is
adapted to a treatment of functions of bounded variations.

2.1 Complex measures
Definition 2.1 (Complex measure). Let (X,A) be a measure space. A complex measure over
(X,A) is a set function µ : A → C such that, for all A ∈ A, one has

µ(A) =
∞∑
i=1

µ(Ai), (2.1)

for all countable partition (Ai)i≥1 of A, the sum in (2.1) being absolutely convergent.

When a complex measure takes values in R, one sometimes speaks of real measure, or signed
measure (however, certain authors authorize signed measures to take the value +∞, i.e. µ : A →
(−∞,+∞], e.g. [SS05, Chapter 6.4]). In this notes, “signed measure” are complex measures
such that µ(A) ∈ R for all A ∈ A, so |µ(A)| < +∞ for every A.

Proposition 2.1 (Total variation). Let µ be a complex measure over the measure space (X,A).
The formula

|µ|(A) = sup
{ ∞∑
i=1
|µ(Ai)|

}
, (2.2)

where the supremum is taken over all countable partitions (Ai)i≥1 of A, defines a non-negative
finite measure |µ| on A called the total variation of µ.

The most difficult point in Proposition 2.1 is the proof that |µ| is a finite measure, see [Rud87,
Theorem 6.4] for instance, or “Intégration et mesures”, Chapter VII-2.

Proposition 2.2 (Total variation, some properties). Let µ be a signed measure over the measure
space (X,A). We have the following properties:

a) Jordan decomposition: µ = µ+ − µ−, where

µ+ := 1
2 (|µ|+ µ) and µ− := 1

2 (|µ| − µ) (2.3)

are finite positive measure,

b) Factorization: there exists a measurable function σ : X → R such that

|σ(x)| = 1 for a.e. x ∈ X and µ(A) =
ˆ
A

σ(x)d|µ|(x), (2.4)

for all A ∈ A,
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c) Hahn decomposition: there exists some measurable sets A− and A+ such that A− ∩A+ =
∅ and the positive and negative parts defined in (2.3) are concentrated on A+ and A−
respectively:

µ+(E) = µ(E ∩A+) and µ−(E) = µ(E ∩A−), (2.5)

for all E ∈ A.

Proof of Proposition 2.2. Taking A1 = A and Ai = ∅ if i > 1 in (2.2), we see that

|µ(A)| ≤ |µ|(A), (2.6)

for all A ∈ A. The measures µ± in (2.3) are positive therefore, and it is obvious that µ = µ+−µ−
(note also that |µ| = µ+ + µ−). The factorization (2.4) is a consequence of the Radon-Nikodym
theorem. To obtain the Hahn decomposition (2.5), we use (2.4) and set A± = {σ = ±1}.

The integral of a measurable function f : X → R against µ is defined as
ˆ
X

fdµ =
ˆ
X

fdµ+ −
ˆ
X

fdµ−, (2.7)

provided ˆ
X

|f |d|µ| < +∞. (2.8)

Under (2.8), both terms in the right-hand side of (2.7) are well defined and finite, in particular we
do not have to consider an indeterminate form ∞−∞. Using the “notation” (2.7), the relation
(2.4) can be written ˆ

X

fdµ =
ˆ
X

fσd|µ|, (2.9)

for f = 1A, the characteristic function of A. By linearity, (2.9) holds true when f is a simple
function. If f : X → R is positive and satisfies (2.8), approximation by simple functions shows
that (2.9) remains true for f . Finally, using the decomposition f = f+ − f− into positive and
negative parts, we obtain (2.9) for any f satisfying (2.8).

2.2 F. Riesz Representation Theorem by measures
For d,m ∈ N \ {0}, the set of continuous, compactly supported functions Rd → Rm is denoted
by Cc(Rd;Rm). If m = 1, we use the simpler notation Cc(Rd). Let A be a σ-algebra on Rd
containing all the Borel sets, let µ be a Borel positive measure on A such that µ(K) < +∞
for all compact subset K of Rd, let σ : Rd → Rm be a bounded measurable function. For each
f ∈ Cc(Rd;Rm), we set

T (f) =
ˆ
Rd
f(x) · σ(x)dµ(x), (2.10)

where f(x) · σ(x) is the canonical scalar product of f(x) and σ(x) in Rm (we also denote by
| · | the associated euclidean norm in (2.11) below). Then (2.10) defines a linear functional
Cc(Rd;Rm)→ R with the following property: for all compact K of Rd,

sup
{
|T (f)|; f ∈ Cc(Rd;Rm), |f(x)| ≤ 1 for all x ∈ Rd, f supported in K

}
< +∞. (2.11)

Indeed, the sup in (2.11) is bounded by ‖σ‖L∞(Rd)µ(K). Conversely, we have the following
representation theorem.
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Theorem 2.3 (F. Riesz Representation Theorem by measures). Let T : Cc(Rd;Rm) → R be a
linear functional satisfying (2.11) for all compact K of Rn. Then, there exists a σ-algebra A on
Rd containing all the Borel sets, a regular Borel positive measure µ on A such that µ(K) < +∞
for all compact subset K of Rn, a measurable function σ : Rd → Rm such that |σ(x)| for a.e.
x ∈ Rn, for which the identity (2.10) is satisfied for all f ∈ Cc(Rd;Rm).

This statement of the F. Riesz Representation Theorem is taken from [EG15, Chapter 1.8] (note
that we do not refer to [EG92], but instead to the revised version [EG15]). Beware that the term
“measure” in [EG15] means1 “outer measure”. You may be more familiar with the versions of the
Riesz Representation Theorem (by measures) which can be found in Real and complex analysis
by Rudin (see [Rud87, p.40 and p.130] for instance, or “Intégration et mesures”, Chapter VII-1).
These versions can be deduced from Theorem 2.3, see Theorem 2.4 and Theorem 2.5 below. The
measure µ in Theorem 2.3 is regular. We recall that this means that it is both outer regular: for
all A ∈ A,

µ(A) = inf{µ(U);A ⊂ U,U open}, (2.12)

and inner regular: for all A ∈ A,

µ(A) = sup{µ(K);K ⊂ A,K compact}. (2.13)

We make one more additional remark (this will be used in the proof of Theorem 2.5): the measure
µ in Theorem 2.3 is defined as follows: first,

µ(V ) = sup
{
T (f); |f(x)| ≤ 1 for all x ∈ Rd, f supported in V

}
, (2.14)

if V is open and then
µ(A) = inf {µ(V );A ⊂ V, V open} , (2.15)

for any set A.

Theorem 2.4 (F. Riesz Representation Theorem, positive linear functionals). Let T : Cc(Rd)→
R be a positive linear functional:

f ∈ Cc(Rd), f(x) ≥ 0 for all x ∈ Rd ⇒ T (f) ≥ 0. (2.16)

Then, there exists a σ-algebra A on Rd containing all the Borel sets, a regular Borel positive
measure µ on A such that µ(K) < +∞ for all compact subset K of Rn, for which the identity

T (f) =
ˆ
X

fdµ. (2.17)

is satisfied for all f ∈ Cc(Rd).

Proof of Theorem 2.4. Consider first T satisfying (2.16). Using the linearity of T , we obtain the
following monotony property

f ≤ g ⇔ 0 ≤ g − f ⇒ 0 ≤ T (f − g) = T (f)− T (g)⇔ T (f) ≤ T (g). (2.18)

Let K be a compact subset of Rd and let FK ∈ Cc(Rd) satisfy 0 ≤ FK ≤ 1, FK ≡ 1 on K. Then
every function f ∈ Cc(Rd) such that |f | ≤ 1, f supported in K can be bounded as follows:

− FK ≤ f ≤ FK . (2.19)
1see “Intégration et mesures”, Chapter III-2.
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Using (2.18), we deduce that |T (f)| ≤ T (FK): the condition (2.11) is satisfied. We deduce that
T has the representation

T (f) =
ˆ
X

fσ(x)dµ, (2.20)

where σ(x) ∈ {−1,+1}. Suppose by contradiction that A := {σ = −1} has a positive measure
ε. By regularity of µ, there is a compact K with µ(K) ≥ ε/2 > 0 such that K ⊂ A. Let
fK ∈ Cc(Rd) be a function such that 0 ≤ fk ≤ 1 and fK ≡ 1 on K. We have then

− T (fK) ≥
ˆ
K

fKdµ ≥ µ(K) > 0, (2.21)

a contradiction. So σ = 1 a.e., and we obtain the representation (2.17).

Theorem 2.5 (F. Riesz Representation Theorem, bounded linear functionals). LetM(Rd) de-
note the set of signed Borel measures µ on Rd endowed with the norm ‖µ‖M(Rd) = |µ|(Rd). Let
C0(Rd) denote the space of continuous functions Rd → R which tends to 0 at +∞, endowed with
the sup norm ‖f‖C(Rd) = supx∈Rd |f(x)|. Then the map

µ 7→ Tµ, Tµ(f) =
ˆ
Rd
fdµ, (2.22)

defines an isomorphism betweenM(Rd) and the topological dual space to C0(Rd) such that

‖Tµ‖ = ‖µ‖M(Rd) (2.23)

for all µ ∈M(Rd).

Before giving the proof of Theorem 2.5, we must explain some notations in (2.23) and make some
comments.

1. The integral in (2.22) has been defined in (2.7). Any f ∈ C0(Rd) is measurable and
bounded, so (2.8) is satisfied since

ˆ
Rd
|f |d|µ| ≤ ‖f‖C(Rd)|µ|(Rd). (2.24)

2. The space C0(Rd) endowed with the sup norm is a Banach space (it is a closed subspace
of the Banach space Cb(Rd) of bounded continuous functions). The natural norm on the
topological dual space to C0(Rd) is the dual norm

‖T‖ = sup{|T (f)|; f ∈ C0(Rd), ‖f‖C(Rd) ≤ 1}. (2.25)

This is the norm used in (2.23).

3. We have asserted that ‖µ‖M(Rd) := |µ|(Rd) defines a norm onM(Rd). This is indeed the
case and is rather easy to check: the positive homogeneity and the triangular inequality
follow from (2.2). By (2.6), we have µ ≡ 0 if |µ|(Rd) = 0.

4. We will establish that the map (2.22) is injective, the identity µ = ν, for µ, ν ∈ M(Rd),
being understood in the sense that µ(A) = ν(A) for all Borel sets A. See also Remark 2.1
below on that aspect.
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Proof of Theorem 2.5. Let ν ∈M(Rd). By (2.9), we have

Tν(f) =
ˆ
Rd
f(x)σ(x)dµ(x), µ := |ν|, (2.26)

where σ = 1 µ-a.e. It follows that

|Tν(f)| ≤ ‖f‖C(Rd)µ(Rd). (2.27)

This shows that Tν is in the topological dual to C0(Rd) and that ‖Tν‖ ≤ ‖ν‖M(Rd). Let us apply
Theorem 2.3, to show that (2.22) is surjective: if T is in the topological dual space to C0(Rd),
then T is characterized by its values on Cc(Rd) since Cc(Rd) is dense in C0(Rd) for the sup
norm. It is sufficient to establish that T (f) = Tν(f) for a given ν, for all f ∈ Cc(Rd). Let K be
a compact subset of Rd and let f ∈ Cc(Rd) be supported in K, with |f | ≤ 1. Then

|T (f)| ≤ ‖T‖‖f‖C(Rd) ≤ ‖T‖, (2.28)

so (2.11) is satisfied. By Theorem 2.3, there exists a σ-algebra A on Rd containing all the Borel
sets, a regular Borel positive measure µ on A such that µ(K) < +∞ for all compact subset K of
Rn, a measurable function σ : Rd → Rm such that |σ(x)| for a.e. x ∈ Rn. The bound (2.11) that
we have obtained by (2.28) is independent of K, and this induces µ to be finite. This is clear if
we come back to (2.14): taking V = Rd, we obtain

µ(Rd) ≤ ‖T‖. (2.29)

For A ∈ A, let us set
ν(A) =

ˆ
A

σdµ. (2.30)

Then ν is a signed measure: if (Ai) is a countable partition of a set A, then∑
i

|ν(Ai)| ≤
∑
i

µ(Ai) = µ(A) < +∞, (2.31)

and ν(A) =
∑
i ν(Ai) as a consequence of the identity∑

i

ˆ
Rd
σ1Aidµ =

ˆ
Rd

∑
i

σ1Aidµ, (2.32)

which follows from the dominated convergence theorem (or Fubini-Tonelli theorem) since
ˆ
Rd

∑
i

|σ1Ai |dµ ≤ µ(A) < +∞. (2.33)

We claim that |ν| = µ. Let A ∈ A and let B± = {σ = ±1}. Since ν(A ∩B±) = ±µ(A ∩B±) by
(2.30), the definition (2.2) gives us

|ν|(A ∩B±) = µ(A ∩B±), (2.34)

and thus |ν| = µ since
|ν|(A) = |ν|(A ∩B+) + |ν|(A ∩B−). (2.35)

We also notice that

ν+(A ∩B−) = 1
2 (|ν|(A ∩B−) + ν(A ∩B−)) = 1

2 (µ(A ∩B−)− µ(A ∩B−)) = 0, (2.36)
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so

ν+(A) = ν+(A ∩B+) = 1
2 (|ν|(A ∩B+) + ν(A ∩B+)) = µ(A ∩B+). (2.37)

Similarly ν−(A) = µ(A ∩ B−). Passing from characteristic functions to simple functions and
then to integrable functions, we obtain

ˆ
Rd
fdν+ =

ˆ
B+

fdµ,

ˆ
Rd
fdν− =

ˆ
B−

fdµ, (2.38)

for any f ∈ Cc(Rd). Finally, by means of (2.38), we can gather (2.10) and the definition (2.7) to
obtain

T (f) =
ˆ
Rd
fσdµ =

ˆ
B+

fdµ−
ˆ
B−

fdµ =
ˆ
Rd
fdν+ −

ˆ
Rd
fdν− = Tν(f). (2.39)

Let us now show the injective character of the map (2.22). Let ν1, ν2 ∈ M(Rd) be such that
Tν1 = Tν2 =: T . Let us say that a signed measure ν is regular if both ν+ and ν− are regular
(it is easy to see that this is equivalent to the fact that |ν| is regular). Since the map (2.22) is
surjective, as proved already, we have T = Tν , where ν is a regular signed measure on a σ-algebra
which contains the Borel sets. Since ν1 = ν & ν2 = ν implies ν1 = ν2, we may as well assume
that one of the two measures, say ν2, is regular. Can we use this extra information to help us
to conclude? We will see that this is helpful indeed if ν1 has a sign (one of the measure ν±1 is
trivial). This is of course a restrictive case, but still, this is interesting to consider it. For the
moment, let us go on with the proof of uniqueness, without assuming that ν1

+ or ν1
− = 0. Let K

be a compact set. Set f(x) = 1K(x) and consider the sequence of functions

fn(x) = sup
y∈Rd

[f(y)− n|x− y|] . (2.40)

If x ∈ K, the sup in (2.40) is 1. If x is at distance greater than n−1 of K, then the sup is 0. In
both cases, the sup is reached for y = x. Suppose that 0 < d(x,K) < n−1 and let yK ∈ K such
that |x− yK | = d(x,K). If y ∈ K, then

f(y)− n|x− y| = 1− n|x− y| ≤ 1− nd(x,K) = f(yK)− n|x− yK |. (2.41)

If y /∈ K, then

f(y)− n|x− y| = −n|x− y| ≤ 0 ≤ 1− nd(x,K) = f(yK)− n|x− yK |. (2.42)

Consequently, fn(x) = 1− nd(x,K). Finally, we obtain the alternative expression

fn(x) = (1− nd(x,K))+. (2.43)

We may have defined fn(x) directly by (2.43), but it is instructive to use the general regularization
formula (2.40), which is known as2 “sup-convolution”. This is indeed a way to regularize f since
each fn is n-Lipschitz continuous (see Lemma 2.6 below). We obtain also a non-increasing
sequence such that fn(x) ↓ f(x) for all x. Note also that each fn is compactly supported. Recall
that the identity Tν1(fn) = Tν2(fn) means

ˆ
Rd
fndν

+
1 −

ˆ
Rd
fndν

−
1 =

ˆ
Rd
fndν

+
2 −

ˆ
Rd
fndν

−
2 . (2.44)

2the “inf-convolution” of f is fn(x) = infy∈Rd [f(y) + n|x− y|]

8



By monotone convergence in each of the four terms of (2.44), we deduce that

ν1(K) = ν2(K). (2.45)

Let us prove that fn is n-Lipschitz continuous. This can be deduced from the expression (2.43)
since x 7→ d(x,K) is 1-Lipschitz continuous, but we can as well prove the following general
lemma.

Lemma 2.6 (Regularity of the sup-convolution). Let f : Rd → R be a bounded function. Then
the sup-convolution fn defined by (2.40) is n-Lipschitz continuous.

Proof of Lemma 2.6. Fix M such that |f | ≤M on Rd. We show first that the sup is a max. Set
F (y, x) = f(y)− n|y − x|. Note that F (y, x) ≤M for all y, x, so the sup defining fn(x) is finite.
For each M ∈ N \ {0}, there exists ym ∈ Rd such that

F (ym, x) > fn(x)−m−1. (2.46)

The sequence (ym) is a maximizing sequence. Let us show that it is bounded. We have

fn(x) = sup
y∈Rd

F (y, x) ≥ F (x, x) ≥ −M. (2.47)

With (2.46), this implies

n|ym − x| = −F (ym, x) + f(ym) ≤ −fn(x) +m−1 +M ≤ 2M +m−1. (2.48)

Up to extraction of a subsequence, we can assume that (ym) is converging to a given y∗ in Rd.
We can pass to the limit in (2.46) then, to deduce that fn(x) = F (y∗, x). If x1, x2 ∈ Rd now,
and if y1, y2 ∈ Rd are such that F (yi, xi) = fn(xi), i = 1, 2, then

fn(x1)− fn(x2) = f(y1)− n|y1 − x1| − fn(x2) (2.49)

The triangular inequality |y1 − x1| ≤ |y1 − x2|+ |x1 − x2| gives

fn(x1)− fn(x2) ≥ −n|x1 − x2|+ F (y1, x2)− fn(x2) ≥ −n|x1 − x2|. (2.50)

By symmetry of x1 and x2 in (2.50), we obtain the result.

Let V be an open set. We will use (2.45) to show that ν1(V ) = ν2(V ). The set Kn = V c∩B̄(0, n)
is compact, so ν1(Kn) = ν2(Kn), which we can rewrite as

ν+
1 (Kn) + ν−2 (Kn) = ν+

2 (Kn) + ν−1 (Kn). (2.51)

The sequence (Kn) is non-decreasing with ∪Kn = V c. By taking the limit n → +∞ in (2.51)
and using the continuity for increasing limits of positive measures, we obtain

ν+
1 (V c) + ν−2 (V c) = ν+

2 (V c) + ν−1 (V c), (2.52)

which is equivalent to ν1(V c) = ν2(V c), and thus to

ν1(V ) = ν2(V ). (2.53)

At this point, let us assume that ν−1 = 0. We will show that ν1 is regular. This will give the
conclusion ν1 = ν2, by (2.12)-(2.13) and (2.45)-(2.53). Let A be a Borel set and let ε > 0. There
exists some compact sets K and some open set V such that

K ⊂ A ⊂ V, ν2 + (V \K) < ε. (2.54)
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From (2.45) and (2.53), we deduce then that

ν+
1 (V \K) = ν1(V \K) = ν2(V )− ν2(K) = ν2(V \K) ≤ ν2 + (V \K) < ε. (2.55)

This shows that ν1 = ν+
1 is regular. Let us now show that ν1 = ν2 without the extra assumption

that ν−1 = 0. Let µ = ν1
+ + ν−2 and µ̃ = ν+

2 + ν−1 . These are two positive measures, for which
we want to prove that µ(A) = µ̃(A), A ∈ B(Rd), the class of Borel sets of Rd. There are some
general results, that allow to infer, from the equality of two measures on a class C, the equality on
the σ-algebra σ(C) generated by C. In particular, we have the following result ([Bil95, Theorem
10.4], or “Intégration et mesures”, Chapter III-1):.

Theorem 2.7. Assume

i) C is a π-system (it is stable by finite intersection),

ii) µ = µ̃ on C,

iii) Rd is C-σ-finite: there exists a non-decreasing sequence of sets An ∈ C such that Rd = ∪An
and µ(An) = µ̃(An) < +∞ for each n.

Then µ = µ̃ on σ(C).

The finiteness hypothesis iii) is necessary, as shown by the example µ = one-dimensional Lebesgue
measure, µ̃ = 2µ, C being the class of sets (a,+∞), a ∈ R. In our case, the measures are finite:
using (2.53), we can directly apply the theorem with C being the class of open sets of Rd. To
conclude, we still have to prove the identity (2.23). It is a direct consequence of (2.27) (where
µ = |ν|) and (2.29)-(2.39).

Remark 2.1 (Regularity of measures). The proof of Theorem 2.5 shows that any µ ∈ M(Rd) is
regular.
Remark 2.2 (F. and M. Riesz). Frigyes and Marcel Riesz are two Hungarian brothers, both
mathematicians. Frigyes Riesz is considered as one of the founder of functional analysis. Marcel
Riesz has worked on different topics, the theory of partial differential equations in particular. He
was the mentor of Lars Hörmander. We have encountered one (or three, depending on the way
we count) theorem by F. Riesz. Theorem 2.15 below involves M. Riesz.

2.3 Integration of Banach-valued functions
Let E be a Banach space with norm ‖ · ‖, and let (X,A, µ) be a measure space with µ finite:
µ(X) < +∞. In this section, we will discuss the integration of functions u : X → E. This theory
is needed in various contexts, for instance:

• when one wants to solve partial differential equations involving both a time variable t and
a space variable x. The solution u is often viewed as a map [0, T ] → E, where E is a
“functional space”, a space of functions depending on the variable x, the integration space
being X = [0, T ], µ =Lebesgue measure,

• when one considers random variables taking values in an infinite-dimensional space. Then
(X,A, µ) is a probability space. A renowned example is given by the Wiener measure,
which gives a way to draw elements in E = C([0, 1];Rd) at random, modelling the Brownian
motion.

For references, see [Eva10, Appendix E.5], [Yos80, Chapter V.5], [DPZ14, Chapter 1.1].
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Definition 2.2 (Measurable functions). A function u : X → E is said to be

• measurable if u−1(B) ∈ A for all Borel set B of E,

• weakly measurable if, for all ϕ in the topological dual E∗ of E, the map ϕ ◦ u : X → R is
measurable.

Proposition 2.8 (Approximation by simple functions). Assume that E is separable. If u : X →
E is measurable, then there is a sequence of simple3 functions un such that ‖un(x) − u(x)‖ ↓ 0
for all x ∈ X.

Proof of Proposition 2.8. Let (vk) be a sequence of points in E such that {vk; k ∈ N} is dense
in E. Given a “level” n ≥ 0, we construct un as a function taking values in the finite set
Dn = {vk; k ≤ n}. For each x ∈ X, we set un(x) = vk, where vk is the closest element to
u(x) in Dn. Let ε > 0. There exists N such that ‖u(x) − vN‖ < ε. By construction then,
‖u(x)− un(x)‖ < ε for n ≥ N . So un(x)→ u(x) when n→ +∞. It is clear also by construction
that n 7→ ‖un(x)− u(x)‖ is non-increasing. Let us check that un is measurable. We have

un(x) = vk ⇐⇒ ∀j ∈ {1, . . . , n}, ‖u(x)− vk‖ ≤ ‖u(x)− vj‖, (2.56)

so

{un = vk} =
n⋂
j=1
{x ∈ X; ‖u(x)− vj‖ − ‖u(x)− vk‖ ≥ 0} . (2.57)

To conclude it is sufficient to remark that, for all v ∈ E,

f : x 7→ ‖u(x)− v‖ (2.58)

is measurable since {f ≥ α} = u−1(B̄(v, α)).

Remark 2.3 (Control on ‖un‖). Let us define

ũn = un1{‖un‖≤2‖u‖}, (2.59)

where (un) is the sequence defined in Proposition 2.8. The set {‖un‖ ≤ 2‖u‖} is measurable
so (ũn) is a sequence of simple functions. For each x such that u(x) 6= 0, for each ε > 0 with
ε < ‖u(x)‖, there is a n = n(x) such that ‖u(x)− um(x)‖ < ε for all m ≥ n(x). Then

‖um(x)‖ ≤ ‖u(x)− um(x)‖+ ‖u(x)‖ ≤ 2‖u(x)‖, (2.60)

and ũm(x) = um(x). This shows that (ũn) is converging point-wise to u. This gives us a sequence
of simple functions which converges to u and such that ‖un(x)‖ ≤ 2‖u(x)‖ for all x ∈ X. This
is used in the proof of Proposition-Definition 2.12.
Remark 2.4 (Alternative construction of approximating sequence of simple functions). In Propo-
sition 2.8, we start from the point u(x) ∈ E and build un(x) for n = 1, 2, . . . simply by adding
points to the “clouds” of points D1, D2, . . . and “jumping” to a new value if it gets closer to
u(x). The correction ũn(x) in Remark 2.3 follows the same process, except that we first wait at
the point 0, until there arrives a point vk in the ball B̄(0, 2‖u(x)‖).
To construct the approximating sequence (un), there is an other way to proceed, more similar
to what is done in the case of real-valued functions. For a fixed size ε > 0, we construct a “grid”
of the whole space E by considering some balls Bk,ε centred on the elements vk, then replace

3a function X → E is said simple if it is measurable and takes only a finite number of values
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locally u by the constant value given by the center of the ball, and truncate in some way to get
a simple function. One can consider the collection of balls Bk,ε = B(vk, ε) for instance. They
do not form a grid, since there may be some overlaps, so first we correct this by considering the
collection {B′k,ε; k ≥ 1}, where

B′k,ε = Bk,ε \ ∪k−1
i=1 Bi,ε. (2.61)

Then we set uε(x) = vk if u(x) ∈ B′k,ε and k < ε−1, and set uε(x) = 0 otherwise:

uε =
∑
k<ε−1

vk1Ak,ε , Ak,ε = u−1(B′k,ε). (2.62)

We obtain a sequence of simple function (uε) such that uε(x) → u(x) for all x. Again, appears
the problem that we do not control ‖uε(x)‖ by ‖u(x)‖ in any satisfactory way. We can correct
this as in Remark 2.3, or simply adapt the choice of the “grid” from the very beginning. Indeed,
the problem comes from the inadequate choice of the initial grid, which is not sufficiently fine
around the origin. So, instead of starting from the collection of balls B(vk, ε) with fixed radius ε,
we can start from the collection of balls Bk,ε = B(vk, ε‖vk‖), which get smaller as one gets closer
to the origin. One can check then that (2.61)-(2.62) defines a sequence (uε) of simple functions
converging point-wise to u , with the control ‖uε‖ ≤ 2‖u‖ as soon as ε < 1/2.

Proposition 2.9 (Notion of measurable function). Assume that E is separable. Then it is
equivalent to be measurable and weakly measurable.

Proof of Proposition 2.9. The composition of two measurable maps is measurable, so measura-
bility implies weak-measurability, independently on the fact that E is separable. Let us assume
now that u : X → E is weakly-measurable. To prove that u is measurable, it is sufficient to
establish the point-wise convergence of a sequence of simple functions to u. If we take a look
at the proof of Proposition 2.8, we see that it is sufficient to show that the function f in (2.58)
is measurable. We can assume that v = 0 (otherwise, consider ũ(x) = u(x) − v). Our purpose
therefore, is to show that x 7→ ‖u(x)‖ is measurable. We use the following result.

Lemma 2.10. Let E be a separable Banach space. There exists a countable set {ϕn;n ∈ N} ⊂ E∗
such that ‖u‖ = supn∈N |ϕn(u)| for all u ∈ E.

Using Lemma 2.10, we can describe the function f : x 7→ ‖u(x)‖ as the countable supremum of
the measurable functions x 7→ |ϕn(u(x))|, so f is measurable, which is the desired conclusion.

Proof of Lemma 2.10. We admit the following result, that will be proved later (see Theorem 3.8),
as a consequence of the Hahn-Banach theorem. For all u ∈ E,

‖u‖ = sup {|ϕ(u)|;ϕ ∈ E∗, ‖ϕ‖ ≤ 1} . (2.63)

Let {vk; k ∈ N} be a dense subset of E. To each k and to each m ∈ N, m ≥ 1, we can associate
a ϕk,m ∈ E∗ with ‖ϕk,m‖ ≤ 1, such that

‖vk‖ ≤ |ϕk,m(vk)|+m−1. (2.64)

Let u ∈ E and let ε > 0. We choose k,m such that ‖u− vk‖ < ε, m−1 < ε. Then (2.64) gives

‖u‖ ≤ ‖vk‖+ ‖u− vk‖ < |ϕk,m(vk)|+ 2ε. (2.65)

Since ‖ϕk,m‖ ≤ 1, we also have

|ϕk,m(vk)| ≤ |ϕk,m(vk − u)|+ |ϕk,m(u)| ≤ ‖vk − u‖+ |ϕk,m(u)| < ε+ |ϕk,m(u)|, (2.66)
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and thus ‖u‖ < |ϕk,m(u)|+ 3ε, which shows that the set

{ϕk,m; k ∈ N,m ∈ N,m ≥ 1} (2.67)

is a countable subset of E∗ which has the desired property.

We will define now the integral of simple functions. A simple function u is a function of the form

u =
m∑
i=1

ui1Ai , (2.68)

where ui ∈ E, Ai ∈ A. The decomposition (2.68) is said to be canonical, [SS05, Chapter 2.1], if
the sets Ai are disjoint and the values ui distinct and non-zero 0: for all i, j ∈ {1, . . . , n},

ui 6= 0, i 6= j ⇒ Ai ∩Aj = ∅, ui 6= uj . (2.69)

The canonical form is unique. If u∗1, . . . , u∗n are the values taken by u, excepting 0 if 0 is in the
range of u, then

u =
n∑
i=1

u∗i 1A∗i , A∗i = {x ∈ X;u(x) = u∗i }, (2.70)

is the canonical decomposition of u.

Proposition-Definition 2.11 (Integral of simple functions). Let

u =
m∑
i=1

ui1Ai (2.71)

be a simple measurable function X → E. Assume that (2.71) is the canonical decomposition of
u. Then, the integral of u with respect to µ is the element of E defined as the combination

ˆ
X

udµ =
m∑
i=1

µ(Ai)ui. (2.72)

It has the following properties:

(i) (2.72) remains true if (2.71) is not canonical,

(ii) we have the triangular inequality ∥∥∥∥ˆ
X

udµ

∥∥∥∥ ≤ ˆ
X

‖u‖dµ. (2.73)

(iii) the following linearity relation is satisfied
ˆ
X

udµ+
ˆ
X

vdµ =
ˆ
X

(u+ v)dµ, (2.74)

where u and v are simple functions.
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Proof of Proposition-Definition 2.11. Note that the right-hand side of (2.72) is well defined since
µ(Ai) < +∞ for all i. Let us prove (i). We consider the decomposition (2.71), not necessary in
canonical form. We will study how the quantity

S =
m∑
i=1

µ(Ai)ui (2.75)

is affected (or rather not affected), when we reduce (2.71) to a canonical form. Assume first that
there are no overlaps between the sets Ai: Ai ∩Aj = ∅ if i 6= j. The canonical form of u is then
obtained by regrouping the sets Ai on which u takes the same value, and eliminating the value
0: with the notations in (2.70),

u =
n∑
j=1

u∗j1A∗j , A∗j =
⋃

i/ui=u∗j

Ai. (2.76)

Then
µ(A∗j ) =

∑
i/ui=u∗j

µ(Ai)⇒ S =
ˆ
X

udµ. (2.77)

Our task therefore is to eliminate the possible overlaps between the sets Ai in (2.71). Assume
without loss of generality that ∪mi=1Ai = X. At a given point x, there are k of the sets Ai which
overlap, 1 ≤ k ≤ m. Keeping the notation k for the number of overlaps, we can write therefore

u =
m∑
k=1

∑
Jk⊂{1,...,m},#Jk=k

uJk1AJk , AJk :=
( ⋂
i∈Jk

Ai

)
\

⋃
i/∈Jk

Ai

 , uJk :=
∑
i∈Jk

ui. (2.78)

Now, we have AJ ∩AJ′ = ∅ if J 6= J ′, so there remains to show that S in (2.75) satisfies

S =
m∑
k=1

∑
J∈Jk

µ(AJ)uJ , Jk := {J ⊂ {1, . . . ,m},#J = k} . (2.79)

We obtain (2.79) by fixing an index i ∈ {1, . . . ,m} and repeating the discussion on the number
of overlaps of the sets Aj , but on Ai instead of X: we write the partition

Ai =
m⋃
k=1

⋃
J∈Jk,i

Ai ∩AJ , Jk,i := {J ∈ J , i ∈ J} . (2.80)

By additivity of the measures (and since Ai ∩AJ = AJ if i ∈ J), this gives

S =
m∑
i=1

m∑
k=1

∑
J∈Jk,i

µ(AJ)ui =
m∑
i=1

m∑
k=1

∑
J∈Jk

µ(AJ)ui1i∈J . (2.81)

There remains to exchange the sums over i, k, J : since

uJ =
∑

1≤i≤m,i∈J
ui =

m∑
i=1

ui1i∈J , (2.82)

we obtain (2.79). Proving (i) was necessary to obtain the linear relation (2.74), which is now
straightforward. The triangular inequality (2.73) follows from the triangular inequality for finite
sums in E.
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Proposition-Definition 2.12 (Bochner integrable function). let (X,A, µ) be a finite measure
space. Let E be a separable Banach space. A measurable function u : X → E is said to be
Bochner integrable (or, more simply, integrable) if

ˆ
X

‖u‖dµ < +∞. (2.83)

By Remark 2.3, there is a sequence of simple functions un such that ‖un(x)− u(x)‖ → 0 for all
x ∈ X and ‖un − u‖ ≤ 3‖u‖ everywhere in X. The integral of u against µ is defined as

ˆ
X

udµ = lim
n→+∞

ˆ
X

undµ. (2.84)

This limit exists and is independent on the choice of the approximating sequence (un) of simple
functions. The commutation relation

ϕ

(ˆ
X

udµ

)
=
ˆ
X

ϕ(u)dµ (2.85)

is satisfied for all continuous linear form ϕ ∈ E∗.

Proof of Proposition-Definition 2.12. By the linear relation (2.74) and the triangular inequality
(2.73), we have

‖Sn − Sm‖ ≤
ˆ
X

‖un − um‖dµ ≤
ˆ
X

‖u− um‖dµ+
ˆ
X

‖u− um‖dµ, (2.86)

where
Sn :=

ˆ
X

undµ (2.87)

By the Lebesgue dominated convergence theorem, we have

lim
m→+∞

ˆ
X

‖u− um‖dµ = 0, (2.88)

and (2.86) shows that (Sn) is Cauchy, so the limit (2.84) exists. Replacing um in (2.86) by u′n,
where (u′n) is an other sequence of simple functions such that ‖u−u′n‖ → 0 with ‖u−u′n‖ ≤ C‖u‖,
shows that limSn is independent on the choice of the approximating sequence. To obtain (2.85),
it is sufficient to check the identity when u is a simple function (we use the fact that ϕ is
continuous), but this is a direct consequence of the linearity of ϕ then.

Proposition 2.13 (Action of bounded linear operator). Let (X,A, µ) be a finite measure space.
Let E,F be some separable Banach spaces, let u : X → E be integrable and T : E → F be a
bounded linear operator. Then T ◦ u : X → F is integrable and

T

(ˆ
X

udµ

)
=
ˆ
X

T ◦ udµ. (2.89)

Proof of Proposition 2.13. Since T is continuous, T ◦ u is measurable. We have also
ˆ
X

‖T (u)‖F dµ ≤ ‖T‖L(E,F )

ˆ
X

‖u‖Edµ < +∞, (2.90)
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so T ◦ u is integrable. Let (un) be a sequence of simple functions such that ‖u − un‖ → 0 and
‖u− un‖ ≤ 3‖u‖. Then T ◦ un is a simple function. By linearity of T and (2.72) in Proposition-
Definition 2.12 we have the commutation relation

T

(ˆ
X

undµ

)
=
ˆ
X

T ◦ undµ, (2.91)

for all n. By continuity of T , the left-hand side of (2.91) is converging to

T

(ˆ
X

udµ

)
. (2.92)

By continuity of T and the triangular inequality, we also have∥∥∥∥ˆ
X

T ◦ udµ−
ˆ
X

T ◦ undµ
∥∥∥∥
F

dµ ≤
ˆ
X

‖T ◦u−T ◦un‖F dµ ≤ ‖T‖L(E,F )

ˆ
X

‖u−un‖Edµ, (2.93)

so
lim

n→+∞

ˆ
X

T ◦ undµ =
ˆ
X

T ◦ udµ, (2.94)

and (2.89) is obtained in the limit n→ +∞ in (2.91).

2.4 Strong compactness in Lp

2.4.1 Criteria for strong compactness

We give the following compactness result in Lp(Rd). For z ∈ Rd, we denote by τz the action of
translation τhu(x) = u(x− z). Denote by

ωLp(u; η) = sup
|z|<η

‖τzu− u‖Lp(Rd). (2.95)

the modulus of continuity (with respect to translations) of a function u ∈ Lp(Rd).

Proposition 2.14 (Modulus of continuity in Lp). We have

lim
η→0

ωLp(u; η) = 0, (2.96)

for any given u ∈ Lp(Rd).

Proof of Proposition 2.14. We establish first the following inequality: if u, v ∈ Lp(Rd), then

ωLp(u; η) ≤ ωLp(v; η)|+ 2‖u− v‖Lp(Rd). (2.97)

Let z ∈ Rd with |z| < η. By the triangular inequality in Lp and the identity ‖τzw‖Lp(Rd) =
‖w‖Lp(Rd), we have

‖τzu− u‖Lp(Rd) ≤ ‖τzv − v‖Lp(Rd) + 2‖u− v‖Lp(Rd) ≤ ωLp(v; η)|+ 2‖u− v‖Lp(Rd). (2.98)

Taking the sup over |z| < η gives (2.97). Next, let ε > 0 and let v be a continuous compactly
supported function such that ‖u−v‖Lp(Rd) < ε. Let K be a compact set such that v is supported
in K, and let ω∞(v; η) denote the classical modulus of continuity

ω∞(v; η) = sup
x∈K,|z|<η

|v(x+ z)− v(x)|. (2.99)
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If |z| < η ≤ 1, we have [ˆ
Rd
|v(x+ z)− v(x)|pdx

]1/p
≤ |K1|1/pω∞(v; η), (2.100)

where K1 = K + B̄(0, 1), which, using (2.97), gives

ωLp(u; η) ≤ |K1|1/pω∞(v; η) + 2ε. (2.101)

A continuous function on a compact set is uniformly continuous, so we can take η small enough
to ensure that |K1|1/pω∞(v; η) < ε, and thus ωLp(u; η) < 3ε.

Theorem 2.15 (Kolmogorov-M.Riesz-Fréchet Theorem). Let 1 ≤ p < +∞, let H ⊂ Lp(Rd)
satisfy

(i) H is bounded: there exists M ≥ 0 such that ‖u‖Lp(Rd) ≤M for all u ∈ H,

(ii) the convergence (2.96) is uniform on H: for all ε > 0, there exists η > 0 such that |z| < η
implies ‖τzu− u‖Lp(Rd) < ε for all u ∈ H.

Let χ ∈ C∞c (Rd) satisfy

0 ≤ χ ≤ 1, χ ≡ 1 on B(0, 1), supp(χ) ⊂ B(0, 2), (2.102)

and, for R > 0, define the rescaled truncate function χR(x) = χ(R−1x). Then, for all R > 0,

HR = {uχR;u ∈ H} (2.103)

is relatively compact in Lp(Rd).

To prove Theorem 2.15, we will use the following result.

Theorem 2.16 (Compact sets in Banach spaces). A set A in a Banach space E is relatively
compact if, and only if, for all given radius r > 0, it can be covered by a finite number of balls of
radius r. In particular, if for every ε > 0, every u ∈ A can be decomposed as u = v + w, where
v ∈ Kε, ‖w‖ < ε, and Kε is relatively compact, then A is relatively compact.

Proof of Theorem 2.16. Let us begin with the proof of the corollary, which may be summarized
as

“small+relatively compact ⇒ relatively compact”

in a Banach space. Let r > 0. Take ε = r/2. Cover Kε by a finite number of ball B(xi, r/2),
i ∈ I, I finite. Then A is covered by the balls B(xi, r), i ∈ I. For the first equivalence statement,
look at [Fol99, p. 15].

Proof of Theorem 2.15. It is clear that HR satisfies (i). Let us show that it also satisfies (ii). If
z ∈ Rd with |z| < η, then

‖τz(uχR)−uχR‖Lp(Rd) ≤ ωη(u)+‖u(τzχR−χR)‖Lp(Rd) ≤ ωη(u)+‖u‖Lp(Rd)‖τzχR−χR‖L∞(Rd).
(2.104)

This shows that
ωLp(uχR; η) ≤ ωLp(u; η) +MωL∞(χR; η), (2.105)
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where M is the bound in (i). We have ∇χR(x) = R−1(∇χ)(R−1x), so ‖∇χR‖L∞(Rd) ≤
R−1‖∇χ‖L∞(Rd) =: C(R,χ) and

ωL∞(χR; η) ≤ C(R,χ)η. (2.106)

We obtain then
ωLp(uχR; η) ≤ ωLp(u; η) +MC(R,χ)η, (2.107)

so HR satisfies (ii). Let (ρη) be an approximation of the unit,

ρη(x) = η−dρ1(η−1x), ρ1 ∈ C∞c (Rd), supp(ρ1) ⊂ B̄(0, 1). (2.108)

Each u ∈ HR can be decomposed as u = v + w, where

v = ρη ∗ u, w = u− ρη ∗ u, (2.109)

We have
w(x) =

ˆ
B̄(0,η)

ρη(y)(u− τyu)(x)dy. (2.110)

The triangular inequality gives

‖w‖Lp(Rd) ≤ ωη(u)
ˆ
B̄(0,η)

ρη(y)dy = ωη(u). (2.111)

Let ε > 0, choose η > 0 such that ωη(u) < ε for all u ∈ H. Then ‖w‖Lp(Rd) < ε. We will prove
now that the set

Bη := {ρη ∗ u;u ∈ HR} (2.112)

is relatively compact in Lp(Rd). Each function v ∈ Bη is supported in K := B̄(0, 2R + 1). By
compact injection of C(K) in Lp(K) when K is compact in Rd, it will be sufficient to show that
Bη is relatively compact in C(K). To obtain this result, we will use Ascoli’s Theorem. By (i),
we have first the uniform bound

‖ρη ∗ u‖L∞(K) = ‖ρη ∗ u‖L∞(Rd) ≤ ‖ρη‖Lp′ (Rd)‖u‖Lp(Rd) ≤ ‖ρη‖Lp′ (Rd)M, (2.113)

for all u ∈ HR. Since

|ρη ∗ u(x)− ρη ∗ u(y)| ≤ ‖∇(ρη ∗ u)‖L∞(Rd)|x− y|, (2.114)

the equi-continuity of Bη follows from the bound

‖∇(ρη ∗ u)‖L∞(Rd) = ‖∇(ρη) ∗ u‖L∞(Rd) ≤ ‖∇ρη‖Lp′ (Rd)‖u‖Lp(Rd) ≤ ‖∇ρη‖Lp′ (Rd)M, (2.115)

for all u ∈ HR. We conclude by Theorem 2.16.

Remark 2.5 (Relative compactness of H). If, to (i) and (ii), we add the condition

(iii) the elements in H are uniformly small at infinity: for all ε > 0, there exists R > 0 such
that ˆ

|x|>R
|u(x)|pdx < ε, (2.116)

for all u ∈ H, then we can conclude that H itself is relatively compact in Lp(Rd).
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Proof of Remark 2.5. We apply Theorem 2.16 again. Let ε > 0 and let R > 0 be such thatˆ
|x|>R

|u(x)|pdx < εp, (2.117)

for all u ∈ H. Each u in H can be decomposed as u = v + w, where v = uχR ∈ HR, w =
u(1 − χR). We have shown that HR is relatively compact in Lp(Rd) so it is sufficient to prove
that ‖w‖Lp(Rd) < ε. This is a direct consequence of (2.117).

The control on the modulus of continuity for translations (2.95) is often given by a control of
the derivatives of the functions u for u ∈ H.

Proposition 2.17. We have
ωLp(u; η) ≤ ‖∇u‖Lp(Rd)η, (2.118)

for all functions u ∈ C1(Rd) such that u ∈ Lp(Rd) and |∇u| ∈ Lp(Rd).

Proof of Proposition 2.17. Let x ∈ Rd, z ∈ Rd with |z| < η. We apply the identity

ϕ(1)− ϕ(0) =
ˆ 1

0
ϕ′(t)dt, ϕ ∈ C1([0, 1]), (2.119)

to ϕ(t) = u(tx+ (1− t)(x− z)) = u(x− (1− t)z) to obtain

|u(x)− τzu(x)| =
∣∣∣∣ˆ 1

0
∇u(x− (1− t)z) · z

∣∣∣∣ ≤ η ˆ 1

0
|∇u(x− (1− t)z)|dt. (2.120)

By Jensen’s inequality, we obtain

|u(x)− τzu(x)|p ≤ ηp
ˆ 1

0
|∇u(x− (1− t)z)|pdt. (2.121)

Since ˆ
Rd
|∇u(x− (1− t)z)|pdx =

ˆ
Rd
|∇u(x)|pdx = ‖∇u‖p

Lp(Rd), (2.122)

integration with respect to x in (2.121) and Fubini’s theorem gives (2.118).

We give now a second criterion for compactness in Lp.

Theorem 2.18 (Vitali’s theorem). Let (X,A, µ) be a σ-finite measure space. Let 1 ≤ p < +∞
and let (un) be a sequence of Lp(X) satisfying

(i) a.e. convergence: un → u a.e. in X, where u : X → R is measurable,

(ii) equi-integrability: for all ε > 0, there exists M > 0 such thatˆ
{|un|>M}

|un|pdµ < ε, (2.123)

for all n,

(iii) uniform smallness out of a set of finite measure: for all ε > 0, there exists a measurable
set Γ of finite measure such that ˆ

X\Γ
|un|pdµ < ε, (2.124)

for all n.
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Then u ∈ Lp(X) and un → u in Lp(X).

Before proving Theorem 2.18, let us give an alternative definition of the equi-integrability prop-
erty.

Proposition 2.19 (Equi-integrability). Let (X,A, µ) be a measure space. Let 1 ≤ p < +∞. Let
(un) be a sequence of Lp(X). If (un) satisfies (2.123)-(2.124) of Theorem 2.18 then

sup
n
‖un‖Lp(X) < +∞, (2.125)

and (un) satisfies also (2.126)-(2.124), where (2.126) is given by

(iv) for all ε > 0, there exists δ > 0 such that
ˆ
A

|un|pdµ < ε, (2.126)

for all n and for all measurable set A with µ(A) < δ.

Conversely, (2.125) and (2.126) imply (ii).

Corollary 2.20 (Equi-integrability of a single function). Let (X,A, µ) be a σ-finite measure
space and let u ∈ Lp(X). Then, for all ε > 0, there exists δ > 0 such that

ˆ
A

|u|pdµ < ε, (2.127)

for all measurable set A with µ(A) < δ.

Proof of Corollary 2.20. Let us show that {u} satisfies (2.123)-(2.124), then we can apply Propo-
sition 2.19 to conclude. Recall that |u| < +∞ a.e. since, using Markov’s inequality,

µ({|u| > M}) ≤ 1
Mp

ˆ
X

|u|pdµ→ 0 when M → +∞.

By the dominated convergence theorem, we have thereforeˆ
{|u|>M}

|u|pdµ =
ˆ
X

1{|u|>M}|u|pdµ→ 0 when M → +∞. (2.128)

This gives (2.123). To obtain (2.124), we can apply the dominated convergence theorem again, to
1Γn |u|p, where (Γn) is an increasing sequence of sets of finite measure such thatX = ∪n∈NΓn.

Proof of Proposition 2.19. If (un) satisfies (2.123)-(2.124), then
ˆ
A

|un|pdµ =
ˆ
A∩{|un|>M}

|un|pdµ+
ˆ
A∩{|un|≤M}

|un|pdµ (2.129)

gives, for a fixed ε > 0 and for M large enough,ˆ
A

|un|pdµ ≤
ε

2 +Mpµ(A), (2.130)

and we obtain (2.126) by choosing δ sufficiently small. Next, let us apply (2.123)-(2.124) with
ε = 1. There exists M > 0 and Γ of finite measure such thatˆ

{|un|>M}
|un|pdµ ≤ 1,

ˆ
X\Γ
|un|pdµ ≤ 1,∀n. (2.131)
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This gives
ˆ
X

|un|pdµ =
ˆ
{|un|>M}

|un|pdµ+
ˆ
{|un|≤M}∩Γc

|un|pdµ+
ˆ
{|un|≤M}∩Γ

|un|pdµ ≤ 2 +Mpµ(Γ),

(2.132)
and (un) is indeed bounded in Lp(X), as asserted in (2.125). Conversely, assume (2.126)-(2.124)
and (2.125). Let C be a bound for the left-hand side in (2.125). By the Markov inequality, we
have

|{|un| > M}| = |{|un|p > Mp}| ≤ 1
Mp

ˆ
X

|un|pdµ ≤
Cp

Mp
. (2.133)

This shows that, given δ > 0, the measure of |{|un| > M}| is smaller than δ for M large enough
independent on n, and then (2.123) follows from (2.126) applied to |{|un| > M}|.

Proof of Theorem 2.18. Using Fatou’s Lemma in (2.125), we obtain
ˆ
A

|u|pdµ < +∞, (2.134)

so u ∈ Lp(X). We will now show that we can reduce the problem to the case where u = 0. This
amounts to show that the sequence of general term wn := un − u has the same properties as the
original sequence (un). Using the characterization of equi-integrability given in Proposition 2.19,
the bound ˆ

A

|wn|pdµ ≤ 2p
ˆ
A

|un|pdµ+ 2p
ˆ
A

|u|pdµ (2.135)

and Corollary 2.20, we obtain the equi-integrability property for (wn). Similar arguments also
give the uniform smallness condition for (wn). Let us now prove the theorem, assuming u = 0.
Let ε > 0, let M > 0 and let Γ be a set of finite measure such that, respectively (2.123) and
(2.124) are satisfied. We have

ˆ
X

|un|pdµ < 2ε+
ˆ
X

vndµ, (2.136)

where vn = 1Γ1{|un|≤M}|un|p is dominated by the integrable function 1ΓM
p. By the dominated

convergence theorem, we obtain ˆ
X

|un|pdµ < 3ε, (2.137)

for n large enough, and conclude that un → 0 in Lp(X).

2.4.2 Obstructions to strong convergence

We present three obstructions to strong convergence: loss of mass, concentration, oscillation.
Each phenomenon is independent on the others in the examples we provide, but of course they
may combine in some situation. The loss of mass may be considered as minor, compared to
the phenomena of concentration and oscillation, but it is central in the more general question of
convergence of probability measures on Polish spaces (“tightness criterion”).

Loss of mass Let ψ be a positive continuous compactly supported function on Rd and let
ψn(x) = ψ(x − nν), where ν ∈ Rd, |ν| = 1. The sequence of functions (ψn) is vanishing at
infinity in the direction ν. Fix R > 0 such that the support of ψ is contained in B̄(0, R). Then,
for all x ∈ Rd, ψn(x) = 0 for all n larger than |x| + R. So ψn is converging to 0 a.e. It is
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not converging to 0 in Lp(Rd) however, since ‖ψn‖Lp(Rd) = ‖ψ‖Lp(Rd) for all n (invariance by
translation of the Lebesgue measure). If we examine Theorem 2.15, then H := {ψn;n ∈ N}
satisfies the two criteria (i)-(ii) and so also the conclusion, which is only local however (and it
is true that ‖psin‖Lp(K) → 0 for any compact set K. Actually, ψnχR ≡ 0 as soon as n > 2R, so
HR is finite. If we examine Theorem 2.18 now, where X = Rd, A is the Borel σ-algebra and µ
the Lebesgue measure, then the situation is the following one: the criteria (i)-(ii) are satisfied
(why?), the default is in the criterion (iii). Indeed, if Γ has finite measure, then we can apply
the Lebesgue dominated convergence theorem to 1Γ|ψn|p, which is dominated by 1Γ‖ψ‖pL∞(Rd).
We have in particular

ˆ
Rd\Γ

|ψn(x)|pdx = ‖ψ‖p
Lp(Rd) −

ˆ
Γ
|ψn(x)|pdx ≥ 1

2‖ψ‖
p
Lp(Rd), (2.138)

for n large enough, which is not compatible with (2.124).

Concentration Consider the approximation of the unit (ρn) defined on Rd by

ρn(x) = ndρ1(nx), (2.139)

where ρ1 ∈ C∞c (Rd) is a smooth, compactly supported function such that

ρ1 ≥ 0,
ˆ
Rd
ρ1(x)dx = 1, supp(ρ1) ⊂ B(0, 1). (2.140)

Then (ρn) satisfies the criteria (i) and (iii) in the Vitali’s theorem 2.18. Indeed, for all x 6= 0,
we have ρn(x) = 0 for n > |x|−1, so ρn → 0 a.e. We also have

ˆ
|x|>1

|ρn(x)|dx = 0, (2.141)

for all n. The criterion (ii) is not satisfied however, and (ρn) is not converging to 0 in L1(Rd),
Indeed,

‖ρn‖L1(Rd = 1, (2.142)

by homogeneity and (2.140). The criterion (ii) is not satisfied because there is concentration of
(ρn) around 0. Indeed, we have ˆ

B(0,r)
|ρn(x)|dx = 1 (2.143)

when n > r−1, which is not compatible with the equi-integrability criterion (2.126).

Oscillations-1 Let ψ ∈ C∞c (R) be a positive function supported in (0, 1) such that 0 ≤ ψ(x) ≤
M for all x ∈ R. We rescale the function ψ in the x-direction by a factor 1/n and consider n
copies of this rescaled functions distributed regularly on (0, 1), so we define ψn(x) by

ψn(x) =
n−1∑
k=0

ψ(nx− k), x ∈ R. (2.144)

Then, for all ϕ ∈ C([0, 1]), we have
ˆ 1

0
ψn(x)ϕ(x)dx→

ˆ 1

0
Aψϕ(x)dx, Aψ :=

ˆ 1

0
ψ(x)dx. (2.145)
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Indeed, a change of variable gives

ˆ 1

0
ψn(x)ϕ(x)dx = 1

n

n−1∑
k=0

ˆ 1

0
ψ(x)ϕ

(
x+ k

n

)
dx. (2.146)

Let
ωL∞(ϕ; η) = sup{|ϕ(x)− ϕ(y)|;x, y ∈ [0, 1], |x− y| < η} (2.147)

denote the modulus of continuity of ϕ. Since∣∣∣∣ϕ(x+ k

n

)
− ϕ

(
k

n

)∣∣∣∣ ≤ ω(ϕ; 1/n), (2.148)

for all x ∈ [0, 1], (2.146) gives

ˆ 1

0
ψn(x)ϕ(x)dx = Aψ

n

n−1∑
k=0

ϕ

(
k

n

)
+Oψ(ω(ϕ; 1/n)), (2.149)

and (2.145) follows when n→ +∞. Assume that (ψn) is converging strongly in L1(0, 1) to a limit
function ψ∞. Then (2.145) implies that ψ is constant, equal to Aψ. Straightforward calculations
give

‖ψn −Aψ‖L1(0,1) = ‖ψ −Aψ‖L1(0,1), (2.150)

hence (ψn) cannot converge strongly in L1(0, 1).

Oscillations-2 : Fourier series, Fourier transform Let us use the following conventions
for Fourier series and Fourier Transform: if u ∈ L1(Td) (where Td is the d-dimension torus) and
v ∈ L1(Rd),

û(n) =
ˆ
Td
u(x)e−2πix·ndx, v̂(ξ) =

ˆ
Rd
v(x)e−2πix·ξdx, (2.151)

where n ∈ Zd, ξ ∈ Rd respectively. Informally, using the inverse Fourier formula, we have the
decompositions

u(x) =
∑
n∈Zd

û(n)e2πix·n, v(x) =
ˆ
Rd
v̂(ξ)e2πix·ξdξ, (2.152)

which give u or v as a superposition of functions oscillating at the frequency n or ξ: one should
have a good control on the oscillating behaviour of u, once the decay of the coefficients is known.
This decay can be estimated in various manners. For instance we have the following statements
or functional inequalities (where A . B indicates that A ≤ C(d)B for a constant C(d) which
depends on d only, and A ≈ B means that both A . B and B . A are satisfied). Regularity
Ck: for k ∈ N,

‖u‖Ck(Td) . (2π)k
∑
n∈Zd

(1 + |n|2)k/2|û(n)|, ‖v‖Ck(Rd) . (2π)k
ˆ
Rd

(1 + |ξ|2)k/2|û(ξ)|dξ. (2.153)

Regularity Hk: for k ∈ N,

‖u‖2Hk(Td) ≈
∑
n∈Zd

(1 + |n|2)k|û(n)|2, (2.154)
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and, for k ∈ N,
‖v‖2Hk(Rd) ≈

ˆ
Rd

(1 + |ξ|2)k|û(ξ)|2dξ. (2.155)

Hölder regularity: for α ∈ (0, 1), and Q := [0, 1)d,

‖u‖C0,α(Td) = sup
x∈Q)

|u(x)|+ sup
x 6=y∈Q

|u(x)− u(y)|
|x− y|α

. C(α)
∑
n∈Zd

(1 + |n|2)α/2|û(n)|, (2.156)

and

‖v‖C0,α(Rd) = sup
x∈Rd)

|u(x)|+ sup
x 6=y∈Rd

|u(x)− u(y)|
|x− y|α

. C(α)
ˆ
Rd

(1 + |n|2)α/2|v̂(ξ)|dξ. (2.157)

Proof of (2.156) and (2.157). Use

|e2πix·ζ − 1| ≤ C(α)|ζ|α|x|α, C(α) := sup
t∈R∗

|e2πit − 1|
tα

. (2.158)

Definition 2.3 (Schwartz space). The Schwartz space S (Rd) is the space of infinitely differen-
tiable functions whose derivatives decay faster at infinity than any polynomial: v ∈ S (Rd) if v
is of class C∞ and all the semi-norms

pm,k(v) = sup
x∈Rd,|α|≤k

(1 + |x|2)m/2|∂αx v(x)| (2.159)

are finite.

We have or will use the following notations: for α ∈ Nd, xα = xα1
1 · · ·x

αd
d , ∂αx = ∂α1

x1 · · · ∂αdxd . If
v ∈ S (Rd), α, β ∈ Nd, then x 7→ xβ∂αx v(x) is in Lp(Rd) for all 1 ≤ p ≤ ∞, simply because

|xβ∂αx v(x)| ≤ pm,k(v)
(1 + |x|2)(d+1)/2 ∈ L

p(Rd), (2.160)

where m = |β|+ d+ 1 and k = |α|. In particular,

‖v̂‖C0(Rd) ≤ ‖v‖L1(Rd) ≤ pd+1,0(v). (2.161)

Using(2.161) and the formulas

(∂αx v)̂ (ξ) = (2πiξ)αv̂(ξ), [(−2πiX)αv]̂ (ξ) = ∂αξ v̂(ξ), (2.162)

where Xαv denotes the function x 7→ xαv(x), we can establish the following result.

Proposition 2.21 (Fourier and Schwartz space). If v ∈ S (Rd), then v̂ ∈ S (Rd) and we have
pm,k(v̂) .m,k pk+d+1,m(v).

Proposition 2.22 (A form of the uncertainty principle of Heisenberg). We have

‖(X − x0)v‖L2(Rd)‖(∇x − 2πiξ0)v‖L2(Rd) ≥
d

2‖v‖
2
L2(Rd), (2.163)

for all v ∈ S (Rd), for all x0, ξ0 ∈ Rd.
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Remark 2.6 (Localisation in x and ξ). since

‖(∇x − 2πiξ0)v‖L2(Rd) = 2π‖(ξ − ξ0)v̂‖L2(Rd), (2.164)

by (2.162) and the Plancherel Theorem, (2.163) says, in certain quantitative way, that we cannot
have both v localized around x0 and v̂ localized around ξ0.

Proof of Proposition 2.22. Using

‖(X − x0)v‖2L2(Rd) = ‖X(τ−x0v)‖2L2(Rd), (2.165)

and
‖(∇x − 2πiξ0)v‖2L2(Rd) = ‖∇x(ve−ξ0)‖2L2(Rd), eξ(x) := exp(2πix · ξ), (2.166)

and the fact that the transformations v 7→ τ−x0v and v 7→ ve−ξ0 affect only one of the three
terms in (2.163), it is sufficient to consider the cases x0 = ξ0 = 0. Then we integrate the identity

divx(xv2/2) = div(x)v2/2 + x · ∇x(v2/2) = dv2/2 + xv · ∇xv (2.167)

to obtain, by the Cauchy-Schwarz inequality,

d

2‖v‖
2
L2(Rd) = −

ˆ
Rd
xv · ∇xv ≤ ‖Xv‖L2(R)‖∇xv‖L2(R). (2.168)

Proposition 2.23 (Nash Inequality). We have

‖u‖1+2/d
L2(Td) . ‖∇u‖L2(Td)‖u‖

2/d
L1(Td), ‖v‖1+2/d

L2(Rd) . ‖∇v‖L2(Rd)‖v‖
2/d
L1(Rd). (2.169)

for all u ∈ H1(Td), v ∈ H1(Rd).

Proof of Proposition 2.23. We do the proof in the case of the Torus only. First we use Parseval’s
identity:

‖u‖2L2(Td) =
∑
n∈Zd

|û(n)|2, (2.170)

and then make the distinction between the sum over |n| < R and |n| ≥ R, where R will be chosen
later. Use the estimate |û(n)| ≤ ‖u‖L1(Td) in the range |n| < R and the estimate |û(n)|2 ≤
R−2|n|2|û(n)|2 in the range |n| ≥ R to obtain the bound

‖u‖2L2(Td) . Rd‖u‖2L1(Td) +R−2‖∇u‖2L2(Td). (2.171)

By optimization over R, (2.171) gives (2.169).

Theorem 2.24 (Averaging lemma). Let (Ω,P) be a probability space, let a : Ω→ Rd be a random
variable such that |a| ≤M a.s. and let u : Ω×Rd → R be a measurable function such that, a.s.,
x 7→ u(x) ∈ S (Rd) and E [pm,k(u)] < +∞ for all m, k ∈ N. We assume that a satisfies the
following condition: there exists a constant C(a) ≥ 0 and α ∈ (0, 1] such that

P(|a · ν| < ε) ≤ C(a)εα (2.172)

for all directions ν ∈ Rd, |ν| = 1. Then the average ρ := E [u] satisfies the estimate

‖ρ‖2Hα/2(Rd) :=
ˆ
Rd

(1 + |ξ|2)α/2|ρ̂(ξ)|2dξ ≤ CE
[
‖u‖2L2(Rd) + ‖a · ∇xu‖2L2(Rd)

]
, (2.173)

where the constant C depends on d, C(a) and α only.
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Remark 2.7 (Non-degeneracy condition). The non-degeneracy condition (2.172) is a quantitative
version of the property P(a · ν = 0) = 0 for all ν in the unit sphere, which means that the term
a · ∇xu will give a sufficient amount of information on directional derivatives to give a definite
gain of regularity for the average ρ.

Proof of Theorem 2.24. Set w = a · ∇xu. We have: a.s., for all ξ ∈ Rd, ŵ(ξ) = −2πia · ξû(ξ),
which gives: a.s., for all ξ ∈ Rd,

− 2πia · ξû(ξ) + 2πû(ξ) = ŵ(ξ) + 2πû(ξ)⇒ û(ξ) = 1
2π

1
1− ia · ξ (ŵ(ξ) + 2πû(ξ)). (2.174)

By the Fubini Theorem, we deduce that, for all ξ ∈ Rd,

ρ̂(ξ) = 1
2πE

[
1

1− ia · ξ (ŵ(ξ) + 2πû(ξ))
]
. (2.175)

By the Cauchy-Schwarz inequality, it follows that

|ρ̂(ξ)|2 ≤ 1
4π2E

[
1

1 + |a · ξ|2

]
E
[
|ŵ(ξ) + 2πû(ξ)|2

]
. (2.176)

We will show that
E
[

1
1 + |a · ξ|2

]
≤ C1

|ξ|α
, ∀|ξ| ≥ 1. (2.177)

Since
E
[
|ŵ(ξ) + 2πû(ξ)|2

]
≤ 2E

[
|ŵ(ξ)|2 + 4π2|û(ξ)|2

]
, (2.178)

the estimate (2.177) and the theorem of Plancherel will give the desired conclusion (2.173). To
prove (2.177), we introduce the non-increasing function θ(t) = (1 + t2)−1. We have

θ(t) = −
ˆ ∞
t

θ′(s)ds =
ˆ ∞

0
1{s>t}|θ′(s)|ds. (2.179)

By Fubini’s theorem

E
[

1
1 + |a · ξ|2

]
=
ˆ ∞

0
E
[
1{s>|a·ξ|}

]
|θ′(s)|ds =

ˆ ∞
0

P (s > |a · ξ|) |θ′(s)|ds. (2.180)

Write ξ = |ξ|ν, where |ν| = 1. We use the non-degeneracy hypothesis (2.172) to get

E
[

1
1 + |a · ξ|2

]
≤ C(a)

ˆ ∞
0

sα|ξ|−α|θ′(s)|ds = C(a)
[ˆ ∞

0
sα|θ′(s)|ds

]
|ξ|−α, (2.181)

which is the desired result.

Fourier and Laplace operator: on the Torus, the Fourier orthonormal basis of L2(Td) is a
spectral basis of the Laplace operator: setting en(x) = exp(2πix · n), we have

−∆en = λnen, λn := 4π2|n|2. (2.182)

The Bessel-Parseval identity then shows that, for k ∈ N, and up to the multiplicative factor 4π2,
the right-hand side of (2.154) is

〈(Id−∆)ku, u〉L2(Td) = ‖Aku‖2L2(Td), A := (Id−∆)1/2. (2.183)

In the end of the course, we will study the spectral theorem for compact self-adjoint operators,
and see how it can be applied to exhibit a spectral basis (en, λn) of the Laplace operator with
homogeneous Dirichlet conditions on a bounded open subset U of Rd.
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Conclusion The obstruction to compactness illustrated above are frequently encountered in
the study of PDEs (the sequence of function can be a sequence of solutions, when stability of
solutions is studied, or a sequence of approximate solution, built with the purpose to study
existence of a solution). For instance, in homogenization theory, where one tries to substitute an
homogeneous object to an object having a lot of oscillations at small scales, understanding and
controlling oscillations of functions is fundamental. It is often desirable to go beyond the mere
observation that a sequence is not compact and to exhibit a limiting object to pursue the study
(in particular to use the algebra that goes with the PDE under study). For the sequence (ρn) in
(2.139), we can say that

ρn → δ0, (2.184)
where δ0 is the “Dirac mass” at 0. The convergence (2.184) can be understood in the sense of
measures or in the sense of distributions (in any case, this is a kind of weak convergence). For
the sequence (ψn) in (2.144), we can prove that, for all Φ ∈ C([0,M ]), for all ϕ ∈ C([0, 1]) we
have

lim
n→+∞

ˆ 1

0
ϕ(x)Φ(ψn(x))dx =

ˆ 1

0
ϕ(x)dx

ˆ 1

0
Φ(ψ(y))dy, (2.185)

which again gives us a measure as a limit object, which is the product measure λ ⊗ ψ]λ on
[0, 1]× [0,M ], where λ denotes the Lebesgue measure on [0, 1] and ψ]λ is the push-forward of λ
by ψ. There are many different ways to measure of the regularity/integrability of functions. We
will study in particular the Sobolev spaces, which are normed vector spaces. Weak convergence
in normed space will be the object of the next chapter, once we have proved the Hahn-Banach
theorem and its important corollaries. Some other instances of noticeable functional spaces in
analysis are Fréchet Spaces and we will briefly consider them before beginning the theory of
distributions.

2.5 Differentiation, maximal functions
2.5.1 Maximal functions

We denote by |A| the Lebesgue measure of a Borel set A ⊂ Rd. To u ∈ L1
loc(Rd), we associate

the maximal function Mu defined by

Mu(x) = sup
B3x

1
|B|

ˆ
B

|u(y)|dy, (2.186)

where the supremum is taken over all balls B such that x ∈ B. Considering open or closed balls
makes no difference (why?) so we will assume that all balls are open. If B = B(z, r) is such a
ball and θ > 0, we denote by θB the ball B(x, θr). We will establish the following result.
Theorem 2.25 (Estimating the size of Maximal functions). The function Mu defined in (2.186)
is measurable. We have

|{Mu > α}| ≤ 3d

α
‖u‖L1(Rd), (2.187)

for all α > 0 if u ∈ L1(Rd) and

‖Mu‖L∞(Rd) ≤ ‖u‖L∞(Rd), (2.188)

if u ∈ L∞(Rd) and

‖Mu‖Lp(Rd) ≤ 2(3dp′)1/p‖u‖Lp(Rd), p′ := p

p− 1 , (2.189)

if u ∈ Lp(Rd) and 1 < p < +∞.
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Proof of Theorem 2.25. The proof of (2.187) is taken from [SS05, Chapter 3.1.1]. Let α > 0. If
Mu(x) > α, then there is an open ball Bx such that x ∈ Bx and

ˆ
Bx

|u(y)|dy > α|Bx|, (2.190)

which implies Mu > α on Bx. Therefore {Mu > α} is open. Assume that u ∈ L1(Rd). We will
show

|Aα| ≤
C

α
‖u‖L1(Aα), Aα = {Mu > α}, (2.191)

from which (2.187) follows. If x ∈ Aα, there is a ball Bx such that x ∈ Bx and (2.190) is satisfied.
Let K ⊂ Aα be a compact set. From the covering of K by the balls Bx, x ∈ K, we extract a
covering by balls Bi, i ∈ I with I finite, satisfying

|Bi| ≤
1
α

ˆ
Bi

|u(y)|dy, (2.192)

for all i ∈ I. Note that
K ⊂

⋃
i∈I

Bi ⊂ Aα, (2.193)

the second inclusion being a consequence of the inclusion Bx ⊂ Aα for all x ∈ Aα. We use an
elementary version of the Vitali’s covering theorem (see Theorem 2.26 below) to find a subset
J ⊂ I such that {Bi; i ∈ J} is a collection of disjoint balls and∣∣∣∣∣⋃

i∈I
Bi

∣∣∣∣∣ ≤ 3d
∣∣∣∣∣⋃
i∈J

Bi

∣∣∣∣∣ = 3d
∑
i∈J
|Bi|. (2.194)

From (2.192), (2.193) and (2.194), we deduce that

|K| ≤ 3d

α

∑
i∈J

ˆ
Bi

|u(y)|dy = 3d

α

ˆ
∪i∈JBi

|u(y)|dy ≤ 3d

α

ˆ
Aα

|u(y)|dy. (2.195)

Since K ⊂ Aα is arbitrary, (2.191) follows by inner regularity of the Lebesgue measure. Assume
now that u ∈ Lp(Rd) with 1 < p ≤ +∞. The inequality (2.188) is clear, so let us consider the
case 1 < p < +∞. By Fubini-Tonelli’s theorem, for every positive measurable function v, we
have

‖v‖p
Lp(Rd) =

ˆ
Rd

ˆ ∞
0

1{v(x)>α}pα
p−1dαdx =

ˆ ∞
0

pαp−1|{v > α}|dα. (2.196)

We use the notation a ∧ b := min(a, b). If we truncate the sum over α in (2.196), we obtain

‖v ∧R‖p
Lp(Rd) =

ˆ R

0
pαp−1|{v > α}|dα. (2.197)

Assume u ∈ L1 ∩ Lp(Rd). We can apply (2.191) then, to obtain, for R > 0,

‖Mu∧R‖p
Lp(Rd) =

ˆ R

0
pαp−1|{Mu > α}|dα ≤ 3d

ˆ R

0
pαp−2

ˆ
Rd
|u(x)|1{Mu(x)>α}dxdα. (2.198)

If we bound 1{Mu(x)>α} by 1 in (2.198), we obtain

‖Mu ∧R‖p
Lp(Rd) ≤ 3dp′‖u‖L1(Rd)R

p−1 < +∞. (2.199)
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Using Fubini-Tonelli’s theorem and integrating with respect to α in (2.198), we deduce

‖Mu ∧R‖p
Lp(Rd) ≤ 3dp′

ˆ
Rd
|u(x)|[u(x) ∧R]p−1dx. (2.200)

By Hölder’s inequality, it follows that

‖Mu ∧R‖p
Lp(Rd) ≤ 3dp′‖u‖Lp(Rd)‖Mu ∧R‖p−1

Lp(Rd). (2.201)

Since ‖Mu ∧R‖Lp(Rd) < +∞, we have

‖Mu ∧R‖Lp(Rd) ≤ 3dp′‖u‖Lp(Rd). (2.202)

We pass to the limit R→ +∞ then. By monotone convergence, (2.202) gives us the estimate

‖Mu‖Lp(Rd) ≤ 3dp′‖u‖Lp(Rd). (2.203)

Although (2.203) has not the same constant as (2.189), it is still a satisfactory estimate ‖Mu‖Lp .
‖u‖Lp , but there remains to relax the hypothesis u ∈ L1 ∩ Lp(Rd). We cannot simply invoke
an argument of density. Indeed (this is precisely our main issue), the map u 7→ Mu is not easy
to apprehend. If u ∈ Lp(Rd), the possible obstruction to the integrability property u ∈ L1(Rd)
comes from the behaviour of u on “large” sets (more precisely: on sets of infinite measure), where
|u| may be much larger than |u|p. Let us therefore consider the truncation uα defined for α > 0
by uα = u1|u|>α. In this truncation procedure “from below”, we replace u by 0 where |u| ≤ α,
so uα ∈ L1 ∩ Lp(Rd). Since |u| ≤ |uα|+ α, we have Mu ≤Muα + α, and thus

{Mu > 2α} ⊂ {Muα > α} . (2.204)

We use (2.204) to revisit the proof of (2.202). In (2.198), we have

‖Mu ∧R‖p
Lp(Rd) =

ˆ R

0
pαp−1|{|Mu| > α}|dα = 2p

ˆ R/2

0
pαp−1|{Mu > 2α}|dα

≤ 2p
ˆ R/2

0
pαp−1|{Muα > α}|dα ≤ 2p3d

ˆ R/2

0
pαp−2‖uα‖L1(Rd)dα

= 2p3d
ˆ R/2

0
pαp−2

ˆ
Rd
|u(x)|1{|u(x)|>α}dα = 2p3dp′‖|u| ∧ (R/2)‖p

Lp(Rd). (2.205)

We conclude by taking the limit R→ +∞.

Theorem 2.26 (Vitali’s covering theorem with a finite number of balls). Let {Bi; i ∈ I} be a
collection of balls with I finite. Then there exists a subcollection {Bi; i ∈ J} of disjoint balls
such that ∣∣∣∣∣⋃

i∈I
Bi

∣∣∣∣∣ ≤ 3d
∣∣∣∣∣⋃
i∈J

Bi

∣∣∣∣∣ . (2.206)

Proof of Theorem 2.26. To construct J from I, we will need to eliminate some balls of the original
collection. This loss will be compensated for the following reason: if B and B′ are two balls with
a non-empty intersection, with B having the largest radius,then B′ ⊂ 3B. Let B0 = {Bi; i ∈ I}.
Among the balls of largest radius in B0, we choose a given ball Bi1 . Let B1 ⊂ B0 be the
subcollection obtained by eliminating from B0 all the balls intersecting Bi1 and Bi1 itself. Let
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us repeat this operation on B1, B2, . . . until all balls in the considered collection are disjoint. We
obtain a sequence of balls Bi1 , . . . Bik and a sequence of collections

Bk ⊂ Bk−1 ⊂ · · · ⊂ B1 ⊂ B0, (2.207)

in k steps, k ≤ #I. The conclusion follows by considering the collection

{Bj ; j ∈ J} = {Bi1 , . . . , Bik}
⋃
Bk, (2.208)

and noting that |3B| = 3d|B|.

We will give an application of the Lp-estimate (2.189) to the study of ordinary differential
equations with vector fields which are not Lipschitz continuous (but have Sobolev regularity),
see Section 2.5.4. For the moment, we will see how the Lebesgue’s differentiation Theorem can
be deduced from the estimate (2.187).

2.5.2 Lebesgue’s differentiation Theorem

Theorem 2.27 (Lebesgue’s differentiation Theorem). If u ∈ L1
loc(Rd), then

lim
r→0

1
|B(x, r)|

ˆ
B(x,r)

u(y)dy = u(x), (2.209)

for a.e. x ∈ Rd.

Proof of Theorem 2.27. We will establish the stronger result

lim
r→0

1
|B(x, r)|

ˆ
B(x,r)

|u(y)− u(x)|dy = 0, (2.210)

for a.e. x ∈ Rd. Indeed, the inequality∣∣∣∣∣
ˆ
B(x,r)

u(y)dy − u(x)

∣∣∣∣∣ =

∣∣∣∣∣
ˆ
B(x,r)

(u(y)− u(x))dy

∣∣∣∣∣ ≤ 1
|B(x, r)|

ˆ
B(x,r)

|u(y)− u(x)|dy (2.211)

shows that (2.210) implies (2.209). Denote by u∗ the Hardy-Littlewood maximal function, defined
by

u∗(x) = sup
r>0

1
|B(x, r)|

ˆ
B(x,r)

|u(y)|dy. (2.212)

We will use the bound
1

|B(x, r)|

ˆ
B(x,r)

|u(y)|dy ≤ u∗(x) ≤Mu(x). (2.213)

We put forward two additional facts:

• the result (2.210) is local: it is sufficient to prove (2.210) for a.e. x ∈ K where K is an
arbitrary compact set. To establish (2.210) a.e. on K, we can replace u by u1U , where U
is an open set with compact closure such that K ⊂ U . Otherwise speaking, we can assume
without loss of generality that u ∈ L1(Rd).

• (2.210) is satisfied for all x ∈ Rd if u is continuous (if |u(y) − u(x)| < ε for all y in a
neighbourhood of x, then the integral in (2.210) is smaller than ε for r small enough).
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To transfer the property (2.210) for continuous functions to general integrable functions, we will
use a density argument: given ε > 0, there exists ũ a continuous compactly supported function
such that

‖w‖L1(Rd) < ε, w := u− ũ. (2.214)

For x ∈ Rd, r > 0, we have, by triangular inequality,

1
|B(x, r)|

ˆ
B(x,r)

|u(y)− u(x)|dy ≤ 1
|B(x, r)|

ˆ
B(x,r)

|ũ(y)− ũ(x)|dy

+ 1
|B(x, r)|

ˆ
B(x,r)

|u(y)− ũ(y)|dy + |ũ(x)− u(x)|. (2.215)

Set
δ[u; r](x) = 1

|B(x, r)|

ˆ
B(x,r)

|u(y)− u(x)|dy. (2.216)

We have lim supr→0 δ[ũ; r](x) = 0 at all point x, so (2.215) and (2.213) (with w = u− ũ instead
of u) give

lim sup
r→0

δ[u; r] ≤Mw + |w|. (2.217)

Let α > 0. Using (2.217), we have∣∣∣∣{lim sup
r→0

δ[u; r] > α

}∣∣∣∣ ≤ |{Mw > α/2}|+ |{|w| > α/2}| . (2.218)

By (2.187) and by the Markov inequality, the right-hand side of (2.218) is bounded by

23d + 1
α
‖w‖L1(Rd) < 23d + 1

α
ε. (2.219)

Taking the limit ε → 0, we deduce that |{lim supr→0 δ[u; r] > α}| = 0. Since α is arbitrary, it
follows by continuity of the Lebesgue measure with respect to increasing limit that∣∣∣∣{lim sup

r→0
δ[u; r] = 0

}∣∣∣∣ = lim
n→+∞

∣∣∣∣{lim sup
r→0

δ[u; r] > n−1
}∣∣∣∣ = 0. (2.220)

This shows that (2.210) is satisfied for a.e. x ∈ Rd.

Remark 2.8 (Lebesgue differentiation Theorem: L1-convergence). Let u ∈ L1(Rd). By the
homogeneity property |B(x, r)| = |B(0, 1)|rd, the ratio δ[u; r] in (2.216) can be written

δ[u; r](x) = 1
|B(0, 1)|

ˆ
B(0,1)

|u(x+ rz)− u(x)|dz. (2.221)

We have simply used the change of variable z 7→ y = x + rz, of Jacobian rd. By the Fubini
theorem, we have then

‖δ[u; r]‖L1(Rd) = 1
|B(0, 1)|

ˆ
B(0,1)

‖τ−rzu− u‖L1dz ≤ ωL1(u; r), (2.222)

and (2.96) gives us immediately the L1 convergence

lim
r→0

δ[u; r] = 0 in L1(Rd). (2.223)
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If (rn) ↓ 0, it follows from (2.223) that there is a subsequence (rnk) such that δ[u, rnk ]→ 0 a.e.
when k → +∞. For all r = rn, there exists then k such that nk ≤ n < nk+1, and we can try to
estimate δ[u; rn] by

δ[u; rn] ≤ |B(0, rnk)|
|B(0, rnk+1)| ×

1
|B(0, rnk)|

ˆ
B(0,rnk )

|u(y)− u(x)|dy =
[
rnk
rnk+1

]d
δ[u; rnk ]. (2.224)

It is possible to exploit (2.224) to prove δ[u; rn]→ 0 a.e. only if the sequence (rnk) decays slowly
enough, and there is no reason for this. Even the original sequence may decay quickly and satisfy
rn+1 = o(rn). There are other situation in mathematics where it requires some particular efforts
to establish a result a.e. We can mention for instance:

• the law of large numbers in probability theory,

• the ergodic theorem in the study of dynamical systems (Birkhoff’s ergodic theorem).

All these examples are not strictly uncorrelated: the law of large numbers can be deduced from
Birkhoff’s ergodic theorem, and the classical proof of the latter uses maximal functions, [SS05,
Chapter 6.5.2]).

2.5.3 A brief reminder on the theory of ordinary differential equations

Let us first recall some elementary facts about ordinary differential equations (ODEs). If t 7→
x(t) ∈ Rd is seen as the parametrization of a curve γ in Rd, an ODE ẋ(t) = a(x(t)) gives a
way to follow γ by assigning the tangent vector ẋ(t) at each position x(t). The curve γ may
be a conic for instance: this is what happens in the fundamental case of the resolution of the
two-body problem in the theory of gravitation of Newton. An ODE ẋ(t) = a(x(t)) in dimension
d can also be seen as a system of d equations in d unknowns: the modelling of a vast number
of phenomena in chemistry, biology, physics... uses such an approach based on ODEs. In this
section, we will discuss only autonomous ODEs, where the vector field a : Rd → Rd only depends
on the state variable x, and not on the time variable, although the generalization of the theory
to the non-autonomous case is possible and important.

Global existence, blow-up in finite time. Consider first the following elementary examples,
where x(t), y(t), z(t) may denote the size of a given population at time t:

1. d = 1, ẋ(t) = x(t),

2. d = 1, ẏ(t) = y(t) ln(|y(t)|),

3. d = 1, ż(t) = (z(t))2.

These three examples can be written as equations in separate variables

dx

G(x) = dt.

By computing a primitive function of G−1, we obtain the following explicit expressions (t > 0,
x0, y0, z0 > 0):

x(t) = etx0, y(t) = exp(et ln(y0)), z(t) = z0

1− z0t
.

The expression for z(t) is valid as long as t < z−1
0 . In example 1., the growth of a(x) = x is

linear, and t 7→ x(t) as en exponential growth. This indicates in itself that the solution of an
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ODE with a vector field that grows superlinearly may blow up in finite time. The example 3.
illustrates this fact (we may as well consider the ODE ż(t) = |z(t)|p with p > 1). The example 2.
shows that it is possible to go a little bit beyond the sublinear case, regarding the growth of a,
and still get solutions defined globally in time (see Osgood’s lemma for a general result). Now,
consider a vector field a : Rd → Rd which is globally Lipschitz continuous: there exists L ≥ 0
such that

|a(x)− a(y)| ≤ L|x− y|, (2.225)

where | · | is the euclidean norm on Rd. If we apply (2.225) to y = 0, we obtain

|a(x)| ≤ C(|x|+ 1), C = L+ |a(0)|,

and this shows that a has a sublinear growth. In view of the three examples discussed above, we
expect the ODE ẋ(t) = a(x(t)) to admit some solutions which are defined globally in time.

Uniqueness. Under the Lipschitz condition (2.225), we also have the estimate

|x1(t)− x2(t)| ≤ (eLt − 1)|x1(0)− x2(0)|, (2.226)

where t ∈ [0, T ] and x1(t) and x2(t) are two solutions of the ODE ẋ(t) = a(x(t)) on [0, T ].
The estimate (2.226) is a consequence of the Grönwall Lemma. It gives a result of continuous
dependence on the data and, in particular, a result of uniqueness, for the solutions of the ODE.
The example of the functions x : t 7→ [(t − t0)+]m, t0 ≥ 0, which give infinitely many solutions
to the ODE ẋ(t) = a(x(t)), a(x) = m|x|1−1/m satisfying x(0) = 0, shows that uniqueness will
not hold if a Lipschitz condition is replaced by a Hölder condition. To sum up these discussions,
we consider the following two cases: globally Lipschitz continuous vector field, locally Lipschitz
continuous vector field.

Globally Lipschitz continuous vector field. If a is globally Lipschitz continuous, we expect
to be able to solve ẋ(t) = a(x) in a unique manner (once prescribed a given point at time t = 0),
and globally in time. The classical proof of this result uses the integral formulation of the ODE
(with initial condition x(0) = x0):

x(t) = x0 +
ˆ t

0
a(x(s))ds, (2.227)

where x is a priori considered to be a continuous function of t.

Theorem 2.28 (Cauchy-Lipschitz global). Let a : Rd → Rd be a globally Lipschitz continuous
vector field. Then, for all x0 ∈ Rd, the ODE ẋ(t) = a(x(t)) has a unique solution t 7→ x(t;x0)
satisfying (2.227) for all t ∈ R.

We can see on the integral equation (2.227) that x is C1 in t. If a has some additional regularity,
for instance a is of class Ck, k ≥ 1, then x is of class Ck+1 in t (proof by recursion on k). The
flow associated to the vector field a is the collection of trajectories t 7→ x(t;x0), usually denoted
Xt(x0) or Φt(x0).

Locally Lipschitz continuous vector field. Assume now that a : Rd → Rd is locally Lip-
schitz continuous. We have a good (local) dependence on the data by (2.226), but blow up is
possible, as illustrated by the example 3.
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Theorem 2.29 (Cauchy-Lipschitz local, blow-up). Let a : Rd → Rd be a locally Lipschitz con-
tinuous function and let x0 ∈ Rd. A solution (x, J) to the Cauchy Problem{

ẋ(t) = a(x(t)),
x(0) = x0,

(2.228)

is a continuous function x : J → Rd, where J is an interval of R containing 0, satisfying (2.227)
for all t ∈ J . We have the following results.

1. Compatibility. Two solutions (x1, J1) and (x2, J2) to (2.228) satisfy x1 = x2 on J1 ∩ J2.

2. Maximal solution. There is a unique maximal solution (x∗, J∗) to (2.228): if (x, J) is
an other solution, then J ⊂ J∗ and x = x∗ on J .

3. Blow-up in finite time. If sup J∗ < +∞, then x∗(t) is unbounded in the neighbourhood
of sup J∗ (same result in the neighbourhood of inf J∗ if inf J∗ > −∞).

Solving transport equation (omit on first reading). Let u be a (smooth) solution to the
transport equation

∂tu(x, t) + a(x) · ∇xu(x, t) = 0, (2.229)
with initial condition u(x, 0) = u0(x). By differentiation of u along the flow Φt of a, we obtain

∂

∂t
[u(Φt(x), t)] = (∂tu)(Φt(x), t) + Φ̇t(x) · ∇xu(Φt(x), t).

Since Φ̇t(x) = a(Φt(x)), we get

∂

∂t
[u(Φt(x), t)] = (∂tu+ a · ∇xu)(Φt(x), t) = 0.

Consequently u is given by
u(x, t) = u0 ◦ Φt(x), (2.230)

where Φt denotes the inverse of x 7→ Φt(x) (actually Φt = Φ−t here, since the equation is
autonomous). This link between the partial differential equation (2.229) and the ODE ẋ(t) =
a(x(t)) is both a reason to extend the theory of the Cauchy Problem for ODEs to the cases of
vector fields a with a regularity less than Lipschitz, and an help to achieve this goal. It happens
frequently that the transport equation (2.229) is part of a larger system of equations, where
a depends of some the unknowns of the problems and where natural estimates give a Sobolev
regularity for a. Consider for instance the resolution of the Vlasov-Poisson system (x, v ∈ R3)

∂tf(t, z) + a(t, z) · ∇zf(t, z) = 0, z =
(
x
v

)
, a(t, z) =

(
v

E(x, t)

)
,

where the field E is given by E(x, t) = −∇xV (x, t) and the potential V is deduced from the
Poisson Equation −∆xV (x, t) = ρ(x, t), where ρ is the density, which depends on the solution f
itself:

ρ(x, t) =
ˆ
R3
f(t, x, v)dv.

To generalize the resolution of (2.229) to the case of non-smooth functions, it is also natural to
consider weak solutions to the equation (2.229). Then, in view of (2.230), we will need to give a
meaning to an integral ˆ

Rd
v ◦ Φt(x)dx, (2.231)
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where v is a non-negative integrable function (v may be |u0| for instance). Recall that Φt = Φ−t
since we consider the autonomous case, so (2.231) will be well defined if Φt(x) is defined for a.e.
x ∈ Rd and if Φt satisfies the condition: there exists L ≥ 0 (called a compressibility constant)
such that, for all t, ˆ

Rd
v ◦ Φt(x)dx ≤ L

ˆ
Rd
v(x)dx, (2.232)

for all integrable non-negative function v on Rd. The estimate (2.234) in Theorem 2.30 below
is an essential step in the construction of a generalized flow satisfying (2.232) (in the approach
developed by Crippa and de Lellis, [CDL08]).

2.5.4 Solving ODEs with vector fields of Sobolev regularity

In this section, we will establish the following result, where Br denotes the ball B(0, r).

Theorem 2.30 (Stability of the flow, a quantitative estimate). Let a and ã be two smooth,
bounded, vector fields on Rd. Let Φt and Φ̃t be the associated flows. We assume that there are
some constants L, L̃ ≥ 0 such that

ˆ
Rd
ϕ ◦ Φt(x)dx ≤ L

ˆ
Rd
ϕ(x)dx,

ˆ
Rd
ϕ ◦ Φ̃t(x)dx ≤ L̃

ˆ
Rd
ϕ(x)dx, (2.233)

for all non-negative, continuous and compactly supported function ϕ : Rd → R+. Let p ∈ (1,+∞)
and let T > 0 be fixed. Let K = max(‖a‖L∞(Rd), ‖ã‖L∞(Rd)). Then we have the estimate

sup
t∈[0,T ]

‖Φt − Φ̃t‖L1(B1) ≤ C| log(‖a− ã‖L1(BR))|−1, (2.234)

where R = 1 + KT and the constant C depends only on T , p, K, and on the quantities
‖Dxa‖Lp(B3+KT ), L, L̃.

Notations: we will use the following notations: for r > 0 and u ∈ L1
loc(Rd) we define the local

maximal function Mr[u] by

Mr[u](x) = sup
0<t<r

1
|B(x, t)|

ˆ
B(x,t)

|u(y)|dy. (2.235)

We will also consider, for δ > 0, the function

Gδ(t) =
ˆ
B1

log
(

1 + |Φt(x)− Φ̃t(x)|
δ

)
dx, (2.236)

where log denote the inverse of exp. We denote by Dxa the matrix-valued function x 7→
(∂xjai(x))1≤i,j≤d and, for E ⊂ Rd, also denote by ‖Dxa‖Lp(E) the norm

‖Dxa‖Lp(E) =
(ˆ

E

|Dxa(x)|pdx
)1/p

, (2.237)

where, given A ∈Md(R), |A| is the norm subordinated to the euclidean norm on Rd:

|A| = sup
{
|Ax|;x ∈ Rd; |x| ≤ 1

}
.
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We also use the notation div(a) for the divergence operator

div(a)(x) =
d∑
i=1

∂ai

∂xi
(x) = tr(Dxa)(x). (2.238)

If s ∈ R, s− = max(−s, 0) is the negative part of s. At last, we denote by C1, C2, . . . any
constant that depends on T , p, K, and on the quantities ‖Dxa‖Lp(B3+KT ), L, L̃ only.

Before giving the proof of Theorem 2.30, we do some preliminary remarks.
Remark 2.9 (Rescaling). Let r ≥ 1. Let Ψt(x) = r−1Φrt(rx). We have Ψ0(x) = x and

Ψ̇t(x) = Φ̇rt(rx) = a(Φrt(rx)) = a(rΨt(x)). (2.239)

By uniqueness, Ψt(x) = r−1Φrt(rx) is the flow associated to the vector field x 7→ a(rx). If we
apply (2.234) to Ψt and Ψ̃t on the interval [0, r−1T ], we obtain

r−(d+1) sup
t∈[0,T ]

‖Φt − Φ̃t‖L1(Br) ≤ C| log(r−d‖a− ã‖L1(BR))|−1, (2.240)

where R = r+‖a‖L∞(Rd)T and the constant C depends only on r, T , p, K, and on the quantities
‖Dxa‖Lp(B3r+KT ), L, L̃. Since r ≥ 1, this gives the more general estimate

sup
t∈[0,T ]

‖Φt − Φ̃t‖L1(Br) ≤ C| log(‖a− ã‖L1(BR))|−1. (2.241)

Remark 2.10 (Global flow). Since a is at least of class C1, it is locally Lipschitz continuous. Let
(x, J) be the maximal solution to (2.228). The integral equation (2.227) gives the bound

|x(t)| ≤ |x0|+ t‖a‖L∞(Rd), (2.242)

for all t ∈ J . The blow-up criterion in Theorem 2.29 ensures that x is defined globally: J = R.
Consequently, the flow Φt(x) is defined for all (t, x) ∈ R×Rd and we have the finite propagation
property

Φt(Br) ⊂ Br+tK , (2.243)

for all r ≥ 0 and t ≥ 0.
Remark 2.11 (Compressibility constant). Assume that

‖[div(a)]−‖L∞(Rd) < +∞. (2.244)

Then the first inequality in (2.233) is satisfied with L = exp(T‖[div(a)]−‖L∞(Rd)). Indeed, note
first that the integrals in (2.233) are well defined in virtue of the finite propagation property
(2.243). The change of variable z = Φt(x) gives

ˆ
Rd
ϕ ◦ Φt(x)dx =

ˆ
Rd
ϕ(z)|(JΦ−1

t (z))|dz. (2.245)

Recall that
DxΦt(x) = exp

(ˆ t

0
Dxa(Φs(x))ds

)
, (2.246)
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for the reason that t 7→ DxΦt(x) solves the linear ODE on Rd×d given by Ȧt = Dxa(Φt)At, with
initial condition A0 = Id, and that det(exp(A)) = exp(tr(A)), so that the Jacobian determinant
JΦt satisfies

JΦt(x) = exp
(ˆ t

0
tr(Dxa)(Φs(x))ds

)
= exp

(ˆ t

0
(div(a))(Φs(x))ds

)
≥ exp

(ˆ t

0
(− div(a))−(Φs(x))ds

)
≥ exp

(
−T‖[div(a)]−‖L∞(Rd)

)
, (2.247)

and thus
JΦ−1

t (z) =
[
JΦt ◦ Φ−1

t (z)
]−1 ≤ exp(T‖[div(a)]−‖L∞(Rd)). (2.248)

Proof of Theorem 2.30. First, given r, ρ > 0 we note that we have the local Lp-estimate

‖Mr[u]‖Lp(Bρ) ≤ 2(3dp′)1/p‖u‖Lp(Br+ρ), p′ := p

p− 1 , (2.249)

for all 1 < p < +∞ and u ∈ Lploc(Rd). This follows from the bounds Mr[u](x) ≤M [u1B(x,r)](x)
and 1B(x,r) ≤ 1Br+ρ if x ∈ Bρ. Then we apply (2.189) to u1Br+ρ to obtain (2.249). Next, we
prove that, for x ∈ Rd, r > 0, we have∣∣∣∣∣ 1

|B(x, r)|

ˆ
B(x,r)

a(z)dz − a(x)

∣∣∣∣∣ ≤ rMr[|Dxa|](x). (2.250)

We use the expansion

1
|B(x, r)|

ˆ
B(x,r)

a(z)dz − a(x) = 1
|B(x, r)|

ˆ
B(x,r)

ˆ 1

0
Dxa(tz + (1− t)x) · (z − x)dtdz, (2.251)

and the triangular inequality to obtain the first estimate∣∣∣∣∣a(x)− 1
|B(x, r)|

ˆ
B(x,r)

a(z)dz

∣∣∣∣∣ ≤ 1
|B(x, r)|

ˆ
B(x,r)

ˆ 1

0
|Dxa|(tz + (1− t)x)|z − x|dtdz. (2.252)

By Fubini’s theorem and the change of variable B(x, r) 3 z 7→ x + t(z − x) ∈ B(x, rt) we can
transform the right-hand side of (2.252) in

1
|B(x, r)|

ˆ 1

0

ˆ
B(x,rt)

|Dxa|(z)|z − x|t−1dzt−ndt. (2.253)

Since tn|B(x, r)| = |B(x, tr)|, using the change of variable t′ = rt gives us

(2.253) =
ˆ 1

0

1
|B(x, rt)|

ˆ
B(x,rt)

|Dxa|(z)|z − x|t−1dzdt

=
ˆ r

0

1
|B(x, t)|

ˆ
B(x,t)

|Dxa|(z)|z − x|t−1dzdt, (2.254)

which can be estimated by
ˆ r

0
Mr[|Dxa|](x)dt ≤ rMr[|Dxa|](x). (2.255)
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We complete (2.250) with the following estimate: for x, y ∈ Rd,∣∣∣∣∣ 1
|B(x, r)|

ˆ
B(x,r)

a(z)dz − 1
|B(y, r)|

ˆ
B(y,r)

a(z)dz

∣∣∣∣∣ ≤ Cd|x− y|M2r[|Dxa|](x), (2.256)

where r = |x− y| and the constant Cd depends on d only. To establish (2.256), let us write first

Ax,y := 1
|B(x, r)|

ˆ
B(x,r)

a(z)dz − 1
|B(y, r)|

ˆ
B(y,r)

a(z)dz

= 1
|Br|

ˆ
Br

a(x+ z)dz − 1
|Br|

ˆ
Br

a(y + z)dz, (2.257)

to obtain
|Ax,y| ≤

1
|Br|

ˆ
Br

ˆ 1

0
|Dxa|(tx+ (1− t)y + z)|x− y|dtdz. (2.258)

We use Fubini’s theorem and the change of variable z′ = tx+ (1− t)y+ z. For t ∈ [0, 1], we have

z′ ∈ B(tx+ (1− t)y, r) = B(x+ (1− t)(y − x), r) ⊂ B(x, 2r), (2.259)

so
|Ax,y| ≤

1
|Br|

ˆ 1

0

ˆ
B(x,2r)

|Dxa|(z)|x− y|dzdt ≤
|B2r|
|Br|

|x− y|M2r[|Dxa|](x), (2.260)

and this gives the desired result since |B2r| = 2d|Br|. Now let us decompose the difference
a(x)− a(y) into the three parts

a(x)− 1
|B(x, r)|

ˆ
B(x,r)

a(z)dz, 1
|B(x, r)|

ˆ
B(x,r)

a(z)dz − 1
|B(y, r)|

ˆ
B(y,r)

a(z)dz, (2.261)

and
1

|B(y, r)|

ˆ
B(y,r)

a(z)dz − a(y). (2.262)

If we apply (2.250) to the first and third term and apply (2.256) to the second term, we conclude
to the following estimate:

|a(x)− a(y)| ≤ Cd|x− y|(M2r[|Dxa|](x) +M2r[|Dxa|](y)), (2.263)

where r = |x− y| and the constant Cd depends on d only. We will now justify that

Gδ(t) ≤
ˆ t

0

ˆ
B1

|a(Φs(x))− ã(Φ̃s(x))|
δ + |Φs(x)− Φ̃s(x)|

dxds, (2.264)

for all t ∈ [0, T ], where Gδ is defined by (2.236). The estimate (2.264) can be obtained formally
by differentiation of Gδ. Since the norm x 7→ |x| is not differentiable at x = 0, we have to use a
first step of regularization. If J : Rd → R+ is a smooth function and

GJ,δ(t) =
ˆ
B1

log
(

1 + J(Φt(x)− Φ̃t(x))
δ

)
dx, (2.265)

then t 7→ GJ,δ is of class C1 and

G′J,δ(t) =
ˆ
B1

∇J [Φt(x)− Φ̃t(x)] · [a(Φt(x))− ã(Φ̃t(x))]
δ + J(Φt(x))− Φ̃t(x))

dx. (2.266)
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To obtain (2.266), we use the ODEs Φ̇t(x) = a(Φt(x)), ˙̃Φt(x) = ã(Φ̃t(x)). To justify that GJ,δ is
of class C1, we use the theorem of differentiation under the integral sign. Indeed, setting

F (t, x) = log
(

1 + J(Φt(x)− Φ̃t(x))
δ

)
, (2.267)

we have

1. being continuous, x 7→ F (t, x) is integrable (since measurable and bounded) for all, and
hence at least one t ∈ [0, T ],

2. for all x ∈ Br, t 7→ F (t, x) is of class C1 on [0, T ],

3. there exists an integrable function F̄ such that |∂tF (t, x)| ≤ F̄ (x) for all x ∈ B1, t ∈ [0, T ].

For F̄ (x), using (2.243), we can simply consider the constant function

x 7→ M + M̃

δ
sup

z∈B2+T (M+M̃)

|∇J(z)|. (2.268)

By integration with respect to t in (2.266), and provided J(0) = 0, we obtain

GJ,δ(t) =
ˆ t

0

ˆ
B1

∇J [Φs(x)− Φ̃s(x)] · [a(Φs(x))− ã(Φ̃s(x))]
δ + J(Φs(x))− Φ̃s(x))

dxds. (2.269)

We consider then an approximation of x 7→ J0(x) := |x| by some functions Jε of class C1, for
instance

Jε(x) =
√
ε+ |x|2. (2.270)

With this choice (2.270) for Jε, we have ∇Jε(x) = x√
ε+|x|2

, so |∇Jε(x)| ≤ 1 for all x. This has
the consequence that

|GJε,δ(t)| ≤
ˆ t

0

ˆ
B1

|a(Φs(x))− ã(Φ̃s(x))|
δ + Jε(Φs(x))− Φ̃s(x))

dxds. (2.271)

By dominated convergence, we can pass to the limit [ε → 0] in (2.271) to obtain (2.264). It
follows from (2.264) that

Gδ(t) ≤
1
δ

ˆ t

0

ˆ
B1

|a(Φ̃s(x))− ã(Φ̃s(x))|dxds+
ˆ t

0

ˆ
B1

|a(Φs(x))− a(Φ̃s(x))|
δ + |Φs(x)− Φ̃s(x)|

dxds. (2.272)

We focus on the first term in the right-hand side of (2.272). By (2.233), it is bounded by

L̃

δ

ˆ t

0

ˆ
Φ̃s(B1)

|a(y)− ã(y)|dy. (2.273)

Using (2.243) therefore gives

Gδ(t) ≤
L̃T

δ
‖a− ã‖L1(B1+KT ) +

ˆ t

0

ˆ
B1

|a(Φs(x))− a(Φ̃s(x))|
δ + |Φs(x)− Φ̃s(x)|

dxds. (2.274)
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We apply then (2.263) with points Φs(x), Φ̃s(x) to obtain a bound on the second term in the
right-hand side of (2.274) by

Cd

ˆ t

0

ˆ
B1

(M2[|Dxa|](Φs(x)) +M2[|Dxa|](Φ̃s(x)))dxds. (2.275)

By the “compressibility” condition (2.233) and the bound on the speed of propagation (2.243),
we can estimate (2.275) by

2Cd(L+ L̃)
ˆ t

0

ˆ
B1+KT

M2[|Dxa|](z)dzds ≤ 2Cd(L+ L̃)T
ˆ
B1+KT

M2[|Dxa|](z)dz. (2.276)

We use the Hölder inequality and the local Lp estimate (2.249) to estimate (2.276) from above
by

2Cd(L+ L̃)T |B1+KT |
1
p′ 2(3dp′)1/p‖Dxa‖Lp(B3+KT ) ≤ C1, (2.277)

where C1 is a generic constant depending on T , p, K, and on the quantities ‖Dxa‖Lp(B3+KT ), L,
L̃, and conclude that

Gδ(t) ≤
L̃T

δ
‖a− ã‖L1(B1+KT ) + C1. (2.278)

We take now δ = ‖a − ã‖L1(B1+KT ) so that (2.278) gives Gδ(t) ≤ C2. Let η > 0 be a given
parameter. Let

H(x) = log
(

1 + |Φt(x)− Φ̃t(x)|
δ

)
, (2.279)

and let A = {x ∈ B1;H(x) ≤ C2
η }. By the Markov inequality, we have

|B1 \K| =
∣∣∣∣{x ∈ B1;H >

C2

η

}∣∣∣∣ ≤ η

C2

ˆ
B1

H(x)dx ≤ η. (2.280)

Therefore, by definition of the set A, we have

|B1 \A| ≤ η, |Φt − Φ̃t| ≤ δ exp(C2/η) on A. (2.281)

We decompose then

‖Φt − Φ̃t‖L1(B1) = ‖Φt − Φ̃t‖L1(B1\A) + ‖Φt − Φ̃t‖L1(A). (2.282)

On A, we use the bound

‖Φt − Φ̃t‖L1(A) ≤ |A|δ exp(C2/η) ≤ |B1|δ exp(C2/η) ≤ C3δ exp(C2/η). (2.283)

On the complementary set B1 \A, we have, by (2.243)

‖Φt − Φ̃t‖L1(B1\A) ≤
(
‖Φt‖L∞(B1) + ‖Φ̃t‖L∞(B1)

)
|A| ≤ C4η. (2.284)

Without loss of generality, we can assume δ < 1. Choosing η = 2C2
| log(δ)| then gives

‖Φt − Φ̃t‖L1(B1) ≤ C5| log(δ)|−1 + C3δ
1/2 ≤ C6| log(δ)|−1, (2.285)

which is the desired result.
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3 Hahn-Banach theorem

3.1 Preliminaries on hyperplanes and linear functional
All the results in this section have a proof which does not use the Hahn-Banach theorem.

3.1.1 Riesz’ lemma

Recall that, in a metric space (E, d), the distance d(x,A) from a point u ∈ E to a set A ⊂ E is
defined as

d(u,A) = inf
v∈A

d(u, v). (3.1)

In particular d(u,A) = 0 if, and only if, u ∈ Ā.

Proposition 3.1 (F. Riesz’ lemma). Let E be a normed vector space and M a closed subspace of
E, M 6= E. Then, for all ε > 0, there exists u ∈ E of norm ‖u‖ = 1 such that d(u,M) ≥ 1− ε.

Proof of Proposition 3.1. let d be the metric associated to the norm on E. Let w ∈ E \M . We
have δ := d(w,M) > 0 and, given δ′ with δ′ > δ, there exists v′ ∈M such that 0 < d(w, v′) ≤ δ′.
Let u1 = w − v′. Then

‖u1 − v‖ = d(w, v′ + v) ≥ δ (3.2)

for all v ∈M , so d(u1,M) ≥ δ. The point u = u1/‖u1‖ is of norm 1 and

d(u,M) ≥ δ/‖u1‖ ≥ δ/δ′. (3.3)

Choosing δ′ = (1− ε)−1δ will give the result.

3.1.2 Quotient spaces

Let X be a vector space, and Y a subspace of E. We denote by X/Y the quotient space relatively
to equivalence relation “u ∼ v if u − v ∈ Y ” and also denote by π : X → X/Y the canonical
surjection.

Theorem 3.2 (Isomorphism theorem). Let T : X → Z be a linear map between the vector spaces
X and Z. Then T induces an isomorphism

X/Ker(T)→ Im(T ), u+ Ker(T) 7→ T (u). (3.4)

If p is a semi-norm on a vector space X, then Y = {u ∈ E; p(u) = 0} is a subspace of X. On
X/Y , ‖π(u)‖ := p(u) is well defined and is a norm. For instance, L1 is obtained as such a
quotient space for the semi-norm given by the integral. In the following proposition, we consider
from the start a normed vector space.

Proposition 3.3 (Norm on the quotient space). Let E be a normed vector space, and M a
closed subspace of E. Consider the map

π(u) 7→ ‖π(u)‖ := d(u,M) (3.5)

on E/M . It defines a norm on E/M such that π : E → E/M has operator norm ‖π‖ = 1. The
topology defined by the norm and the quotient topology coincide. If E is a Banach space, then
E/M also.
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Proof of Proposition 3.3. It is clear that (3.5) is well defined: it depends on the equivalence class
of u only. It inherits the homogeneity property ‖λπ(u)‖ = |λ|‖π(u)‖ from the homogeneity
property

‖λu− v‖ = |λ|‖u− λ−1v‖, λ 6= 0.

The separation axiom ‖π(u)‖ = 0⇒ π(u) = 0 is satisfied becauseM is closed. The subadditivity
property is also deduced from the subadditivity property for the original norm on E: given ε > 0,
and u, v ∈ E, there exists wu, wv ∈M such that

‖u− wu‖ ≤ ‖π(u)‖+ ε, ‖v − wv‖ ≤ ‖π(v)‖+ ε.

Then

‖π(u+ v)‖ ≤ ‖(u+ v)− (wu + wv)‖ ≤ ‖u− wu‖+ ‖v − wv‖ ≤ ‖π(u)‖+ ‖π(v)‖+ 2ε.

The result follows by taking ε → 0. Since 0 ∈ M , we have ‖π(u)‖ ≤ ‖u‖ and Riesz’ Lemma
shows that ‖π‖ = 1. If r > 0, then

π−1(B(π(u), r)) = B(u, r) +M =
⋃
v∈M

B(u, r) + {v} =
⋃
v∈M

B(u+ v, r)

is open, so π : (E, ‖ · ‖)→ (E/M, ‖ · ‖) is continuous. Since the quotient topology T is the finest
topology that makes π continuous, it contains the topology T ′ associated to the norm on E/F .
Conversely, let U be open for the quotient topology and let π(u) ∈ U . Since u ∈ π−1(U) open,
there is a ball B(u, r) of positive radius r > 0 included in π−1(U). Then B(π(u), r) is included in
U . Indeed, π(v) ∈ B(π(u), r) is equivalent to the existence of z ∈M such that ‖u− v − z‖ < r,
which means v + z ∈ B(u, r), and implies v ∈ π−1(U) +M = π−1(U). We have proved that, for
each π(u) ∈ U , there is a non-trivial ball B(π(u), r) ⊂ U : U is T ′-neighbourhood of each of its
points, so U ∈ T ′. Let now (π(un)) be a Cauchy sequence in E/M . From this Cauchy sequence
we can extract a “C-sequence” (π(unk)), i.e. a subsequence such that

‖π(unk)− π(unk+1)‖ < 2−k, (3.6)

for all k. This is equivalent to the existence of a sequence (wk+1/2) of elements of M such that

‖unk − unk+1 − wk+1/2‖ < 2−k, (3.7)

for all k. Define v0 = 0, v1 = w1/2, . . . , vk = vk−1 + wk−1/2, . . . Then

‖ûk − ûk+1‖ < 2−k, ûk := unk − vk, (3.8)

so, assuming that E is complete, the sequence (ûk) is converging to an element û ∈ E. Since π is
continuous, π(ûk) = π(unk) is converging to π(û), but then the whole Cauchy sequence (π(un))
is converging to π(û): we can conclude that E/M is complete.

3.1.3 Hyperplanes

Proposition 3.4 (Hyperplanes). Let E be a normed vector space and let H ⊂ E. The following
assertions are equivalent.

1. H is the kernel of a non-trivial linear map ϕ : E → R,

2. the space E/H has dimension 1,
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3. H 6= E, and for every space M such that H ⊂M ⊂ E, either M = H, or M = E.

If any of this assertion is realized, then E = H ⊕ 〈v〉 for a certain v ∈ E, and we say that H is
an hyperplane of E.

Proof of Proposition 3.4. We have 1⇒2 by the Isomorphism Theorem (Theorem 3.2). The pro-
perty 2 implies E = H ⊕〈v〉 for a v ∈ E. Indeed, E/H = 〈π(v)〉 for a v ∈ E, which is equivalent
to E = H ⊕ 〈v〉. Setting ϕ(u + λv) = λ for u ∈ H then shows that 2⇒1. If 2 is realized and
H ⊂ M ⊂ E, then M/H is a subspace of E/H of dimension 0 or 1. If the dimension is 0, then
M = H. If the dimension is 1, then M/H = E/H, i.e. every element v in E is of the form u+w
with u ∈ H and w ∈ M . Since H ⊂ M , we obtain E = M . We can generalize the reasoning
used above: if E/H has dimension n and (π(vi))1,n is a basis of E/H, then

E = H ⊕ 〈v1, . . . , vn〉. (3.9)

This shows that non-2 implies non-3 (consider M = H ⊕ 〈v1〉 if n > 1) and concludes the
proof.

Theorem 3.5 (Closed hyperplane). Let E be a real normed vector space. Then H ⊂ E is a
closed hyperplane of E if, and only if, it is the kernel of a continuous linear form on E. An
hyperplane which is not closed is dense.

Proof of Theorem 3.5. We use the characterization 1 of Proposition 3.4 to write H as the kernel
of a linear form ϕ : E → R. If ϕ is actually continuous, then H is closed. If H is closed, then we
can consider the induced linear map

ϕ] : E/H → R, u+H 7→ ϕ(u). (3.10)

Since E/H has finite dimension, ϕ] is continuous. We endow E/H with the quotient norm (3.5)
and use the fact that the continuity of ϕ] is equivalent to the fact that it is bounded: there exists
C ≥ 0 such that

|ϕ](π(u))| ≤ C‖π(u)‖, (3.11)
for all u ∈ E. Then, for all u ∈ E,

|ϕ(u)| = |ϕ](π(u))| ≤ C‖π(u)‖ ≤ C‖u‖, (3.12)

since ‖π‖ = 1, and ϕ is continuous. If H is an hyperplane which is not dense, then there is an
open ball B(u0, r) which doest not intersect H. Assume that H = {ϕ = 0}, where ϕ is a linear
functional and assume, without loss of generality, that ϕ(x0) > 0. Then ϕ ≥ 0 on B(u0, r).
Indeed, suppose by contradiction that there is a u1 ∈ B(u0, r) such that ϕ(u1) < 0. Then ϕ will
have a zero on the segment [u0, u1]: more precisely,

ϕ(tu0 + (1− t)u1) = 0 for t = −ϕ(u1)
ϕ(u0)− ϕ(u1) ∈ (0, 1), (3.13)

and this contradicts H ∩B(u0, r) = ∅. That ϕ ≥ 0 on B(u0, r) gives

0 < ϕ(u0) + rϕ(v), ∀v ∈ B(0, 1). (3.14)

Since B(0, 1) is symmetric−B(0, 1) = B(0, 1), it follows that ϕ is bounded, with ‖ϕ‖ ≤ r−1ϕ(u0).
We deduce that ϕ is continuous and H closed. Note that, if H = Ker(ϕ) is closed, then the
complementary set is open so, again, we can conclude that there is an open ball that does
not intersect H and then use the arguments above to show that ϕ is continuous, and give an
alternative proof of the first assertion of the theorem.
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3.2 Hahn-Banach theorem
3.2.1 Analytic form of the Hahn-Banach theorem: extension of linear functionals

Definition 3.1. Let E be a real vector space over R. An application p : E → R is said to be

• positively homogeneous if p(tu) = tp(u) for all t > 0,

• subadditive if p(u+ v) ≤ p(u) + p(v), for all u, v ∈ E.

For example, a norm is a positively homogeneous and subadditive function. If (pα)α∈A is a
collection of semi-norms on a real vector space E, then a sum

∑
α∈A0

pα, where A0 is finite, is a
positively homogeneous and subadditive function.

Theorem 3.6 (Hahn-Banach - Analytic version). Let E be a real vector space, let p be a positively
homogeneous and subadditive function on E. Let M be a linear subspace of E and ϕ : M → R a
linear functional which is dominated by p:

ϕ(u) ≤ p(u), ∀u ∈M. (3.15)

Then ϕ can be extended to a linear functional E → R which remains dominated by p.

Proof of Theorem 3.6. We can assume M 6= E. Let us first show that we can extend ϕ to
M ′ = M ⊕ 〈w〉 if w /∈ M . Denote by ϕ′ such an extension, assuming that it exists. By
decomposing each v ∈M ′ as u+ λw where u ∈M , we should have

ϕ(u) + λϕ′(w) ≤ p(u+ λw). (3.16)

If λ = 0, then (3.16) is satisfied by hypothesis, whatever the choice of the value ϕ′(w). If λ 6= 0,
we can as well replace u by λu in (3.16). Then, using the positive homogeneity of p, it is sufficient
to satisfy the cases λ = ±1, i.e.

ϕ′(w) ≤ p(u+ w)− ϕ(u), −ϕ(u)− p(−u− w) ≤ ϕ′(w) (3.17)

We can choose a convenient value ϕ′(w), provided

− ϕ(u)− p(−u− w) ≤ p(v + w)− ϕ(v), ∀u, v ∈M, (3.18)

but (3.18) is satisfied since

ϕ(v)− ϕ(u) = ϕ(v − u) ≤ p(v − u) (3.19)

by (3.18), and p(v−u) ≤ p(v+w)+p(−u−w) by subadditivy. This gives a satisfactory extension
to M ⊕ 〈w〉. To justify that we can go on this process and choose new values of the functional
until we exhaust the whole space E, we need the Axiom of Choice. We use the equivalent form
of Zorn’s Lemma. Consider the following order on extensions of (ϕ,M) being dominated by
p: we say that (ϕ′,M ′) ≤ (ϕ′′,M ′′) if we have inclusion of the graphs: M ′ ⊂ M ′′ and ϕ′′ in
restriction to M ′ is equal to ϕ′. If F = {(ϕα,Mα);α ∈ A} is a totally ordered family, then
(ϕ̄, M̄) defined by M̄ = ∪α∈AMα, ϕ̄ = ϕα on Mα is an upper bound for F . By Zorn’s Lemma,
the set of extensions of (ϕ,M) being dominated by p admits a maximal element (ϕ∗,M∗). Then
M∗ = E, otherwise we can repeat the construction done in the beginning of the proof to produce
a contradiction.
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Theorem 3.7 (Hahn-Banach - Analytic version - Complex case). Let E be a vector space over
C, let p be a semi-norm on E. Let M be a linear subspace of E and ϕ : M → C a complex linear
functional which is dominated by p in the following sense

|ϕ(u)| ≤ p(u),∀u ∈M. (3.20)

Then ϕ can be extended to a complex linear functional E → C which remains dominated by p.

Proof of Theorem 3.7. Sketch of the proof: note that a complex linear functional ψ on a subspace
N of E is of the form

ψ(u) = θ(u)− iθ(iu), (3.21)

where θ : N → R can be seen as a real linear functional and that, conversely, if θ : N → R is a real
linear functional, then ψ defined by (3.21) is a complex linear functional on N . Use Theorem 3.6
to conclude.

We now apply the Hahn-Banach theorem in a normed vector space, to deduce a series of funda-
mental results. We denote by E∗ the set of continuous linear functionals on E.

Theorem 3.8 (Corollary of the Hahn-Banach Theorem). Let E be a normed vector space, real
or complex. We have the following statements

1. if M is a closed subspace of E and v ∈ E \M , then there exists ϕ ∈ E∗ such that ϕ|M = 0,
‖ϕ‖E∗ = 1, ϕ(v) = d(v,M) > 0.

2. If u 6= 0 ∈ E, then there exists ϕ ∈ E∗ such that ‖ϕ‖E∗ = 1 and ϕ(u) = ‖u‖E.

3. The space E∗ separates points on E.

4. Define the map J : E → E∗∗ (where E∗∗ denotes the topological dual of E∗) by Ju(ϕ) =
ϕ(u). Then J is a linear isometry of E into E∗∗.

Proof of Theorem 3.8. To prove 1., we define ϕ on M ⊕ 〈v〉 by ϕ(u + λv) = λδ, δ := d(v,M).
Then, assuming λ 6= 0, we have

|ϕ(u+ λv)| = |λ|δ ≤ |λ|‖λ−1u+ v‖E = ‖u+ λv‖E , (3.22)

for all u ∈ M . The bound |ϕ(u + λv)| ≤ ‖u + λv‖E remains true when λ = 0 so we can apply
the Hahn-Banach theorem with p(u) = ‖u‖E to conclude that there exists ϕ ∈ E∗ such that
‖ϕ‖E∗ ≤ 1 and ϕ(v) = δ. Let ε > 0 and let u ∈M be such that ‖u− v‖E < δ + ε. Then

|ϕ(u− v)| = δ ≥ ‖u− v‖E − ε. (3.23)

Since ‖u− v‖E ≥ δ, (3.23) gives

‖ϕ‖E∗ ≥ 1− ε

‖u− v‖E
≥ 1− ε

δ
,

from which we deduce that ‖ϕ‖E∗ = 1. The statement 2. follows from 1. with M = {0} and we
deduce 3. from 2. by considering the vector u − v if u 6= v. The map J defined in 4. is clearly
linear. For all ϕ ∈ E∗, we have |Ju(ϕ)| = |ϕ(u)| ≤ ‖u‖E‖ϕ‖E∗ so ‖Ju‖E∗∗ ≤ ‖u‖E . Using 2. we
obtain ‖Ju‖E∗∗ = ‖u‖E .

Exercise 3.2. Use 2. in Theorem 3.8, instead of (2.63), to simplify slightly the proof of the
lemma 2.10.
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In practice, we can very often avoid the use of the general version of the Hahn-Banach theorem.
The following statement is sufficient in many cases. It is a countable feature that makes the use
of the axiom of choice irrelevant. We give a version on real vector spaces, but, of course, the
complex version of Theorem 3.7 can be adapted as well.

Theorem 3.9 (Hahn-Banach Theorem without the axiom of choice). Let E be a real vector
space, let p be a positively homogeneous and subadditive function on E. Let M be a linear
subspace of E and ϕ : M → R a linear functional which is dominated by p. Assume

• either E has a countable basis,

• or E is a separable Banach space and p is a norm.

Then ϕ can be extended to a linear functional E → R which remains dominated by p.

Proof of Theorem 3.9. In exercises class.

3.2.2 Geometric form of the Hahn-Banach theorem: separation

The Minkowski gauge (see Proposition-Definition 3.11 below) is the central tool to deduce the
geometric form of the Hahn-Banach theorem from the analytic one. Minkowski’s gauges are also
relevant to the study of Fréchet spaces (done in Section 4), which we also prepare here.

Definition 3.3 (Topological vector space). A vector space X on K = R or C is said to be a
topological vector space if it is endowed with a topology such that:

1. the linear operations

X ×X → X, (u, v) 7→ u+ v and K×X → X, (λ, u) 7→ λu (3.24)

are continuous,

2. all sets {u} reduced to a point u ∈ X are closed.

Remark 3.1 (Second condition of Definition 3.3). Using the two conditions 1. and 2., one can
show that a topological vector space is Hausdorff, [Rud73, p.10].
If X is a vector space and A,B ⊂ X, λ ∈ K, we use the notations

A+B = {u+ v;u ∈ A, v ∈ B} , λA = {λu;u ∈ A} . (3.25)

Definition 3.4. A subset A of a vector space X is said to be

1. symmetric if −A = A,

2. convex if tA+ (1− t)A ⊂ A for all t ∈ [0, 1].

A topological vector space X is said to be locally convex if each point has a neighbourhood base
consisting of convex neighbourhoods.

Proposition 3.10 (Base of convex symmetric neighbourhoods). Let X be a locally convex topo-
logical vector space. Then the origin has a neighbourhood base consisting of convex symmetric
neighbourhoods.

Proof of Proposition 3.10. Let V be a convex neighbourhood of 0. Then −V is also convex. A
finite intersection of open sets is open, idem for convex sets, so U = V ∩ (−V ) is a symmetric
convex neighbourhood of the origin contained in V . This construction gives a neighbourhood
base of the origin consisting of convex symmetric neighbourhoods.
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Proposition 3.10 will be used later in the proof of Theorem 4.1, but the interest in conciliating
the properties of convexity and symmetry already appears in the following result.

Proposition-Definition 3.11 (Minkowski’s gauge of a convex set). Let C be a convex neigh-
bourhood of 0 in a real topological vector space X. The (Minkowski) gauge p of C is defined as
follows:

pC(u) = inf
{
t > 0; u

t
∈ C

}
, (3.26)

for all u in X. Then pC is positively homogeneous, subadditive, and we have

u ∈ C ⇒ pC(u) ≤ 1, pC(u) < 1⇒ u ∈ C (3.27)

for all u ∈ X. If C is open, then

pC(u) < 1 ⇐⇒ u ∈ C. (3.28)

We also have the following properties:

1. if, additionally, C is symmetric, then pC is a continuous semi-norm.

2. if X is a normed vector space, then there exists K ≥ 0 such that pA(x) ≤ K‖x‖X for all
x ∈ X.

Proof of Proposition-Definition 3.11. First note that λ 7→ λu is continuous from [0, 1] to X.
Since C is a neighbourhood of 0, we have λu ∈ C for λ ∈ [0, λu] where λu > 0. Then pC(u) ≤
λ−1
u < +∞. If r > 0, and u ∈ X, then

pC(ru) = inf
{
t > 0; ru

t
∈ C

}
= r inf

{
t > 0; u

t
∈ C

}
= rpC(u).

If u, v ∈ X and tu, tv > 0 are such that u ∈ tuC, v ∈ tvC, then, setting θ = tu
tu+tv , we have

u+ v ∈ tuC + tvC = (tu + tv) [θC + (1− θ)C] ⊂ (tu + tv)C,

so pC(u + v) ≤ tu + tv. This implies pC(u + v) ≤ pC(u) + pC(v). Obviously, u ∈ C implies
pC(u) ≤ 1. If λu ∈ C for a λ ≥ 1 then, since 0 ∈ C as well, we have u ∈ C. So pC(u) < 1
implies u ∈ C. If C is open and u ∈ C, then θu ∈ C for a certain θ > 1 (we use the continuity
of θ 7→ θu at θ = 1). Then pC(θu) = θpC(u) ≤ 1 by (3.27), so pC(u) < 1. Let us come back to
the case where C is a neighbourhood of 0 and assume now that it is also symmetric. Then pC is
symmetric as well, so it is a semi-norm. Let u ∈ X and ε > 0. We want to find a neighbourhood
Vε(u) of u such that |pC(u) − pC(v)| ≤ ε for all v ∈ Vε(u). By subadditivity and symmetry, we
have

|pC(u)− pC(v)| ≤ pC(u− v)

for all v ∈ X, so it is sufficient to prove the continuity at u = 0, and then take Vε(u) = u+Vε(0).
At u = 0, we have pC(u) = 0 and pC(v) ≤ ε if v ∈ εC, so considering Vε(0) = εC, which is
a neighbourhood of 0, we obtain the continuity of pC . It is a general fact that pC ≤ pC′ if
C ′ ⊂ C, where C ′ is a convex neighbourhood of 0. If X is a normed space and ε > 0 is such that
C ′ := B(0, ε) ⊂ C, then

pC(x) ≤ pC′(x) = 1
ε
‖x‖X ,

for all x ∈ X.
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Notation: let X be a real topological vector space. If H = Ker(ϕ) is an hyperplane, we denote
by H+ and H− the half-spaces

H+ = {ϕ ≥ 0}, H− = {ϕ ≤ 0}.

We also denote by H++ and H−− the strict half-spaces

H++ = H+ \H = {ϕ > 0}, H−− = {ϕ < 0}.

An affine hyperplane is the translate w +H of a (vectorial) hyperplane by a vector w ∈ E. The
associated half-spaces are

H+
w = w +H+, H−w = w +H−,

and similarly for H++
w , H−−w .

Definition 3.5 (Separation by affine hyperplanes). Given A,B ⊂ X and an affine hyperplane
Hw = w +H of E, we say that

1. Hw separates A and B if A ⊂ H−−w , B ⊂ H+
w ,

2. Hw strictly separates A and B if there exists w′ ∈ H++ such that A ⊂ H−w , B ⊂ w′+H+
w .

Remark 3.2 (Symmetric separation). If Hw separates A and B, then we have in particular

A ⊂ H−w , B ⊂ H+
w , (A−B) ∩H = ∅. (3.29)

Let ψ : X → R be such that H = Ker(ψ). Note that, up to the substitution of −ψ to ψ, the
statement (3.29) is symmetric in A and B, so we can as well conclude that

A ⊂ H+
w , B ⊂ H−w , (A−B) ∩H = ∅, (3.30)

where Hw is an affine hyperplane.
Remark 3.3 (Open linear functional). Let X be a topological vector space. A continuous non-
trivial linear functional ϕ : X → R is open. Indeed, let u ∈ X, and let V be a neighbourhood
of the origin. There is some ε > 0 and some open neighbourhood W of the origin such that
tv ∈ u + V for all v ∈ u + W and all t with |t − 1| < ε (we use the continuity of (t, v) 7→ tv at
(1, u)). If λ = ϕ(u) > 0, this will give

(λ(1− ε), λ(1 + ε)) ⊂ ϕ(u+ V ).

If λ < 0, we deduce similarly that there is a neighbourhood I of λ in R such that I ⊂ ϕ(u+V ). If
λ = ϕ(u) = 0, we consider a w ∈ X such that ϕ(w) 6= 0. We know that there is a neighbourhood
I of ϕ(w) in R such that I ⊂ ϕ(w + V ). Then J := I − ϕ(w) is a neighbourhood of 0 in R such
that J ⊂ ϕ(u+ V ).

Theorem 3.12 (Separation by hyperplanes). Let A,B be two non-empty convex subsets of a
real normed vector space E such that A ∩B = ∅. If

1. A is open and B = {v} is reduced to a point, then there is a closed affine hyperplane that
separates A and B,

2. A is open, then there exists a closed affine hyperplane that separates A and B,

3. A is closed and B = {v} is reduced to a point, then there exists a closed affine hyperplane
that strictly separates A and B,
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4. A is closed and B is compact, then there exists a closed affine hyperplane that strictly
separates A and B.

Remark 3.4 (Generalization). Theorem 3.12 is true in the more general context of locally convex,
real or complex, topological vector spaces, [Rud73, Theorem 3.4, p.58].

Proof of Theorem 3.12. It is clear that 3. is a particular case of 4. and that 1. is a particular
case of 2., but it is worth emphasizing these cases. Assume that A is open, convex and non-empty
and v /∈ A. Up to a translation, we can assume that 0 ∈ A. Define the linear form ψ on 〈v〉 by
ψ(λv) = λ and consider the Minkowski gauge pA of A. If λ < 0, then ψ(λv) < 0 ≤ pA(λv). If
λ ≥ 0, we use the fact that pA(v) ≥ 1 since v /∈ A (by (3.27)), hence

ψ(λv) = λ ≤ λpA(v) = pA(λv).

We use the Hahn Banach Theorem to extend ψ to a linear functional ϕ defined on E and
dominated by pA. The point 2. of Proposition-Definition 3.11 ensures that ϕ is continuous.
Since A is open, we have pA(u) < 1 if u ∈ A, so ϕ(u) ≤ pA(u) < 1 = ϕ(v) and 1. follows. Let us
prove 2. now. Let

A′ = A−B =
⋃
v∈B

A− {v}.

Then A′ is open, convex, non-empty and v′ := 0 /∈ A′. By 1. applied to A′ and v′ = 0, we have
A − B ⊂ H−−w , 0 ∈ H+

w , where H = Ker(ϕ), ϕ ∈ X∗. This implies ϕ(u) < ϕ(v) for all u ∈ A,
v ∈ V . So ϕ(A) and ϕ(B) are two disjoints intervals (since convex) of R. Since ϕ(A) is open by
Remark 3.3, the infimum λ of ϕ(B) satisfies

ϕ(u) < λ ≤ ϕ(v), ∀u ∈ A, v ∈ B. (3.31)

There exists w ∈ X such that ϕ(w) = λ (ϕ is surjective since non-trivial). We have then
A ⊂ H−−w and B ⊂ H+

w . Let us prove 3. We have v ∈ E \A, which is open. Let r > 0 such that
B(v, r) ⊂ E \ A. By 2., there exists a closed hyperplane Hw = H + w which separates A and
B(r, v). Using Remark 3.2, we have

A ⊂ H−w , B(v, r) ⊂ H+
w , (A−B(v, r)) ∩H = ∅.

Let u0 be a point in A and let w′0 = v − u0. Then w′0 ∈ H++ and w′ := r
2
w′0
‖w′0‖

is also in H++.
We have v − w′ ∈ B(v, r) ⊂ H+

w , so v ∈ w′ +H+
w . This is the desired result. The proof of 4. is

left as an exercise.

3.2.3 Applications of the Hahn-Banach theorem in finite dimension

All this section is taken from this post on Terence Tao’s blog.

Theorem 3.13 (Farkas’ Lemma). Let P1, . . . , Pd be some affine functional on Rd. Then only
one of the following statements is satisfied:

1. there exists x ∈ Rd such that P1(x) ≥ 0, . . . , Pn(x) ≥ 0,

2. there exists q1 ≥ 0, . . . , qn ≥ 0 such that q1P1(x) + · · ·+ qnPn(x) = −1 for all x ∈ Rd.

Proof of Theorem 3.13. It is clear that 1. implies non-2. Suppose now that 1. is not satisfied.
Each affine functional Pi can be written Pi(x) = zi · x − bi, where zi ∈ Rd, bi ∈ R. Let

49

https://terrytao.wordpress.com/2007/11/30/the-hahn-banach-theorem-mengers-theorem-and-hellys-theorem/


M ∈ Md,n(R) be the matrix with z1, . . . , zn on its lines and let b be the vector in Rn with
components bi. Then 1. means that b ∈ A, where A is the closed convex set

A =
{
y ∈ Rn;∃x ∈ Rd, y ≤Mx

}
,

where y ≤ z means yi ≤ zi for all i if y, z ∈ Rn. The statement 2. means that there is a q ∈ Rn
with non-negative components such that q · (Mx− b) = −1 for all x ∈ Rd. This is equivalent to

M∗q = 0, q · b = 1,

so up to a step of rescaling, 2. is equivalent to the existence of a vector q ∈ Rn such that

∀i, qi ≥ 0, M∗q = 0, q · b > 0. (3.32)

If b /∈ A, then, by Theorem 3.12, 3., there is an affine hyperplane that separates strictly A and
b: there exists q ∈ Rn and λ ∈ R such that

q · b > λ, q · y ≤ λ, ∀y ∈ A. (3.33)

Let us prove that q satisfies (3.32). Since 0 ∈ A, λ ≥ 0, so q · b > 0. Since Mx ∈ A, we have
M∗q · x = q ·Mx ≤ λ for all x ∈ Rd, which is equivalent (as one can check) to M∗q = 0. Since
Mx− z ∈ A if z has non negative components, we have, for all such z,

q · (Mx− z) = −q · z ≤ λ,

and this is equivalent to the fact that q has non-negative components.

We give an application of Farkas’ lemma to the proof of the minimax theorem for zero-sum games.
The framework is the following one: player one (Alice) has the choice between n moves, player
two (Bob) has the choice between m moves. To a conjoint choice (i, j) of moves is associated a
cost ci,j : Alice gets ci,j (so Alice wins ci,j if ci,j ≥ 0 and loses an amount of |ci,j | if ci,j < 0).
Bob gets −ci,j . Example: the paper-rock-scissors games, where n = m = 3 and the expected
table of costs is

paper rock scissors
paper (0, 0) (1,−1) (−1, 1)
rock (−1, 1) (0, 0) (1,−1)

scissors (1,−1) (−1, 1) (0, 0)

, C = (ci,j) =

 0 1 −1
−1 0 1

1 −1 0

.

Here is a modelling postulate: a strategy is a random variable I on the set of moves, or, equiv-
alently, a probability law on the set of moves. So a strategy p for Alice is a vector p ∈ Rn
with non-negative entries such that the components pi add up to 1. The corresponding random
variable is I with law P(I = i) = pi. We have similar considerations for Bob, with notations q
and J . The expected pay-off for Alice is then

F (p, q) = E [cI,J ] =
n∑
i=1

m∑
j=1

ci,jpiqj = Cp · q. (3.34)

Theorem 3.14 (Minimax theorem). There exists some strategies p∗ and q∗ such that

1. p∗ is optimal for Alice, in the sense that Alice can expect to win at least F (p∗, q∗): for all
strategy q of Bob, F (p∗, q∗) ≤ F (p∗, q)
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2. q∗ is optimal for Bob, in the sense Bob can expect to lose at most F (p∗, q∗): for all strategy
p of Alice, F (p∗, q∗) ≥ F (p, q∗) .

We can also say that (p∗, q∗) is a Nash equilibrium in Alice and Bob’s zero-sum game: if Bob
chooses the strategy q∗, Alice cannot do better than choosing p∗ as a strategy (we use 2.) and,
if Alice chooses the strategy p∗, then Bob cannot do better than choosing q∗ as a strategy.

Proof of Theorem 3.14. Our aim is to prove that

max
p

min
q
F (p, q) = min

q
max
p

F (p, q). (3.35)

Then the argument (p∗, q∗) of the common value F (p∗, q∗) in (3.35) will give us the desired
strategies. Typically, this “minimax” result (3.35) is valid in the saddle configuration where
F (p, ·) is convex for every p and F (·, q) is concave for every q. We have F (p, q) ≤ maxp F (p, q)
for all p, q, taking the min with respect to q and then the max with respect to p shows that

max
p

min
q
F (p, q) ≤ min

q
max
p

F (p, q). (3.36)

Assume by contradiction that

max
p

min
q
F (p, q) < γ < min

q
max
p

F (p, q), (3.37)

for a given γ ∈ R. Then the system

p1, . . . , pn ≥ 0, p1 + · · ·+ pn = 1, F (p, q) ≥ γ, ∀q, (3.38)

has no solution. By convexity of q 7→ F (p, q), this is equivalent to the fact that the system

p1, . . . , pn ≥ 0, p1 + · · ·+ pn = 1, (Cp)j =
n∑
i=1

ci,jpi ≥ γ, ∀j ∈ {1, . . . ,m}, (3.39)

has no solution. By linearity of p 7→ Cp, we can replace the equation in (3.39) by an inequality
and claim that the system

p1, . . . , pn ≥ 0, p1 + · · ·+ pn ≤ 1, (Cp)j =
n∑
i=1

ci,jpi ≥ γ, ∀j ∈ {1, . . . ,m}, (3.40)

has no solution. Indeed, if (3.40) has a solution p, then this solution p is non trivial. Otherwise
γ ≤ 0, but (using the first inequality in (3.37)) we have γ > minq F (0, q) = 0, and obtain a
contradiction. So θ := p1 + · · ·+ pn ∈ (0, 1]. Replacing p by θ−1p gives a probability distribution
solution to (3.39). Considering (3.40) now, we can apply Farkas’ Lemma: there are some vectors
ζ ∈ Rn, α ∈ R, ξ ∈ Rm with non-negative components such that

− 1 = p · ζ + α(1− p · 1) + (Cp− γ1) · ξ, ∀p ∈ Rn, (3.41)

where 1 is the vector of Rn or Rm with all components equal to 1. If p is a probability distribution,
then the first two terms in the right-hand side of (3.41) are non-negative, so

F (p, ξ) = Cp · ξ ≤ −1 + γ1 · ξ < γ1 · ξ. (3.42)

In particular ξ 6≡ 0 and, dividing ξ by 1 · ξ, we obtain a probability distribution qξ such that

min
q

max
p

F (p, q) ≤ max
p

F (p, qξ) < γ.

This contradicts the second inequality in (3.37).
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3.2.4 Uniform convexity, projection on convex sets

Definition 3.6 (Uniform convexity). A normed vector space E is said to be uniformly convex
if for all ε > 0, there exists δ > 0 such that,

(‖u‖ = ‖v‖ = 1, ‖u− v‖ ≥ ε) =⇒
∥∥∥∥u+ v

2

∥∥∥∥ < 1− δ, (3.43)

for all u, v ∈ E.

To cite [Cla36], the space E is uniformly convex if “the mid-point of a variable chord of the unit
sphere of the space cannot approach the surface of the sphere unless the length of the chord goes
to zero”. By the parallelogram identity

‖u+ v‖2H + ‖u− v‖2H = 2(‖u‖2H + ‖v‖2H). (3.44)

a Hilbert space is uniformly convex. Typical examples of non uniformly convex spaces are given
by Lebesgue spaces L1 or L∞, or, in finite dimension, Rd with norm

‖x‖1 =
d∑
i=1
|xi| or ‖x‖∞ = max

1≤i≤d
|xi|.

(Draw a picture of the unit balls). For instance, in R2 with the norm ‖ · ‖∞, the points (1, 1) and
(1,−1) do not satisfy (3.43). We prove in Corollary 3.17 below that the spaces Lp are uniformly
convex when 1 < p < +∞. Let us come back to the case of Hilbert spaces: it turns out that the
existence of an operator “projection on a convex”, well-known in Hilbert spaces, is also true in
uniformly convex Banach spaces.

Theorem 3.15 (Projection on a convex). Let K be a non-empty closed convex set in a uniformly
convex Banach space E. Then, for all u ∈ E, the distance d(u,K) is reached at a unique point
πK(u). The map u 7→ πK(u) defined in this way is continuous.

Proof of Theorem 3.15. If u ∈ K, then πK(u) = u. Assume u /∈ K and let η = d(u,K). Then
η > 0. Let vn be a sequence in K such that ηn := ‖u − vn‖ → η. We can assume ηn 6= 0
and consider the unit vectors wn = η−1

n (u− vn). We will show that (wn) is Cauchy. Since E is
complete, we will deduce that wn → w for a certain w ∈ E, and thus vn → v := u − ηw. This
point v will realize the distance d(u,K). Such a point is necessarily unique: if v′ ∈ K is an other
point that realizes the distance, then w′ = η−1(u−v) is a unit vector with ‖w−w′‖ = η−1‖v−v′‖
and then

‖w − w′‖ = ε > 0⇒
∥∥∥∥w + w′

2

∥∥∥∥ < 1− δ ⇒
∥∥∥∥u− v + v′

2

∥∥∥∥ < (1− δ)η, (3.45)

a contradiction (in (3.45), δ is given by (3.43)). To prove that the sequence (wn) is Cauchy, we
modify slightly the arguments used to show the uniqueness of πK(u): let ε > 0 and δ > 0 given
by (3.43). If ‖wn − wm‖ ≥ ε, then ‖wn + wm‖ < 2(1− δ) and

1
2

∥∥∥∥u− vnηn
+ u− vm

ηm

∥∥∥∥ = 1
2

∥∥∥∥ηn + ηm
ηnηm

u− 1
ηn
vn −

1
ηm

vm

∥∥∥∥ < (1− δ). (3.46)

The point

v∗ = ηnηm
ηn + ηm

(
1
ηn
vn + 1

ηm
vm

)

52



belongs to K, as a convex combination of vn and vm. Consequently, η ≤ d(u, v∗) and by (3.46)
we obtain

η < (1− δ) 2ηnηm
ηn + ηm

. (3.47)

The quotient 2ηnηm
ηn+ηm approaches 1 when n,m→ +∞, so (3.47) cannot be satisfied for n,m ≥ n0

if n0 is large enough, which means that (wn) satisfies the Cauchy condition ‖wn − wm‖ < ε for
n,m ≥ n0 and complete the proof of existence of πK(u). Let us now study the continuity of the
map πK . To that purpose, note that we have proved above a little more than the mere existence
of a point realizing the distance. We have established the following fact: if u ∈ E \K and (vn)
is a minimizing sequence, in the sense that d(u, vn)→ d(u,K), then vn → πK(u). If u ∈ K and
v ∈ B(u, r), then

‖πK(v)− πK(u)‖ = ‖πK(v)− u‖ ≤ r + ‖πK(v)− v‖ = r + d(v,K) ≤ 2r, (3.48)

so πK is continuous on K. Our aim is to show that it is continuous on E \ K: let (un) be a
sequence converging to u /∈ K. The distance function v 7→ d(v,K) is 1-Lipschitz continuous, so
ηn := d(un,K) converges to η := d(u,K). Set vn = πK(un). We have

η ≤ d(u, vn) ≤ d(u, un) + d(un, vn) = d(u, un) + ηn. (3.49)

The right-hand side in (3.49) converges to η so d(u, vn) → η. Therefore (vn) is a minimizing
sequence, and vn → πK(u).

Proposition 3.16 (Hanner’s inequality). Let (X,A, µ) be a measure space. Let 1 ≤ p ≤ 2. For
all u, v ∈ Lp(X), we have∣∣‖u‖Lp(X) + ‖v‖Lp(X)

∣∣p +
∣∣‖u‖Lp(X) − ‖v‖Lp(X)

∣∣p ≤ ‖u+ v‖pLp(X) + ‖u− v‖pLp(X), (3.50)

and (by application of (3.50) to u+ v and u− v):∣∣‖u+ v‖Lp(X) + ‖u− v‖Lp(X)
∣∣p +

∣∣‖u+ v‖Lp(X) − ‖u− v‖Lp(X)
∣∣p ≤ 2p

(
‖u‖pLp(X) + ‖v‖pLp(X)

)
.

(3.51)
If 2 ≤ p < +∞, then the inequalities are reversed.

Corollary 3.17 (Uniform convexity of Lebesgue spaces). Let (X,A, µ) be a measure space. If
1 < p < +∞, then Lp(X) is uniformly convex.

Proof of Theorem 3.16. We assume 1 ≤ p < 2. We will establish the following general inequality:
there exists some functions

α, β : [0, 1]→ R+, (3.52)
such that, for all 0 ≤ A,B, for all r ∈ [0, 1],

α(r)Ap + β(r)Bp ≤ |A+B|p + |A−B|p, (3.53)

and equality holds in (3.53) if r = min(B/A,A/B). To deduce (3.50) from this result, we apply
(3.53) to A = |u(x)|, B = |v(x)| and integrate with respect to x ∈ X to obtain

α(r)‖u‖pLp(X) + β(r)‖v‖pLp(X) ≤ ‖u+ v‖pLp(X) + ‖u− v‖pLp(X). (3.54)

Without loss of generality, we can assume 0 < ‖u‖Lp(X) ≤ ‖v‖Lp(X). Then we choose

r =
‖u‖Lp(X)

‖v‖Lp(X)
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in (3.54) to conclude. To guess the form of α and β, first note that we can assume B ≤ A in
(3.53) and, dividing by A, consider the inequality

α(r) + β(r)σp ≤ (1 + σ)p + (1− σ)p, r, σ ∈ [0, 1], (3.55)

with equality for r = σ. Set

ϕ(σ) = (1 + σ)p + (1− σ)p − (α(r) + β(r)σp).

Then
ϕ′(σ) = p

[
(1 + σ)p−1 − (1− σ)p−1 − β(r)σp−1] .

We would like ϕ′(r) = 0 since ϕ should reach a minimum at σ = r, so we set

β(r) =
[
(1 + r)p−1 − (1− r)p−1] r1−p. (3.56)

The equality in (3.55) will be realized for r = σ if

α(r) = (1 + r)p−1 + (1− r)p−1. (3.57)

Conversely, one can check that (3.55) is satisfied with β and α given by (3.56)-(3.57). This
concludes the proof.

Proof of Corollary 3.17. If u, v ∈ Lp(X) satisfy

‖u‖Lp(X) = ‖v‖Lp(X) = 1, ‖u− v‖Lp(X) = 2ε > 0, (3.58)

then (3.51) gives

(θ + ε)p + (θ − ε)p ≤ 2, θ :=
∥∥∥∥u+ v

2

∥∥∥∥ . (3.59)

From (3.53), we deduce that
α(r)θp + β(r)εp ≤ 2, (3.60)

where r ∈ [0, 1] is arbitrary. Let us take r = ε. We have

α(ε) = 2 + p(p− 1)ε2 +O(ε3), β(ε) = 2(p− 1)ε2−p +O(ε3−p).

By (3.60), we obtain

θp ≤ 1− (p− 1)2ε2 +O(ε3)⇒ θ ≤ 1− (p− 1)2

p
ε2 +O(ε3). (3.61)

This shows that we can associate a δ to ε such that (3.58) implies
∥∥u+v

2
∥∥ < 1− δ.

To complete this section on uniformly convex spaces, we give the following result, which will be
used later in the proof that uniformly Banach spaces are reflexive spaces (Section 5.4.3).

Lemma 3.18 (Uniform convexity, extended criterion). If E is uniformly convex, then, given
ε > 0, there exists δ′ > 0 such that

(‖u‖ ≤ 1, ‖v‖ ≤ 1, ‖u− v‖ ≥ ε) =⇒
∥∥∥∥u+ v

2

∥∥∥∥ < 1− δ′, (3.62)

for all u, v ∈ E.
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Proof of Lemma 3.18. Let α > 0. If ‖u‖ or ‖v‖ < 1− 2α, then, using the triangular inequality,
the bound ∥∥∥∥u+ v

2

∥∥∥∥ ≤ 1
2(‖u‖+ ‖v‖) < 1− α (3.63)

is satisfied. Assume ‖u‖ and ‖v‖ ≥ 1 − 2α (we will choose α depending on ε and the delta
associated to ε/2 by (3.43)). Let U = u

‖u‖ and V = v
‖v‖ . We have then

‖U − u‖ = 1− ‖u‖ < 2α,

so
‖U − V ‖ ≥ ε− 4α, ‖u+ v‖ ≤ ‖U + V ‖+ 4α.

Let δ = δ(ε) > 0 be associated to condition (3.43) with ε/2 instead of ε. Assume α smaller than
ε/8. Let us apply (3.43) to (U, V ): we obtain

‖u+ v‖ ≤ ‖U + V ‖+ 4α < 1 + 4α− δ.

It is sufficient to take α smaller than ε/8 and δ/8 to obtain (3.62) with δ′ = δ/2.

4 Fréchet spaces
It is said that Banach spaces, as we know them, were called that way by Maurice Fréchet. In
return, Stephan Banach would have given the name of “Fréchet spaces” to topological vector
spaces which admit a complete metric, invariant by translation, compatible with the original
topology. Depending on the authors, such spaces are sometimes called F-spaces, while Fréchet
spaces have the additional property to be locally convex. In practice, Fréchet spaces very often
appear as spaces endowed with a countable family of semi-norms. We have already encountered
the Schwartz space in Definition 2.3. Some other standard functional spaces are Fréchet spaces:
let U be an open set of Rd (non-necessarily bounded, it may be the whole space Rd) and let
(Kn) be an exhaustive sequence of compacts of U : Kn ⊂ Kn+1 is compact and U = ∪nKn. We
can consider

1. the spaces Lploc(U), for p ∈ [1,+∞], with the semi norms pn(u) = ‖u‖Lp(Kn),

2. the spaces Ck(U), for k ∈ N∪{∞}, of continuous functions with continuous differential up
to order k, with the semi-norms

pn(u) = sup
|α|≤k∧n

sup
x∈Kn

|∂αx u(x)|. (4.1)

In (4.1), α is a multi-index in Nd, |α| = α1 + · · ·+ αd and k ∧ n = min(k, n).

Theorem 4.1 (On the way to Fréchets spaces). Let X be a topological vector space. The
following assertions are equivalent

1. there exists a countable family of continuous semi-norms which is separating,

2. X is locally convex and admits a metric, invariant by translation, compatible with the
original topology.
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If realized, and {pn;n ∈ N} is a countable family of continuous semi-norms which is separating,
then a neighbourhood base of the origin consists in the finite intersections of the sets

Vk,n =
{
u ∈ X; pn(u) < 1

k

}
. (4.2)

In the proof of Theorem 4.1 we associate to a separating family of continuous semi-norms a
metric invariant by translation, compatible with the original topology (see (4.4)). If we can show
additionally that d is complete (this is relatively easy in practical situations), then X turns out
to be a Fréchet space.
Remark 4.1 (Increasing sequence of semi-norms). In practice, the countable family {pn;n ∈ N} of
semi-norms is often increasing: pn(u) ≤ pn+1(u) for all n. If this is not the case, then considering

p̄n =
∑
j≤n

pj

will do a transposition to this “monotone” situation. If {pn;n ∈ N} is increasing, then {Vk,n} in
(4.2) is a neighbourhood base of the origin (no need to make finite intersections). In any case, a
linear map T : X → Y between Fréchet spaces with respective countable families of semi-norms
{pn;n ∈ N} and {qm;m ∈ N} is continuous if, and only if, for each m, there exists Cm ≥ 0 and
Nm ∈ N such that

qm(T (u)) ≤ Cm max
1≤n≤Nm

pn(u), (4.3)

for all u ∈ X. See Section 5.2 on bounded sets in Fréchet spaces for more details on that point.

Proof of Theorem 4.1. Let {pn;n ∈ N} be a countable family of continuous semi-norms which is
separating. Define

d(u, v) =
∑
n∈N

2−nΦ(pn(u− v)), Φ(p) := p

1 + p
. (4.4)

Then d is a metric on X. Indeed, it is symmetric since each pn is. We have d(u, v) = 0 if, and
only if u = v, because {pn} is separating. The triangular inequality is satisfied because pn is
subadditive and Φ also: by algebraic manipulations, one can see that Φ(p+ q) ≤ Φ(p) + Φ(q) is
equivalent to

q

1 + p
+ p

1 + q
≤ q + p,

which is obviously true. By definition, the metric d is invariant by translation. Let T denote
the original topology, and let Td be the topology generated by the open balls associated to d.
Let r > 0 and u ∈ B(0, r). We will show that there exists a T -neighbourhood of u included in
B(0, r), which means that B(0, r) is open for T and proves the inclusion Td ⊂ T . Actually, the
neighbourhood that we exhibit will be a finite intersections of sets u + Vk,n as in (4.2). Since
each pn is continuous, it will be a T -neighbourhood indeed. Let ε = r − d(u, 0) and let N ≥ 0
be such that

∑
n>N 2−n < ε/2. By invariance by translation of d, we have

d(v, 0) ≤ d(u, 0) + d(u− v, 0) = r − ε+ d(u− v, 0).

By our choice of index N , we have then

d(v, 0) ≤ r − ε/2 +N max
1≤n≤N

pn(u− v). (4.5)

We choose k such that N < kε/2. By (4.5), the intersection of the sets u + Vk,n over n ∈
{1, . . . , N} is a subset of B(0, r). To prove the converse inclusion T ⊂ Td, we consider an open
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set U of T and a point u ∈ U . Our aim is to find r > 0 such that B(u, r) ⊂ U . By continuity of
the semi-norm p0, there exists k > 1 such that u+ Vk,0 ⊂ U . If v ∈ B(u, r), and 0 < r < 1, then

Φ(p0(u− v)) ≤ d(u, v) < r ⇒ p0(u− v) < r

1− r . (4.6)

Choosing r small enough, we obtain B(u, r) ⊂ u + Vk,0 ⊂ U . The sets Vk,n are convex, so
X is locally convex. This establishes 2. Conversely, assume that 2 is satisfied. Since X is
locally convex, there is, by Proposition 3.10, for all n ≥ 1, a convex symmetric set Vn such that
Vn ⊂ B(0, 1/n). Let pn be the gauge of Vn. By Proposition-Definition 3.11, pn is a continuous
semi-norm. The family pn is separating since pn(u) = 0 implies u ∈ B(0, 1/n) for all n.

5 Weak topologies

5.1 Definition of the weak topology, weakly open, closed, bounded sets
Definition 5.1 (Weak topology). Let X be a topological vector space and let X∗ be the set
of continuous linear functionals on X. The weak topology on X is the coarsest topology that
makes all the maps ϕ ∈ X∗ continuous.

Proposition 5.1 (Weak topology). Let X be a topological vector space. Denote by Xw the space
X endowed with the weak topology. Then Xw is a topological vector space. A neighbourhood base
of the origin is given by the finite intersections of sets of the form

Vϕ,ε = {u ∈ X; |ϕ(u)| < ε} . (5.1)

In particular, Xw is locally convex. If X has finite dimension, then Xw = X. In all generality,
the topological dual of Xw is X∗, i.e. X∗w = X∗.

Proof of Proposition 5.1. By definition, the topology of Xw is generated by the class{
ϕ−1(B);B open in R

}
. (5.2)

The continuity of the sum and the multiplication by a scalar in Xw are left as an exercise. That
each set reduced to a single element {u} is closed is a direct consequence of the separation prop-
erty 3. in Theorem 3.8. Since the topology of R is generated by open “balls” (=segments) it is
sufficient to restrict to such B in (5.2). When a topology is generated by a class E (containing the
whole space and the empty set), a neighbourhood base is given by the unions of the finite inter-
sections of elements of E (use Proposition 4.2 and Proposition 4.4 in [Fol99, p.115] for instance).
In our case, a neighbourhood base for the weak topology is given by the finite intersections of
the sets

Vϕ,ε,α = {u ∈ X; |ϕ(u)− α| < ε} . (5.3)

In particular, the finite intersections of sets as in (5.1) form a neighbourhood base of the origin.
Assume that X has finite dimension and let us show that X = Xw. We will need the following re-
sult: a space of finite dimension in a topological vector space is closed, see [Rud73, Theorem 1.32].
Let (ei)1,d be a basis of X. Let e∗i denote the linear functional X → R defined by e∗i (ej) = δij .
Then Ker(e∗i ) has dimension d− 1 so it is an hyperplane, and it is closed. By Theorem 3.5, e∗i is
continuous. In particular, Φ: u 7→ (e∗i (u))1,d is an homeomorphism of X onto Rd, with inverse
(xi)1,d 7→

∑d
i=1 xiei (note that the inverse Φ−1 is continuous because X is a topological space)
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and the images by Φ−1 of the balls for the `∞-norm of Rd give a neighbourhood base of X. If
r > 0, x ∈ Rd, then

Φ−1(B`∞(x, r)) =
d⋂
i=1
{v ∈ X; |e∗i (v)− xi| < r} =

d⋂
i=1

Ve∗
i
,xi,r

is weakly open, so open sets are weakly open and X = Xw. In all generality now, consider a
(non-trivial) continuous linear functional ψ : Xw → R. Then H = Ker(ψ) is closed for the weak
topology, and X \H is open for the weak topology. Let v ∈ X \H. There exists ϕ1, . . . , ϕn ∈ X∗
and ε1, . . . , εn > 0 such that W , the intersection of the sets v + Vϕi,εi , satisfies W ⊂ X \H. If
n = 1, then Vϕ1,ε1 contains Ker(ϕ1), hence X \ H contains the affine hyperplane v + Ker(ϕ1).
Clearly (drawing...), this is possible only if H = Ker(ϕ1), i.e. ψ = λϕ1 for a given λ ∈ R \ {0}.
More generally, when n is any positive integer, we have

n⋂
i=1

Ker(ϕi) ⊂ Ker(ψ). (5.4)

Indeed, if (5.4) is not satisfied then there is a w ∈ X such that tw is in the intersection of the
sets Vϕi,εi for all t ∈ R and ψ(w) 6= 0. But then we obtain an element in H ∩W by considering
v + tw for t = −ψ(w)−1ψ(v). This is a contradiction, and thus (5.4) is true. It is well-known
(see Lemma 5.2 below) that (5.4) is equivalent to the existence of λ1, . . . , λn ∈ R such that

ψ = λ1ϕ1 + · · ·+ λnϕn. (5.5)

We conclude that ψ ∈ X∗.

Remark 5.1 (Weak topology with less functionals). Let Y be a subspace of X∗ that separates
points in X. We can consider the Y -weak topology on X (the coarsest topology that makes all
the element of Y continuous). As above (same proof), this defines a locally convex topological
vector space, whose topological dual is Y .

Lemma 5.2. Let X be a vector space, and ψ : X → R, ϕi : X → R, i = 1, . . . , n be some linear
functional. Then there is equivalence between the following statements:

1. the inclusion (5.4) is satisfied,

2. the relation (5.5) is satisfied for some λ1, . . . , λn ∈ R,

3. there exists M ≥ 0 such that

|ψ(u)| ≤M max
1≤i≤n

|ϕi(u), | (5.6)

for all u ∈ X.

Proof of Lemma 5.2. It is clear that
2.⇒ 3.⇒ 1.

Assume that 1. is satisfied. Let Φ: X → Rn+1 the linear map with n first components ϕ1, . . . , ϕn
and last component −ψ. Let v be the vector with all n first components equal to 0 and last
component equal to 1. Then v /∈ Im(Φ). By 1. in Theorem 3.8, there exists a continuous linear
form ϕ on Rn+1 such that ϕ ≡ 0 on Im(Φ) and ϕ(v) > 0 (note that we use the Hahn-Banach
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theorem in finite dimension here). There exists λ ∈ Rn+1 such that ϕ(u) = λ ·u (canonical scalar
product in Rn+1) for all u ∈ Rn+1. We have then

λn+1 = ϕ(v) > 0, λ · Φ(x) = 0, ∀x ∈ X. (5.7)

Dividing by λn+1 if necessary, we can assume λn+1 = 1. Then the second identity in (5.7) gives
2.

Remark 5.2 (Weak closure of the unit sphere). In the proof of Proposition 5.1, we have used the
fact that, in infinite dimension, a finite intersection of sets as in (5.1) contains a whole vector
space. It is clear, from that respect, that, in infinite dimension, a point in the unit ball B(0, 1)
of a normed vector space E, cannot be an interior point for the weak topology. The points in
E \ B̄(0, 1) are interior points for the weak topology on the contrary. It follows that the weak
closure of the sphere S(0, 1) is the unit ball B̄(0, 1). See exercises class for the details.
Terminology: we have used the term “weak closure” in Remark 5.2. This means “closure in
the weak topology”. Similarly we will employ the terms “weakly open”, “weakly closed”, “weakly
bounded”. Only this last term requires an explanation.

Definition 5.2 (Bounded set in a topological vector space). In a topological vector space, a set
B is said to be bounded if, for all neighbourhood V of the origin, there exists t > 0 such that
B ⊂ tV .

One checks then that a set B in X is weakly bounded if, and only if, for all ϕ ∈ X∗, the set
ϕ(B) is bounded in R.

Theorem 5.3 (Weakly closed sets). Let X be a locally convex real topological vector space. If
A ⊂ X is weakly closed, then it is closed. If A is convex and closed, then A is weakly closed.

Proof of Theorem 5.3. We do the proof in the case where X is a normed space (in the general
case, the proof is the same, simply use the generalization of Theorem 3.12 mentioned in Re-
mark 3.4). First, by definition, weak open sets are open, so weak closed sets are closed. Assume
that A is convex and closed and let v ∈ X \ A. Then v can be separated strictly from A by a
closed affine hyperplane (Theorem 3.12). This implies v ∈ Vϕ,ε,α for some ϕ ∈ X∗, ε > 0, α ∈ R
(with the notation in (5.3)). So v is interior to E \A for the weak topology.

Remark 5.3 (Weak closure of a set). Let X be a topological vector space. For a given set A ⊂ X
denote by co(A) the set of convex combinations of elements of A and by co(A) the closure (for
the original topology) of this set. One may wonder if the weak closure of A would not precisely
be co(A). Denote by wcl(A) the weak closure of A. Since A ⊂ co(A), and since co(A) is weakly
closed by Theorem 5.3, we have wcl(A) ⊂ co(A). The inclusion can be strict as shown by the
following example: A = {u, v}, where u 6= v ∈ X. The closure of the convex envelop of A is
the segment [u, v], but A is weakly closed since A = {u} ∪ {v} is the union of two weakly closed
sets. The inclusion wcl(A) ⊂ co(A) is used to proved Mazur’s theorem: if (un) is a sequence
that converges weakly to an u ∈ X, then there is a sequence (vm) converging strongly to u such
that each vm is a finite convex combination of the elements un. Just consider A = {un;n ∈ N}.
The context of Mazur’s theorem gives an hint to an other example with wcl(A) ( co(A). Let
H be a separable Hilbert space with orthonormal basis (en). Then (en) is converging weakly
to 0 (see Exercises class on the weak topology in Hilbert spaces). Let A = {en;n ∈ N} ∪ {0}.
Then A is weakly compact (if (Ui)i∈I is a cover of A by weakly open sets and 0 ∈ Uj , then Uj
contains all the en, for n ≥ n0 and a certain n0, so we can find a finite subcover of A). Since Xw
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is Hausdorff, A is weakly closed. On the other hand, using the notation û(n) = 〈u, en〉, we have

co(A) =
{
u ∈ H; û(n) ≥ 0,∀n,

∑
n∈N

û(n) ≤ 1
}
, (5.8)

which is much bigger than A. It is quite clear that we have (5.8), but here is a complete proof.
Call ∆1 the right-hand side of (5.8). It is convex and closed and contains A, so co(A) ⊂ ∆1. If
v is an element in ∆1 \ co(A), then we can separate strictly v from co(A): there exists w ∈ H,
α ∈ R, ε > 0 such that 〈w, v〉H > α + ε and 〈w, u〉H ≤ α for all u ∈ co(A). Taking u = 0 gives
α ≥ 0 and taking u = en gives ŵ(n) ≤ α for all n. Since

α+ ε ≤ 〈w, v〉H =
∑
n∈N

ŵ(n)v̂(n) ≤ α
∑
n∈N

v̂(n),

we contradict v ∈ ∆1.

Corollary 5.4 (Weakly lower semi-continuous functions). Let X be a locally convex real topo-
logical vector space. A map f : X → R which is convex and continuous is weakly-lower semi-
continuous.

Proof of Corollary 5.4. Recall that a map g : Z → R, where Z is a topological vector space, is
lower semi-continuous if, for all a ∈ R, the set {g ≤ a} is closed. Typical examples of lower
semi-continuous functions are given by:

1. the supremum g = supα∈A gα of a family of continuous functions gα. Indeed,

{g ≤ a} =
⋂
α∈A
{gα ≤ a}

is closed.

2. the characteristic function g = 1U of an open set U . Indeed, depending on the value of a,
the set {g ≤ a} is either the empty set, Z, or Z \ U .

The corollary follows from the fact that, for all a ∈ R, the set {f ≤ a} is closed and convex,
hence weakly closed.

Combined with the Banach-Alaoglu theorem, the result of Corollary 5.4 is used in particular to
establish the existence of minimizers in the Calculus of variations, see Section 5.4.4.

Theorem 5.5 (Weakly bounded sets). Let X be a locally convex real topological vector space.
A subset A ⊂ X is weakly bounded if, and only if, it is bounded.

Proof of Theorem 5.5. The proof has been done in exercises class (Exercise 1-3 of TD3) when
X is a normed space and uses the Banach-Steinhaus theorem and the fact that X∗ is complete.
We give here a more constructive proof, taken from [LL01, Theorem 2.12, p.52], also valid when
X is a normed vector space. For a proof in the general case of locally convex topological vector
space, see [Rud73, Theorem 3.18] (beware that the proof then uses the Banach-Alaoglu theorem,
which has not been stated yet, see Theorem 5.12).
Step 0. Assume by contradiction that there is a sequence (un) in A such that, although the
sequence (ϕ(un)) is bounded for very ϕ ∈ X∗, (un) is not bounded in X.
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Step 1. Reduction to the case ‖un‖X = 4n. Up to extraction of a subsequence, we can
assume that ‖un‖X → +∞. By extracting a further subsequence if necessary, we can assume
that ‖un‖X ≥ 4n for all n. Consider then ũn = 4n

‖un‖X un. We have ‖ũn‖X = 4n and

|ϕ(ũn)| ≤ |ϕ(un)|, (5.9)

so (ϕ(ũn)) is bounded for every ϕ ∈ X∗ as well.
Step 2. Contradiction by construction of a functional ϕ̄. By 1 in Theorem 3.8, there
exists ϕn ∈ X∗ with ‖ϕn‖X∗ = 1 and ϕn(un) = 4n. Let (εn) be a sequence of elements of {−1, 1}
constructed by recursion as follows: we set ε0 = 1 and if n > 0, εn is chosen such that

εn and
n−1∑
j=0

3−jεjϕj(un) (5.10)

have the same sign. Since ϕn(un) > 0, this has the consequence that∣∣∣∣∣∣
n∑
j=0

3−jψj(un)

∣∣∣∣∣∣ ≥ |3−nϕn(un)| = 4n

3n , (5.11)

where we have set ψj = εjϕj . The linear functional

ϕ̄ =
∞∑
j=0

3−jψj (5.12)

is an element of X∗, since the series is absolutely convergent in X∗ (‖ψj‖X∗ ≤ 1 for all j) and
X∗ is complete. We have ∣∣∣∣∣∣

∞∑
j=n+1

3−jψj(un)

∣∣∣∣∣∣ ≤ 4n
∑

j≥n+1
3−j = 1

2
4n

3n . (5.13)

From (5.11)-(5.12)-(5.13), we obtain |ϕ̄(un)| ≥ 4n
3n −

1
2

4n
3n = 1

2
4n
3n , which contradicts the fact that

(ϕ̄(un)) is bounded.

5.2 Bounded sets in Fréchet spaces
To complete Section 4, and since the notion of bounded set in a topological vector space was
given in Definition 5.2 without much development, we will discuss this notion with more details.
This is also a way to be more explicit than in Remark 4.1. First, let us give some examples of
bounded sets in a general topological vector space X. A set B reduced to a single point {u} is
a bounded set. Indeed, by continuity of λ 7→ λu, there is for all neighbourhood V of 0, a λ > 0
such that λu ∈ V . This gives B ⊂ tV with t = λ−1. It follows that a finite set is bounded. If
(un) is a sequence which tends to 0 in X, then B = {un;n ∈ N} is bounded. Indeed, for all
neighbourhood V of 0, there is an N such that un ∈ V for all n ≥ N . Since {un;n < N} is
finite, hence bounded, the result follows. If, more generally, (un) is a sequence which tends to a
given u in X, then B = {un;n ∈ N} is bounded. To prove this, we set vn = un−u, and consider
the bounded sets {vn;n ∈ N} and {u}. To conclude we must show that the sum of two bounded
sets is a bounded set. This is an easy consequence of the following result: given a neighbourhood
V of 0, there exists a neighbourhood W of 0 such that W + W ⊂ V . To prove this we use the
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continuity of (u, v) 7→ u+ v: there exists W1,W2 neighbourhoods of 0 such that W1 +W2 ⊂ V .
Then we set W = W1 ∩W2. Similar arguments show that, if (un) is a Cauchy sequence, then
{un;n ∈ N} is a bounded set. Let us give a last example: a compact set is bounded. Indeed, if
K is compact, then each u ∈ K is in tuV for a tu > 0. Thus K can be covered by the sets tuV
for u ∈ L, where L ⊂ K is finite. We obtain K ⊂ tV with t = maxu∈L tu.

Proposition 5.6 (Bounded sets). 1. If E is a normed space, then a set B is bounded if, and
only if it is bounded in the customary sense: the norm ‖ · ‖E is bounded on B (this is a
straightforward application of the definition with V = B̄(0, ε), ε > 0, as neighbourhood base
of 0).

2. Let X be a Fréchet space with a countable family {pn;n ∈ N} of increasing, continuous
semi-norms. A set B in X is bounded if, and only if, every pn is bounded on B: there
exists a family of numbers Mn ≥ 0 such that

B ⊂
⋂
n∈N
{u ∈ X; pn(u) ≤Mn} . (5.14)

3. A linear continuous map between two topological vector spaces X and Y sends bounded sets
on bounded sets. The reciprocal statement is true if X and Y are Fréchet spaces.

4. Let X ( resp. Y ) be a Fréchet space with a countable family {pn;n ∈ N} ( resp. {qm;m ∈
N}) of increasing, continuous semi-norms. A linear map Λ: X → Y is continuous if, and
only if, for all m, there exists n and Cn,m ≥ 0 such that qm(Λ(u)) ≤ Cn,mpn(u) for all
u ∈ X.

To give the proof of 3. in Proposition 5.6, we will need the following result.

Lemma 5.7 (Improving convergence in metric spaces). Let (un) be a sequence converging to
0 in a topological vector space X which admits a compatible metric. Then there is a sequence
(γn) ↑ +∞, such that (γnun) is converging to 0.

Proof of Lemma 5.7. Let d be the compatible metric: we have δn := d(un, 0) → 0. There is an
increasing sequence (nk) such that δn < 3−k if n ≥ nk. Set n0 = 0 and γn = 2k if nk ≤ n < nk+1.
Then (γn) ↑ +∞ and (γnδn) is converging to 0, so (γnun) is converging to 0.

Proof of Proposition 5.6. Let us prove 2. A neighbourhood base of the origin is given by the
sets Vn,ε = {u ∈ X, pn(u) < ε} (Theorem 4.1). If B is bounded then there is for all n a tn ≥ 0
such that B ⊂ tnVn,1. This gives (5.14) with Mn = tn. Assume now that pn(u) ≤ Mn for all
u ∈ B. Then B ⊂ tnVn,ε, tn := Mn/ε for all n, ε, which shows that B is bounded. Let us now
consider a linear map Λ: X → Y between two topological vector spaces. If Λ is continuous,
V a neighbourhood of 0 in Y and B a bounded set in X, then Λ−1(V ) is a neighbourhood
of 0 in X. Let t ≥ 0 be such that B ⊂ tΛ−1(V ). Then Λ(B) ⊂ tV , so Λ(B) is bounded.
Assume that X and Y are Fréchet spaces and that Λ sends bounded sets on bounded sets. We
want to show that Λ is continuous. Since a neighbourhood base of the origin in Y is given by
the sets Um,ε = {v ∈ Y ; qm(v) < ε}, and by homogeneity, it is sufficient to prove that, given
m ∈ N, Λ−1(Um,1) is open. If we reach this conclusion, then there is a n and ε > 0 such that
Vn,ε ⊂ Λ−1(Um,1), which implies qm(Λ(u)) ≤ Cn,mpn(u) for all u ∈ X, with Cn,m = ε−1. To
prove that Λ−1(Um,1) is open, we show that the complementary set is closed. Since X admits a
compatible metric, we can use a sequential characterization, so let us consider a sequence (un)
converging to u ∈ X such that that qm(Λun) ≥ 1 for all n. We apply Lemma 5.7 to un − u.
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Since B = {γn(un − u)} is bounded, and since Λ sends bounded sets into bounded sets, there
exists t ≥ 0 such that Λ(B) ⊂ tUm,1. This implies qm(Λ(un − u)) ≤ tγ−1

n . We deduce that

1 ≤ qm(Λ(un)) ≤ qm(Λ(un − u)) + qm(Λ(u)) ≤ tγ−1
n + qm(Λ(u))

and obtain the desired inequality 1 ≤ qm(Λ(u)) at the limit [n→ +∞].

5.3 Topological dual spaces of some standard Banach and Fréchet
spaces

You may skip in this part of the course the first two sections 5.3.1 and 5.3.2, and only consider
the list of results given in Section 5.3.3.

5.3.1 Additive set functions

Definition 5.3 (Bounded additive set functions). Let A be an algebra of sets. A set function
µ : A → R is said to be additive, or finitely additive, if µ(∅) = 0 and

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai), (5.15)

for every disjoint sets A1, . . . , An ∈ A. The set function µ is said to be bounded if there exists
M ≥ 0 such that |µ(A)| ≤M for all A ∈ A.

The variation |µ| of a finitely additive measure is defined as the following set function:

|µ|(A) = sup
{

n∑
i=1
|µ(Ai)|

}
, (5.16)

where the supremum is taken over all finite partitions of a set A ∈ A by elements A1, . . . , An of
A. Then |µ| is also an additive function and, if µ is bounded (say by M), then |µ| is bounded
(at least by 2M) and, we have, for all A ∈ A,

|µ(A)| ≤ |µ|(A)| ≤ 2|µ(A)|. (5.17)

(To prove (5.17), one can use the decomposition (2.3) for instance.)

Definition 5.4 (Regular bounded additive measure). Let X be a topological space and A a
sub-algebra of the Borel σ-algebra. An additive set function µ on A is said to be regular if, for
all A ∈ A and ε > 0, there is a closed set F ∈ A and an open set G ∈ A such that F ⊂ A ⊂ G
and |µ|(G \ F ) < ε.

Theorem 5.8 (Alexandrov). A bounded and regular finitely additive function on the Borel σ-
algebra of a compact Hausdorff space X is countably additive. More precisely, if An, n = 1, 2, · · ·
are some disjoint Borel sets and A denote their union, then

∞∑
n=1
|µ(An)| < +∞, (5.18)

and µ(A) is equal to the sum of the µ(An) over n ∈ N \ {0}.
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Proof of Theorem 5.8. For all finite N , we have

N∑
n=1
|µ|(An) = |µ|

(
N⋃
n=1

An

)
≤ |µ|(A),

so
∞∑
n=1
|µ|(An) ≤ |µ(A)| ≤ |µ|(A) < +∞, (5.19)

which gives (5.18) by (5.17). We will show first that |µ| is countably additive. Since (5.19) gives
one of the desired inequalities, it is sufficient to prove that

∞∑
n=1
|µ|(An) ≥ |µ|(A). (5.20)

Let ε > 0. There is a closed set F ⊂ A and some open sets Gn ⊃ An such that |µ|(A \ F ) < ε
and |µ|(Gn \An) < 2−nε for all n. Since F is compact, there is a finite N such that

F ⊂
N⋃
n=1

Gn ⇒ |µ|(F ) ≤
N∑
n=1
|µ|(Gn). (5.21)

We have then

|µ|(A) ≤ |µ|(F ) + ε ≤
N∑
n=1
|µ|(Gn) + ε ≤

∞∑
n=1
|µ|(An) + 2ε,

which gives (5.20) by letting ε→ 0. Using the decomposition

A =
(

N⋃
n=1

An

)⋃
BN , BN :=

⋃
n>N

An,

we have, by finite additivity of µ and countable additivity of |µ|,∣∣∣∣∣µ(A)−
N∑
n=1

An

∣∣∣∣∣ = |µ(BN )| ≤ |µ|(BN ) =
∑
n>N

|µ|(An). (5.22)

The right-hand side of (5.22) tends to 0 when N → +∞ by (5.19), so µ is countably additive.

Notations: we will use the following notations.

• ba(X,A) is the set of bounded finitely additive set functions on a given algebra A of subsets
of a set X,

• rba(X) is the set of regular bounded finitely additive set functions on the Borel σ-algebra
A of a topological space X,

• ca(X,A) is the set of bounded countably additive set functions on a given σ-algebra A on
a set X,

• rca(X) is the set of regular bounded countably additive set functions on the Borel σ-algebra
A of a topological space X.
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With the terminology of Section 2.1, rca(X) is the set of regular signed Borel measures on the
Borel sets of X. Alexandrov’s theorem (Theorem 5.8) shows that the inclusion rca(X) ⊂ rba(X)
is an equality when X is compact Hausdorff. The set ba(X,A) is endowed with the norm

‖µ‖ba(X,A) = |µ|(X). (5.23)

If (µn) is a Cauchy sequence in ba(X,A), then, for each A ∈ A, the sequence (µn(A)) is Cauchy.
It is therefore convergent in R, and if we call µ(A) the limit, we can check that this defines a set
function µ ∈ ba(X,A), and that ‖µn − µ‖ba → 0. Therefore ba(X,A) is a Banach Space. The
space ca(X,A) is closed in ba(X,A), so it is a Banach Space. When X is a topological space,
the sets rba(X), rca(X) are closed in ba(X) and are Banach spaces also.
We will also use the following additional notations.

• B(X) is the set of bounded real-valued functions on a space X, with norm

‖u‖B(X) = sup
x∈X
|u(x)|. (5.24)

• IfA is an algebra of sets on a spaceX, then B(X,A) is the subset of B(X), defined by taking
the closure of the set of A-simple functions (finite linear combinations of characteristic
functions of elements in A) for the sup-norm (5.24). When A is a σ-algebra, this set is
also denoted BM(X,A), where the “M” is for “measurable”). The notation is consistent
since B(X,A) is precisely4 the set of bounded A-measurable functions on X. When X is
a topological space, we also use the notation BM(X) for B(X,A) where A is the Borel
σ-algebra.

• If X is a topological space, BC(X) is the set of bounded and continuous functions on X,
with the sup norm (5.24).

If X is a topological space, then BC(X) and BM(X) are closed subspace of B(X). Since B(X) is
complete (direct consequence of the fact that R is complete), all three spaces are Banach spaces.

5.3.2 A list of topological dual spaces

1. Let A be an algebra of subsets of a set X. The topological dual of B(X,A) is ba(X,A).
The map

Φ: ba(A)→ B(X,A)∗, µ 7→
(
f 7→

ˆ
Rd
fdµ

)
(5.25)

is an isomorphism with the isometry property ‖Φ(µ)‖B(X,A)∗ = ‖µ‖ba(X,A). See [DS58,
IV.5.1] (note: the integral against an element of ba(X,A) is defined in [DS58, III.2]). Note
also that the special case A = P(X) gives a representation of the dual of B(X) by bounded
finitely additive set functions defined on all subsets of X.

2. Let X be a topological space. Assume that X is normal (which means that if F1 and F2 are
two disjoint closed sets of X, then there are disjoint open sets G1, G2 such that Fi ⊂ Gi).
The topological dual of BC(X) is rba(X) and we have an isomorphism as in (5.25), see
[DS58, IV.6.2]. Since BC(X) ⊂ BM(X), we have BM(X)∗ ⊂ BC(X)∗, so the fact that
rba(X) is a subset of ba(X) can be surprising at first. The essential point in the proof of
the identity BC(X)∗ = rba(X) is to establish that, when X is normal, every λ ∈ ba(X)
can be represented by a µ ∈ rba(X), in the sense that the integrals of bounded continuous
functions against the two measures always coincide.

4to justify this, simply observe that a bounded measurable function is limit for the sup-norm (5.24) of a
sequence of simple functions - take a look at [Rud87, Theorem 1.17] for instance.
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3. Let X be a topological space. Assume that X is compact Hausdorff. The topological dual
of C(X) is rca(X) and we have an isomorphism as in (5.25). See [DS58, IV.6.3]. The result
is also a consequence of: - the previous result 2., - the fact that a compact Hausdorff space
is normal [Fol99, Proposition 4.25], - Alexandrov’s theorem (Theorem 5.8).

4. Let (X,A, µ) be a σ-finite measure space and let 1 ≤ p < +∞. Then the topological dual
of Lp(X,µ) is Lp′(X,µ), where p′ = p

p−1 is the conjugate exponent to p. More precisely,
the map

Φ: Lp
′
(X,µ)→ (Lp(X,µ))∗ , v 7→

(
u 7→

ˆ
X

uvdµ

)
(5.26)

is an isomorphism with the isometry property ‖Φ(v)‖(Lp(X,µ))∗ = ‖v‖Lp′ (X,µ). The classical
proof uses the Radon-Nykodim theorem, see [Rud87, Theorem 6.16].

5. Let (X,A, µ) be a σ-finite measure space. The dual of L∞(X,µ) is ba(X,A, µ), which is
the subset of ba(X,A) formed by the bounded finitely additive set functions ν with the
property that

µ(A) = 0⇒ ν(A) = 0, (5.27)

for all A ∈ A. See [DS58, IV.8.16].

5.3.3 A list of topological dual spaces: spaces built on Rd

Theorem 5.9 (Some dual spaces). Let U be an open set in Rd, H a compact set in Rd and E
a Borel set in Rd.

1. (Fundamental) The topological dual of C0(Rd), the space of continuous functions on Rd
which tend to 0 at infinity is Mb(Rd), the set of (bounded by definition) signed Borel
measures on Rd, with norm ‖µ‖Mb(Rd) = |µ|(Rd) (see Section 2.2). The map

Φ: Mb(Rd)→
(
C0(Rd)

)∗
, µ 7→

(
f 7→

ˆ
Rd
fdµ

)
(5.28)

is an isometry.

2. (Fundamental) The topological dual of C(H) isM(H), the set of signed Borel measure on
H.

3. (Complement) The topological dual of C(U) is Mc(U), the set of signed Borel measures
on Rd supported in a compact of U .

4. (Complement) Let Cc(U) denote the set of continuous functions on U with compact support.
There is a topology (the inductive topology, see Section 5.3.4) on Cc(U) such that the
topological dual of Cc(U) is Mloc(U), the set of “measures” on U whose restriction to K
are inM(K) for all compact subset K of U .

5. (Fundamental) For 1 ≤ p < +∞, the topological dual of Lp(E) is Lp′(E), where p′ is the
conjugate exponent to p.

6. (Complement) For 1 ≤ p < +∞, the topological dual of Lploc(U) is Lp′c (U), where p′ is the
conjugate exponent to p, and Lp′c (U) denote the set of functions in Lp

′(U) which vanish
a.e. outside a compact of U .
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7. (Complement) The topological dual of L∞(E) is ba(E,A, µ), where A is the trace of the
Borel σ-algebra on E and µ is the restriction of the Lebesgue measure to E.

8. (Complement) For 1 ≤ p < +∞, let W 1,p(U) be the Sobolev space (see Section 7)

W 1,p(U) =
{
u ∈ Lp(U);∇u ∈ Lp(U ;Rd)

}
, ‖u‖W 1,p(U) = ‖u‖Lp(U) +

d∑
i=1
‖∂xiu‖Lp(U).

(5.29)
Any ϕ in the topological dual of the Sobolev space W 1,p(U) is represented by some elements
v0, v1, . . . , vd ∈ Lp

′(U), in the sense that

ϕ(u) =
ˆ
U

u(x)v0(x)dx+
d∑
i=1

ˆ
U

∂xiu(x)vi(x)dx, (5.30)

for all u ∈W 1,p(U). We have then

‖ϕ‖(W 1,p(U))∗ = inf
{

max
0≤i≤d

‖vi‖Lp′ (U)

}
, (5.31)

where the infimum is taken over all v0, v1, . . . , vd ∈ Lp
′(U) satisfying (5.30), and this

infimum is attained.

9. the dual of the Fréchet space C∞(Rd) is the set of distributions with compact support (see
Section 6.2).

10. the dual of the Schwartz space S (Rd) (see Definition 2.3) is a subset of the space of
distributions on Rd, called the space of tempered distribution (see Section 6.2).

Remark 5.4 (Dual of the Sobolev space). The result 8. is not as obvious as one may believe,
look at the proof first to be convinced of this fact. Consider also the case where U is bounded
and of class C2. Then the trace operator γ : W 1,p(U) → Lp(∂U) is a continuous operator (see
Section 7.3.6 or [Eva10, Section 5.5], where U of class C1 is sufficient), so, given g ∈ Lp′(∂U),
the map

W 1,p(U)→ R, u 7→
ˆ
∂U

γu(x)g(x)dσ(x) (5.32)

is a continuous linear functional on W 1,p(U). One can also use the injections of Sobolev space to
build linear functional onW 1,p(U) which cannot be cast under the form (5.30) so easily. Assume
that U is bounded and of class C2. If p < d, we have an injection W 1,p(U) ↪→ Lp

∗(U), where
1
p∗ = 1

p −
1
d (see Section 7.3.5 or [Eva10, p.279]), so

W 1,p(U)→ R, u 7→
ˆ
U

u(x)w(x)d(x) (5.33)

is a continuous linear functional on W 1,p(Rd) if w ∈ Lq(U), 1
q = 1

p′ + 1
d . If p > d, we have

an injection W 1,p(U) ↪→ C(Ū) (see Section 7.3.5 or [Eva10, p.283]), so a Dirac mass δx0 , where
x0 ∈ U , will be a continuous linear functional on W 1,p(U).
Note that we use both the notations introduced in Section 5.3.1 and some other notations that
appear frequently. SoMb(Rd) = rca(Rd) andM(K) = rca(K). Only the statement 7. requires
to read section 5.3.1 and 5.3.2 in detail.
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Proof of Theorem 5.9. Proof of 1.: this is a theorem of representation of F. Riesz: Theorem 2.5.
Proof of 2.: see 3. in Section 5.3.2.
Proof of 3.: let ϕ ∈ C(U)∗. Recall that the topology of Fréchet space of C(U) is described in
Section 4. This topology is independent on the choice of the exhaustive sequence (Kn). Without
loss of generality, we will assume that, for all n large enough, Kn is a subset of the interior of
Kn+1. This property is satisfied by the sequence

Kn = B̄(0, n) ∩
{
x ∈ U ; d(x, ∂U) ≥ n−1} . (5.34)

for instance. By Remark 4.1, there should exists n and a constant M ≥ 0 such that

|ϕ(u)| ≤M‖u‖C(Kn), ∀u ∈ C(U). (5.35)

Let χ be a continuous function such that Kn ≺ χ ≺ Kn+1: χ ≡ 1 on Kn and χ is supported
in Kn+1. Such a χ exists since Kn is a subset of the interior of Kn+1. Let ψ : C(Kn+1) → R,
ψ : u 7→ ϕ(uχ). Then ψ is a linear functional, which is continuous since

|ψ(u)| ≤M‖uχ‖C(Kn) = M‖u‖C(Kn) ≤M‖u‖C(Kn+1)

by (5.35). If µ ∈M(Kn+1) is representing ψ, then∣∣∣∣∣
ˆ
Kn+1

udµ

∣∣∣∣∣ = |ψ(u)| ≤M‖u‖C(Kn), (5.36)

for all u ∈ C(Kn+1). As a consequence of (5.36), µ is supported in Kn.
Proof of 4.: we will not prove this point now. Indeed, the topology on Cc(U) has not been
specified. Instead, let us do the following important remark: the topology considered on Cc(U)
is such that

• a sequence (un) is converging to u in Cc(U) if there exists a fixed compact K ⊂ U such
that all the functions un, u are supported in K and un → u in C(K),

• a linear functional ϕ : Cc(U) → R is continuous if, and only if, for all compact K of U ,
there exists a constant MK ≥ 0 such that, for all u ∈ Cc(U) supported in K, one has
|ϕ(u)| ≤MK‖u‖C(K).

Note also that, this topology is not a topology of Fréchet space. More details are given in
Section 5.3.4 and then in Section 6.1.1 (and the proof is actually fully given in Proposition 5.10).
Proof of 5.: this is a direct consequence of 4. in Section 5.3.2.
Proof of 6.: let ϕ be a continuous linear functional on Lploc(U). Recall that the topology of
Fréchet space of Lploc(U) is described in Section 4. By Remark 4.1, there should exists n and a
constant C ≥ 0 such that

|ϕ(u)| ≤ C‖u‖Lp(Kn), ∀u ∈ Lploc(U). (5.37)

Let Jn : Lp(Kn) → Lploc(U) be the map which associates to u ∈ Lp(Kn) the extension of u by
0 in U \Kn. Then (5.37) gives ϕ ◦ Jn as an element of the topological dual of Lp(Kn). By 5.,
there is a representative v ∈ Lp′(Kn) for this linear functional. We denote by V the extension
of v by 0 in U \Kn. We have, for all u ∈ Lploc(U),

ˆ
U

V udx =
ˆ
Kn

vu|Kndx = ϕ ◦ Jn(u|Kn).
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To conclude, we just need to show that ϕ ◦ Jn(u|Kn) = ϕ(u). Since

w := Jn(u|Kn)− u = −u1U\Kn ,

this follows from the linearity of ϕ and (5.37) since ‖w‖Lp(Kn) = 0.
Proof of 7.: see 5. in Section 5.3.2.
Proof of 8.: (see [Ada75, Theorem 3.8]) on Lp(U ;Rd+1) ' (Lp(U))d+1, we consider the norm

‖F‖Lp(U ;Rd+1) =
d+1∑
i=1
‖Fi‖Lp(U). (5.38)

Let Ψ: W 1,p(U) → Lp(U ;Rd+1) denote the injection u 7→
(
u
∇u

)
. Let M denote the range of

Ψ (endowed with the norm (5.38)) and let Φ denote the inverse operator M → W 1,p(U). Since
Ψ is an isometry, M is complete, so Φ is continuous. If ϕ is a continuous linear functional on
W 1,p(U), then Λ := ϕ◦Φ is a continuous linear functional on M . By the Hahn-Banach theorem,
it can be extended as a continuous linear functional Λ̃ on Lp(U ;Rd+1) with norm ‖Λ̃‖ = ‖Λ‖.
Using 5., we can represent Λ̃ by an element V ∈ Lp′(U ;Rd+1) with components v0, . . . , vd, the
norm of V being given by

‖V ‖ = max
0≤i≤d

‖vi‖Lp′ (U).

We have then

ϕ(u) = Λ(Ψ(u)) =
ˆ
U

d+1∑
i=1

Ψ(u)ivi−1dx =
ˆ
U

u(x)v0(x)dx+
d∑
i=1

ˆ
U

∂xiu(x)vi(x)dx,

which gives (5.30). We have also

‖Λ‖ = ‖Λ̃‖ = max
0≤i≤d

‖vi‖Lp′ (U), (5.39)

The norm of ϕ is bounded from above by the inf in (5.31), (5.39) shows that the inf is attained
with equality.

5.3.4 The bounded-open topology and the final/inductive topology

Let X,Y be two topological spaces. The product topology on the set Y X is generated by the
sets

U(x, U) = {f : X → Y ; f(x) ∈ U} ,

where x is a point in X and U an open set in Y . The compact-open topology on Y X is the
topology generated by the sets

U(K,U) = {f : X → Y ; f(K) ⊂ U} ,

where K is a compact in X and U an open set in Y .

Definition 5.5 (Bounded-open topology). Let X,Y be two topological vector spaces. The
bounded-open topology on Y X is the topology generated by the sets

U(B,U) = {f : X → Y ; f(B) ⊂ U} ,

where B is a bounded set in X and U an open set in Y .
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Recall that a set B in X is bounded if, for all neighbourhood V of the origin, there exists t ≥ 0
such that B ⊂ tV . We are particularly interested in the case where X and Y are Fréchet spaces.
We assume that there in an increasing sequence of continuous semi-norms (pn) (resp. (qm)) on
X (resp. Y ). Recall (cf. Remark 4.1) that a linear map T : X → Y is continuous if, and only if,
for all m ∈ N, there exists n ∈ N and Cm,n ≥ 0 such that qm(T (u)) ≤ Cm,npn(u) for all u ∈ X.
We can prove the following assertions (left as an exercise):

1. a set B is bounded in X if, and only if, for all n ∈ N, there exists Mn ≥ 0 such that
pn(u) ≤ Mn for all u ∈ B (Hint: consider the neighbourhoods {u ∈ X; pn(u) < 1}, or see
Section 5.2),

2. let L(X,Y ) denote the set of linear maps X → Y . The sets

Un,m,ε = {T ∈ L(X,Y ); pn(u) < 1⇒ qm(T (u)) < ε}

form a basis of the origin of the bounded-open topology on L(X,Y ).

3. In the case where Y = R, with norm given by the absolute value, the convergence of
sequences of continuous linear functional for the open-bounded topology onX∗ corresponds
to the uniform convergence on bounded sets of X.

To conclude the discussion, the open-bounded topology on X∗ coincides with the topology of the
norm ‖ · ‖X∗ when X is a Banach space and constitutes a natural generalization of this topology
in the context of Fréchet spaces.

Definition 5.6 (Final topology). Let A be a set of indices and let X, Zα, α ∈ A be some
topological space. Let also some maps fα : Zα → X be given. The final topology on X is the
finest topology that makes all the maps fα continuous. A set U is open for this topology if, and
only if, the sets f−1

α (U) are open in Zα for each α ∈ A. If Y is a topological space, a function
g : X → Y is continuous if, and only if, all the functions g ◦ fα : Zα → Y are continuous.

The quotient topology discussed in the proof of Proposition 3.3 is an example of final topology,
when the single map π : X → X/M is considered. Below we will consider the case where the
maps fα are some natural injections. One also speaks of inductive topology in that case. Let U
be an open subset of Rd. Let (Kn) be an exhaustive sequence of compacts in U . On Cc(U), we
can consider (as in (4.1) when k = 0) the topology generated by the semi norms

pKn(u) = sup
x∈Kn

|u(x)|.

The resulting space is not complete, since a sequence of functions of Cc(U) may converge in
this topology to a function which is not compactly supported: consider the functions uk(x) =
min(1, [kd(x, ∂U)−1]+). Indeed, pKn(uk−ul) = 0 for all k, l large enough, but uk → 1 on U . Let
us now consider an inductive topology on Cc(U). If K is a compact set with K ⊂ U , we denote
by CK(U) the set of functions u ∈ Cc(U) supported in K. Let T denote the inductive topology
on Cc(U) associated to the injections iK : CK(U)→ Cc(U). This topology has in particular the
following properties:

1. the space (Cc(U), T ) is a locally convex topological vector space,

2. if B is a bounded set then there is a fixed K such that B ⊂ CK(U) and a M ≥ 0 such that
pK(u) ≤M for all u ∈ B,

3. if (un) is a sequence converging to an element u ∈ Cc(U), then there is a compact K such
that all the functions un, and u, are supported in K and pK(un − u)→ 0,
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4. the space (Cc(U), T ) is complete.

Proof. We admit the first point. Let B ⊂ Cc(U) and assume that there is no compact K such
that B ⊂ CK(U). Then there is a sequence (xn) in U with no limit point in U and some functions
un ∈ B such that θn := |un(xn)| > 0. Let

V =
⋂
n≥1

{
u ∈ Cc(U); |u(xn)| < θn

n

}
.

If K is a compact, K ⊂ U , then K contains only a finite number of the points xn so

i−1
K (V ) = V ∩ CK(U) =

⋂
n∈R

{
u ∈ CK(U); |u(xn)| < θn

n

}
,

where R is finite, is a finite intersection of open sets and is open in CK(U). So V is a neighbour-
hood of 0 and there is no t ≥ 0 such that B ⊂ tV , since otherwise θn < t θnn for all n. The point
3. follows from 2. since the set

B = {un;n ∈ N} ∪ {u}
is bounded (See Section 5.2). Consider now a Cauchy sequence (un) in Cc(U). It also defines a
bounded set (See Section 5.2 also), so there is a compact K such that all the functions un are
supported in K. Since C(K) is complete, the sequence is convergent.

Proposition 5.10 (Locally signed measures). The dual of Cc(U) (endowed with the inductive
topology) consists precisely in the space Mloc(U), which consists in differences of non-negative
Radon measures: α is in the dual of Cc(U) if, and only if, there exists two non-negative measures
ρ and ν which are finite on compact subsets of U such that

α(u) =
ˆ
U

udρ−
ˆ
U

udν, ∀u ∈ Cc(U). (5.40)

If realized, then we can assume that the measures ρ and ν in (5.40) are mutually singular, and
that they are given by

ρ(A) = µ(A ∩ {σ = +1}), ν(A) = µ(A ∩ {σ = −1}), A ∈ B(U), (5.41)

where µ is a non-negative Borel measure µ on U which is finite on the compact subsets of U and
a Borel map σ : U → {−1,+1}. In that case, we also have

α(u) =
ˆ
U

u(x)σ(x)dµ(x), (5.42)

for all u ∈ Cc(U).

Proof of Proposition 5.10. By definition of the inductive topology, α is in the topological dual of
Cc(U) if, and only if, α◦ iK is a linear continuous functional on CK(U) for each compact K ⊂ U .
This means that there exists NK ≥ 0 such that

|α(u)| ≤ NK max
x∈K
|u(x)|, u ∈ CK(U). (5.43)

It is clear that (5.43) is realized (with NK = ρ(K) + ν(K)) if (5.40) is satisfied. Conversely,
assume that we have (5.43) for all compact K ⊂ U . We will admit that the version of the Riesz’
theorem given in Theorem 2.3 remains valid when the space Rd is replaced by U (apply [Sim83,
Theorem 4.1] with X = U , H = R). We obtain that there is a non-negative Borel measure µ
on U which is finite on the compact subsets of U and a Borel map σ : U → {−1.+ 1} such that
(5.42) is satisfied for all u ∈ Cc(U). We then define ρ and ν by (5.41) to obtain (5.40).
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Consider now the space Lp′c (U) discussed in 6. of Theorem 5.9. We can associate at least two
topologies to Lp′c (U):

• the “bounded-open” topology, since Lp′c (U) is a dual space,

• the inductive topology, induced by the injections iK : Lp
′

K(U) → Lp
′

c (U), where, given a
compact K ⊂ U , Lp

′

K(U) is the set of functions v ∈ Lp′(U) such that ‖v‖Lp′ (U\K) = 0.

As an exercise, you can check that the two topologies coincide.

5.3.5 Separable spaces

Different spaces are considered in the previous section 5.3.3. Some are separable, some are not.
We give the following results without proof.
Separable spaces: ifK is compact, then C(K) is separable (Use the Stone-Weierstrass theorem,
or some other method...). This has the consequence that C0(Rd) is separable, that C(U) is
separable, that C∞(U) is separable (add a step of convolution), that the Schwartz space S (Rd)
is separable, that Lp(U) is separable if 1 ≤ p < +∞ (by truncature and regularization, any
u ∈ Lp(U) can be approximated in Lp(U) by some continuous compactly supported functions),
that W 1,p(U) is separable if 1 ≤ p < +∞.
Non-separable spaces: sets of measuresM(X) endowed with the total variation norm are not
separable in general since

‖δx − δy‖ = |δx − δy|(X) = 1 (5.44)

as soon as x 6= y. If A is a set which is dense in M(X), there is for each x ∈ X an element
µ ∈ A such that ‖δx − µ‖ < 1/2. By (5.44), this defines an injection of X in A, which cannot
be countable if X is not. Similarly, we have ‖1A − 1B‖L∞(X,µ) = 1 if the symmetric difference
(A \B)∪ (B \A) has a positive measure, so L∞(X,µ) is in general not separable. In particular,
L∞(U) is not separable (consider a cube Q(x0) := x0 + (0, ε)d in U , and all the subcubes
Q(x) ∩Q(x0) for x ∈ Q(x0) for instance).

Theorem 5.11 (Separable dual). Let X be a normed vector space. If X∗ is separable, then X
also.

This theorem is sometimes used to establish that some spaces are not reflexive, i.e. X ( X∗∗

(see Definition 5.10 below). For instance, L1(U) is not reflexive since L∞(U) is not separable,
while L1(U) is. Similarly, if K is a compact subset of Rd, then C(K) is not reflexive sinceM(K)
is not separable while C(K) is.

Proof of Theorem 5.11. Let {ϕn ∈ N} be a countable dense family in X∗. For each n and
ε > 0, there exists un in the closed unit ball of X such that ‖ϕn‖X∗ ≤ |ϕn(un)| + ε. We take
ε = 1

2‖ϕn‖X∗ , so that ‖ϕn‖X∗ ≤ 2|ϕn(un)|. Let M0 be the Q-vector space generated by the
family {un;n ∈ N}: it is the set of linear combinations

∑
n∈J λnun, where J is finite, λn ∈ Q.

Then M0 is countable and dense in the closure of M , the R-vector space generated by the family
{un;n ∈ N}. To conclude, it is sufficient to prove that M̄ , the closure of M is the whole space
X. Assume not, and let v ∈ E \ M̄ . By the Hahn-Banach theorem (we use 1. in Theorem 3.8),
there is a ϕ ∈ X∗ such that ϕ ≡ 0 on M̄ and ϕ(v) 6= 0. Let ε > 0. There exists n ∈ N such that
‖ϕ− ϕn‖X∗ < ε. Since ϕ(un) = 0, we have then

‖ϕ‖X∗ < ε+ ‖ϕn‖X∗ ≤ ε+ 2|ϕn(un)| = ε+ 2|(ϕ− ϕn)(un)| ≤ ε+ 2‖ϕ− ϕn‖X∗ < 3ε,

and we conclude that ϕ = 0: a contradiction.
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5.4 Weak-star topology
Definition 5.7 (weak-∗ topology). Let X be a topological vector space and let X∗ be the set
of continuous linear functionals on X. The weak-star topology on X∗ (written weak-∗) is the
coarsest topology on X∗ that makes all the evaluation maps πu : ϕ 7→ ϕ(u) for u ∈ X continuous.

We identify X with a subspace of X∗∗ via the map J : X → X∗∗ defined by Ju = πu (this an
injective map, we have also seen in Theorem 3.8 that it is an isometry if X is a normed vector
space):

Ju(ϕ) = πu(ϕ) = ϕ(u), u ∈ X,ϕ ∈ X∗∗. (5.45)

Then X is separating points in X∗. By Remark 5.1, the weak-∗ topology on X∗ is the X-weak
topology on X∗. Endowed with this topology, X∗ is a locally convex topological vector space.
A neighbourhood base of the origin is given by the finite intersections of the sets

Vu,ε = {ϕ ∈ X∗; |ϕ(u)| < ε} . (5.46)

A continuous linear function on weak-∗ X∗ is of the form πu for a given u ∈ X. If J(X) is a
strict subset of X∗∗ (i.e. X is not reflexive, cf. Definition 5.10), then consider a T ∈ X∗∗ \J(X)
and the space

H = {ϕ ∈ X∗;T (ϕ) = 0}.

Then H is a closed hyperplane of X∗. In particular, it is a closed convex subset of X∗. It is not
weak-∗ closed however, otherwise Theorem 3.5 would imply that there exists a weak-∗ continuous
linear form S on X∗ such that H = Ker(S). But then T is proportional to S, and S = Ju for a
given u ∈ X, so T ∈ J(X): contradiction.

Theorem 5.12 (Banach-Alaoglu). Let X be a topological space and V a neighbourhood of the
origin in X. Then

K = {ϕ ∈ X∗;∀u ∈ V, |ϕ(u)| ≤ 1} (5.47)

is compact for the weak-∗ topology.

When X is a normed vector space, the theorem is often applied to V = B̄(0, 1). It says then
that the unit ball of X∗ is compact for the weak-∗ topology.

Proof of Theorem 5.12. We begin with a first observation on the weak-∗ topology on X∗: it is
generated by the sets

{ϕ ∈ X∗;πu(ϕ) ∈ U} = X∗ ∩ {ϕ : X → R;πu(ϕ) ∈ U},

where U is open in R. The weak-∗ topology on X∗ is therefore the trace on X∗ of the product
topology on RX . The linearity conditions

ϕ(u+ v) = ϕ(u) + ϕ(v), ϕ(λu) = λϕ(u)

can be written as
(πu+v − πu − πv)(ϕ) = 0, (πλu − λπu)(ϕ) = 0.

They are closed conditions in RX , so the set L(X,R) of linear maps X → R is closed for the
product topology in RX . Similarly, the set

F =
{
ϕ ∈ RX ;∀u ∈ V, |ϕ(u)| ≤ 1

}
=
⋂
u∈V

π−1
v ([−1, 1]) (5.48)
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is closed in RX . Moreover, an element in L(X,R)∩ F is weakly-∗ continuous, so in X∗. Indeed,
if ϕ ∈ F is linear and ε > 0, then V ⊂ ϕ−1([−1, 1]), so (ε/2)V ⊂ ϕ−1((−ε, ε)). It follows that
K = L(X,R)∩F and that K is closed for the product topology. If K ⊂ K ′ where K ′ is compact
in RX , then we conclude that K is compact for product topology, so for the weak-∗ topology. To
exhibit K ′, fix u ∈ X. The map λ 7→ λu is continuous and takes the value 0 at 0, so there exists
λu > 0 such that λu ∈ V for all λ ∈ (−λu, λu). It follows that |ϕ(u)| ≤ Mu := 2λ−1

u if ϕ ∈ K.
We obtain

K ⊂ K ′, K ′ =
∏
u∈X

[−Mu,Mu].

The set K ′ is compact for the product topology by Tychonov’s theorem. This concludes the
proof.

Let us give more details in the case where X is separable. We will see that we do not need
Tychonov’s theorem (nor the Axiom of Choice thus) to establish Theorem 5.12. First, we give
the following important result.

Theorem 5.13 (Metrizability of polar sets for the weak-star topology). Let X be a topological
space and V a neighbourhood of the origin in X. Assume that X is separable. Then

K = {ϕ ∈ X∗;∀u ∈ V, |ϕ(u)| ≤ 1} (5.49)

is metrizable for the weak-∗ topology.

Proof of Theorem 5.13. We want to prove, more precisely, that the trace of the weak-∗ topology
Tw∗ on K is metrizable. Let {un;n ∈ N} be a dense countable set in X and let d be the metric
defined by (compare with (4.4))

d(ϕ,ψ) =
∑
n∈N

2−nΦ(pn(ϕ− ψ)), Φ(p) := p

1 + p
pn(ϕ) := |ϕ(un)|, (5.50)

where ϕ,ψ ∈ X∗. Since {un;n ∈ N} is dense, the semi-norms pn are separating, so d is a metric
on K. We employed the same notations as in the proof of Theorem 4.1 on purpose. Indeed, we
can deduce from (the proof of) Theorem 4.1 that the topology Td associated to the metric (5.50)
is the topology generated by the sets Vn,ε = {ϕ ∈ X∗; pn(ϕ) < ε} and their translates. Since
each pn is weakly-∗ continuous, each set Vn,ε is weakly-∗ open, i.e. Td ⊂ Tw∗. Now, let U be
open for the weak-∗ topology. Let ψ ∈ U . There is a ε > 0 and some elements v1, · · · , vn ∈ X
such that

ψ +
n⋂
j=1
Vvj ,ε ⊂ U , Vv,ε = {ϕ ∈ X∗, |ϕ(v)| < ε}.

For each j ∈ {1, . . . , n}, there exists Nj such that

vj − uN−j ∈ (ε/3)V, |ψ(v)− ψ(uNj )| < ε/3. (5.51)

Let ϕ ∈ K ∩ (ψ + VNj ,ε/3: ϕ = ψ + θ, |θ(uNj )| < ε/3. Then the decomposition

θ(vj) = ϕ(vj)− ψ(vj) = θ(uNj ) + (ϕ(vj)− ϕ(uNj ))− (ψ(vj)− ψ(uNj )),

and the fact that |ϕ(vj − uNj )| ≤ ε/3 since ϕ ∈ K show that θ ∈ Vvj ,ε. It follows that

K ∩W ⊂ K ∩ U , W := ψ +
n⋂
j=1
VuNj ,ε/3.

Since W ∈ Td, we deduce that the traces on K of Td and Tw∗ coincide. This completes the
proof.
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Proof of Theorem 5.12 in the case where X is separable. By Theorem 5.13 (the weak-∗ topology
on K is metrizable), it is sufficient to consider a sequence (ϕm) in K and to show that it admits a
subsequence which is convergent for the metric d defined in (5.50). For all n, there exists tn ≥ 0
such that un ∈ tnV (same reasoning as in the proof of Theorem 5.12). Then |ϕm(un)| ≤ tn
since ϕm ∈ K. By a diagonal argument, there is a subsequence still denoted (ϕm) such that
(ϕm(un)) is convergent (and therefore Cauchy), for all n. If u ∈ X, then for all ε > 0, there
exists N such that u − uN ∈ εV and m0 such that |ϕp(uN ) − ϕq(uN )| < ε for p, q ≥ m0. Then
|ϕp(u)−ϕq(u)| < 2ε for p, q ≥ m0, so (ϕm(u)) is Cauchy. We denote by ϕ(u) the limit of ϕm(u).
Then ϕ is the limit of (ϕm) for the product topology and, as in the proof of Theorem 5.12, we
can show that ϕ is linear and ϕ ∈ F (defined in (5.48)), so ϕ ∈ K.

5.4.1 Some applications of the Banach-Alaogu theorem

Weak convergence of measures. Let K be a compact subset of Rd. The space X = C(K) is
separable. Let (µn) be a sequence of signed measures which is bounded for the total variation
norm: there exists M ≥ 0 such that |µn|(K) ≤M for all n ∈ N. Then (µn) is a sequence in

K = {µ ∈ C(K)∗;∀u ∈ V, |µ(u)| ≤ 1} , V := {u ∈ C(K); ‖u‖C(K) < M−1}.

By the Banach-Alaoglu theorem and the fact that the weak-star topology on K is metrizable,
we deduce that there is a subsequence of (µn) still denoted (µn) and a signed measure µ on K
such that

∀u ∈ C(K),
ˆ
K

udµn →
ˆ
K

udµ, (5.52)

when n→ +∞.

Weak convergence in Lq(U), 1 < q ≤ +∞. Let U be an open set in Rd. Let q ∈ (1,+∞].
Then Lq(U) is the dual of Lp(U), p being the conjugate exponent to q. If (un) is a sequence
bounded in Lq(U), then there exists a subsequence of (un) still denoted (un) and a u ∈ Lq(U)
such that

∀v ∈ Lp(U),
ˆ
U

unvdx→
ˆ
U

uvdx, (5.53)

when n→ +∞.

Weak convergence in W 1,q(U), 1 < q ≤ +∞. The arguments will be given in details later,
when we study Sobolev spaces, but we can already mention the following result. Let U be
an open set in Rd. Let q ∈ (1,+∞]. If (un) is a sequence bounded in W 1,q(U), then there
exists a subsequence of (un) still denoted (un) and a u ∈W 1,q(U) such that we have the strong
convergence in of the functions:

un → u in Lq(U), (5.54)

and the weak convergence of the derivatives:

∀v ∈ Lp(U),
ˆ
U

unvdx→
ˆ
U

uvdx,

ˆ
U

∂xiunvdx→
ˆ
U

∂xiuvdx, (5.55)

when n→ +∞.

The case q = 1. Let U be an open bounded subset of Rd. To a sequence (un) bounded in
L1(U), we associate the sequence of signed measures µn on K = Ū given by

µn(A) =
ˆ
A∩U

undx, i.e.
ˆ
K

vdµN =
ˆ
U

vundx,
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for all v ∈ C(K). Then (µn) is bounded inM(K): we deduce that there exists a signed measure
µ on K and a subsequence of (un) still denoted (un) such that

∀v ∈ C(K),
ˆ
U

unvdx→
ˆ
K

vdµ, (5.56)

when n → +∞. For instance (5.56) is the mode of convergence ρn → δ0, when (ρn) is an
approximation of the unit. If U is of class C1, considering a sequence un which concentrates on
the boundary ∂U can be used to defined a “surface” measure on ∂U ⊂ Ū (see the proof of the
Green Formula in the course “Analyse et EDP” last year, or (A.4) and the paragraph below).
Weak convergence of measures - 2. (To be skipped at first reading) In probability
theory, different modes of convergence of random variables are considered. Let E be a metric
space, and (Xn) a sequence of random variables on E: there is a probability space (Ω,F ,P) such
that all the functions Xn : Ω → E are measurable, where the σ-algebra one considers on E is
the Borel σ-algebra. One says that the sequence (Xn) converges in law (or in distribution) to a
random variable X on E if

E [u(Xn)]→ E [u(X)] , (5.57)
for all continuous and bounded functions u : E → R (u ∈ BC(E) with the notations of Sec-
tion 5.3.2). Let µn and µ denote the law of Xn and X respectively. Then (5.57) means that

〈u, µn〉 → 〈u, µ〉, (5.58)

for all u ∈ BC(E), where
〈u, µ〉 :=

ˆ
E

udµ.

The situation is the following one: we are given a sequence of Borel probability measures on E
and we are wondering if the weak-∗ convergence5 (5.58) occurs. There is a fundamental criterion
related to this question.

Definition 5.8 (Tight sequence of probability measures). Let E be a metric space, and let (µn)
be a sequence of Borel probability measures on E. The sequence (µn) is said to be tight if, for
all ε > 0, there exists a compact K ⊂ E such that µn(K) ≥ 1− ε for all n.

Proposition 5.14 (Tight probability measure). Suppose that the metric space E is separable
and complete. Then a single probability measure on E is tight.

Proof of Proposition 5.14. Let µ be a Borel probability measure on E. Let A be a dense coun-
table subset of E and let (rk) be a sequence decreasing to 0. For each k, the space E is covered
by the balls B(x, rk), x ∈ A. There is a finite set Ak ⊂ A such that

µ(Gk) > 1− ε

2k , Gk :=
⋃
x∈Ak

B(x, rk).

Let K denote the closure of G =
⋂
k∈NGk. Then K is closed and totally bounded in E complete,

so is compact, and we have µ(K) ≥ µ(G) > 1− ε.

Theorem 5.15 (Prokhorov). Let E be a metric space, and let (µn) be a sequence of Borel
probability measures on E. If (µn) is tight, then there is a subsequence still denoted (µn), which
is convergent in the sense of (5.58). If the metric space E is separable and complete, and (µn)
satisfies (5.58), then (µn) is tight.

5this is indeed a weak-∗ convergence, because 1. every probability measure on a metric space is regular, [Bil99,
Theorem 1.1], 2. a metric space is a normal space, 3. the topological dual of BC(E) is rca(E), cf. Section 5.3.2
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See [Bil99], Theorem 5.1 and Theorem 5.2.

Exercise 5.9. The aim of this exercise is to prove the useful implication of Prokhorov’s theorem
in the case E = Rd. So we consider a sequence of Borel probability measures on Rd which is
tight.

1. Show that it is sufficient to establish (5.58) for u ∈ C0(Rd).
If (5.58) is satisfied for every u ∈ C0(Rd) and u ∈ BC(Rd), we can show that every member
in (5.58) can be approached with an arbitrary precision by similar terms with a test-function
ũ ∈ C0(Rd). For ε > 0, consider a compact K such that all the µn are supported in K, up
to ε and (using Proposition 5.14) a compact K ′ such that µ(K ′) > 1− ε. Replacing K by
K ′ (and ε by 2ε) if necessary, we can assume that K = K ′. Then we set ũ = uχ̃, where χ̃
is a truncate function χ̃ ∈ Cc(Rd) such that χ̃ ≡ 1 on K.

2. Prove the result.
We have |µn|(Rd) = µn(Rd) = 1 for all n. By the duality between C0(Rd) and the space of
signed Borel measures on Rd, and Banach-Alaoglu’s theorem, we deduce that there exists a
signed measure µ and a subsequence still denoted (µn) such that (5.58) is satisfied for every
u ∈ C0(Rd). By 1., it is sufficient to show that µ is a probability measure to conclude. Let
us first prove that µ is a non-negative measure. By Proposition 2.2, there is a Borel set
A− such that µ− is concentrated on A−. Assume by contradiction that µ(A−) < 0. By
regularity of µ (cf. Remark 2.1), there is, for a given ε > 0, a compact set K and open set
U such that K ⊂ A− ⊂ U and |µ|(U \K) < ε. Let u be a continuous function such that
K ≺ u ≺ U . By (5.58) and the fact that u ≥ 0, µn ≥ 0, we have 〈u, µ〉 ≥ 0. At the same
time,

〈u, µ〉 =
ˆ
A+

udµ+ −
ˆ
A−

udµ− ≤ µ+(U)− µ−(K) ≤ µ(A) + 2ε

is strictly negative if ε is small enough, and this is a contradiction. So µ ≥ 0. Let now
m = µ(Rd). We can write µ = mµ̃, where µ̃ is a probability measure. An easy generalization
of the point 1. shows then that (5.58) holds true when u is a bounded and continuous
function. Taking u ≡ 1, we obtain m = 1.

5.4.2 Reflexive spaces

Definition 5.10 (Reflexive space). A topological vector space X is said to be reflexive if the
map J defined in (5.45) is surjective: J(X) = X∗∗.

Let E be a reflexive Banach space. Then we can “transfer” the result of the Banach-Alaoglu
theorem, applied to E∗∗ endowed with the weak-∗ topology defined by E∗, to E (also endowed
with the weak-∗ topology defined by E∗) to deduce that the closed unit ball B̄E(0, 1) is com-
pact for the weak topology (the Lesbesgue spaces Lp(U) for 1 < p < +∞ are reflexive and
we can already observe the transfer argument in the case of the spaces Lq(U) detailed above,
cf. (5.53)). More precisely, let J : E → E∗∗ be the isometry defined in (5.45). The inclusion
J(B̄E(0, 1)) ⊂ B̄E∗∗(0, 1) becomes an equality when E is reflexive. By Banach-Alaoglu’s The-
orem, the closed ball B̄E∗∗(0, 1) is compact for the weak-∗ topology σ(E∗∗, E∗), so we want to
prove that J−1 : E∗∗ → E is continuous, when E∗∗ has the topology σ(E∗∗, E∗) and E has the
weak topology σ(E,E∗). By definition of the topology σ(E,E∗), we must check that each map
ϕ ◦ J−1 is continuous, where ϕ ∈ E∗. For such a ϕ, for ξ = J(u) ∈ E∗∗, we have

ϕ ◦ J−1(ξ) = ϕ(u) = ξ(ϕ),

so ϕ ◦ J−1 = πϕ has the desired continuity property. Actually, we can state the following result.
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Theorem 5.16 (Kakutani). Let E be Banach space. Then E is reflexive if, and only if, the
closed unit ball B̄E(0, 1) is weakly compact.

We will not prove Kakutani’s theorem (see [Bre11, Theorem 3.17]). We will not prove the
following result either.

Theorem 5.17 (Eberlein-S̆mulian). Let E be Banach space. Regarding the weak topology, it is
equivalent for a set A ⊂ E to be compact or sequentially compact.

By sequentially compact, we mean that every sequence in A admits a (weakly) convergent subse-
quence. See exercises class for the proof of the implication (compact) ⇒ (sequentially compact),
which is the most useful one for us. If needed, a reference for the complete proof is [DS58, V.6.1].
Using Eberlein-S̆mulian’s Theorem in particular, we can prove the following result.

Theorem 5.18 (Weakly compact sets). Let E be a reflexive Banach space. Let K be a bounded,
closed and convex subset of E. Then K is compact and sequentially compact for the weak topology.

Proof of Theorem 5.18. By Theorem 5.3, the set K is weakly closed. By Banach-Alaoglu’s The-
orem and the discussion that precedes Kakutani’s Theorem, the ball B̄E(0, r) (r > 0) is weakly
compact. Since K ⊂ B̄E(0, r) for a r > 0, we deduce that K is weakly compact. By Eberlein-
S̆mulian’s Theorem (the “easy implication”), K is also weakly sequentially compact.

We insist on this fact: note well that we do not need the space E to be separable to obtain
the sequential compactness in Theorem 5.18 (but separability is involved for good in the proof,
by the fact that the closure of the vector space generated by a countable family of vectors is
separable, see Exercises class).

5.4.3 Milman-Pettis Theorem

Our aim in this section is to prove the following result

Theorem 5.19 (Milman-Pettis). A uniformly convex Banach space is reflexive.

We need some preliminary results first.

Lemma 5.20 (Helly). Let E be a Banach space, let d be a non-negative integer, and let Ψ: E →
Rd a continuous linear map and x ∈ Rd. There is equivalence between

1. x is in the (strong) closure of Ψ(B̄E(0, 1)),

2. for all y ∈ Rd, we have
|x · y| ≤ ‖Ψ · y‖E∗ , (5.59)

where x · y =
∑d
i=1 xiyi is the canonical scalar product on Rd.

Proof of Lemma 5.20. It is clear that 1. implies 2. if, additionally, x ∈ Ψ(B̄E(0, 1)). By con-
tinuity, we obtain the general case. Next, denote by A the closure of Ψ(B̄E(0, 1)) and suppose
that x /∈ A. Since A is closed, convex, non-empty, we can separate strictly A and x by an affine
hyperplane: there exists y ∈ Rd, γ ∈ R, ε > 0, such that

a · y < γ < γ + ε < x · y, (5.60)

for all a ∈ A. Since 0 = Ψ(0) ∈ A, we have γ > 0. Taking a = Ψ(u), u ∈ B̄E(0, 1), we deduce
from (5.60) that ‖Ψ · y‖E∗ < |x · y|.
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Lemma 5.21 (Goldstine). Let E be a Banach space, and let J : E → E∗∗ be the isometry defined
in (5.45). Then J(B̄E(0, 1)) is dense in B̄E∗∗(0, 1) for the weak-∗ topology on E∗∗.

Proof of Lemma 5.21. Let ξ ∈ B̄E∗∗(0, 1) and let V be a neighbourhood of 0 for the weak-∗
topology on E∗∗. We want to show that ξ + V intersects J(B̄E(0, 1)). We can assume that V
has the form

V =
d⋂
i=1
{ζ ∈ E∗∗, |ζ(ϕi)| < ε} ,

where ε > 0 and ϕ1, . . . , ϕd ∈ E∗. Let Ψ(u) = (ϕ1(u))1,d and x = (ξ(ϕi))1,d. Then Ψ: E → Rd
is linear and continuous. By linearity of ξ, and since ‖ξ‖E∗∗ ≤ 1, we have, for all y ∈ Rd,

|x · y| = |ξ(Ψ · y)| ≤ ‖ξ‖E∗∗‖Ψ · y‖E∗ ≤ ‖Ψ · y‖E∗ .

By Helly’s Lemma, we deduce that x is in the closure of Ψ(B̄E(0, 1)). So, ε being positive, there
exists u ∈ B̄E(0, 1) such that |xi −ϕi(u)| < ε for all i. This means precisely that Ju ∈ ξ + V , so
ξ + V intersects J(B̄E(0, 1)).

Proof of Theorem 5.19. Recall that uniform convexity has been defined in Section 3.2.4. We
want to prove that the inclusion J(E) ⊂ E∗∗ is an equality or, equivalently, that the inclu-
sion J(B̄E(0, 1)) ⊂ B̄E∗∗(0, 1) is an equality. Since J is an isometry and B̄E(0, 1) is com-
plete, J(B̄E(0, 1)) is complete and therefore closed in E∗∗. It is sufficient to prove that, given
ξ ∈ B̄E∗∗(0, 1) and ε > 0, there exists u ∈ B̄E(0, 1) such that ‖Ju − ξ‖E∗∗ ≤ ε. If ξ = 0, then
there is nothing to prove so, up to a rescaling procedure, we can assume that ‖ξ‖E∗∗ = 1. To
the modulus ε > 0, we can associate a δ > 0 such that the criterion of uniform convexity (3.62)
is satisfied. Assume by contradiction that, for all u ∈ B̄E(0, 1), we have

ξ ∈Wu := E∗∗ \ B̄E∗∗(Ju, ε).

The set Wu is open in E∗∗ endowed with the weak-∗ topology because B̄E∗∗(Ju, ε) = Ju +
εB̄E∗∗(0, 1) and B̄E∗∗(0, 1) is closed for the weak-∗ topology. By Goldstine’s lemma, there exists
v ∈ B̄E(0, 1) such that Jv ∈Wu. This means that

‖u− v‖E = ‖Ju− Jv‖E∗∗ > ε. (5.61)

To get a contradiction, we need u and v to have the additional property

‖u+ v‖E ≥ 2(1− δ). (5.62)

We exploit the duality: we know that ‖u + v‖E ≥ ϕ(u + v) if ϕ ∈ B̄E∗(0, 1). So (5.62) will be
realized if ϕ(u) ≥ 1− δ and ϕ(v) ≥ 1− δ for a given ϕ ∈ B̄E∗(0, 1). We proceed as follows: since
1 = ‖ξ‖E∗∗ , there exists ϕ ∈ B̄E∗(0, 1) such that ξ(ϕ) ≥ 1− δ/2. Consider the neighbourhood of
the origin (for the weak-∗ topology)

V = {ζ ∈ E∗∗; |ζ(ϕ)| < δ/2} .

By Goldstine’s lemma, there exists u ∈ B̄E(0, 1) such that Ju ∈ ξ+V . In particular, ϕ(u) ≥ 1−δ.
We then correct the choice of v made above by taking v ∈ B̄E(0, 1) such that, not only Jv ∈Wu

but also Jv ∈ ξ + V . Such a v exists by Goldstine’s lemma since ξ ∈ Wu, so Wu ∩ (ξ + V ) is
a neighbourhood of ξ for the weak-∗ topology. With this choice of v, we have simultaneously
(5.61) and (5.62), which is a contradiction.
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5.4.4 Minimization of functionals

Let E be a Banach space, I : E → R a given functional and A a subset of E. We consider the
problem of minimizing I on A. Here are few standards examples considered in the calculus of
variation (there are more examples related to the minimization of the Dirichlet functional, there
are also a lot of different examples furnished by the study of functional inequalities, or being
related to some questions of “shape optimization”).

1. Minimization of the Dirichlet functional

I[u] = 1
2

ˆ
U

|∇u|2dx−
ˆ
U

wudx, A = E = W 1,2
0 (U). (5.63)

Here U is a bounded open subset of Rd, w ∈ L2(U) and W 1,2
0 (U) is the Sobolev space of

functions that vanish on ∂U .

2. Minimization of the area functional

I[u] =
ˆ
U

√
1 + |∇u|2dx−

ˆ
U

wudx, A = E = W 1,1
0 (U). (5.64)

Here U is a bounded open subset of Rd, w ∈ L∞(U) and W 1,1
0 (U) is the Sobolev space of

functions that vanish on ∂U .

3. Non-linear eigenvalues: minimization of the Dirichlet functional

I[u] = 1
2

ˆ
U

|∇u|2dx−
ˆ
U

wudx, E = W 1,2
0 (U), A = {u ∈ E; J(u) = 0}, (5.65)

where J : L2(U)→ R is continuous and convex.

Consider now the following hypotheses.

1. The functional I is continuous, convex and coercive on E: there exists α > 0 and M ≥ 0
such that

I[u] ≥ α‖u‖E −M, (5.66)

for all u ∈ E.

2. The set A is non-empty, closed and convex.

3. The set E is reflexive.

Proposition 5.22 (Minimization of functional). Assume that I, E, A satisfy 1.-2.-3. Then the
functional I admits a minimum on A.

Proof of Proposition 5.22. Since I[u] is bounded from below by (5.66), we have

I∗ := inf
u∈A

I[u] > −∞.

Let (un) be a minimizing sequence: un ∈ A, I[un]→ I∗. Given v ∈ A, we have I[un] ≤ I[v] + 1
for n large enough, so, by the coercivity condition (5.66),

‖un‖E ≤ C := α−1(I[v] +M + 1).
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We conclude that the sequence (un) is bounded. By Kakutani’s theorem (the easy implication),
there is a subsequence still denoted (un) which converges weakly to a given u∗ ∈ E. As A is
closed and convex, it is weakly closed, so u∗ ∈ A. As I is continuous (so lower semi-continuous)
and convex, it is weakly lower semi-continuous. Consequently

I[u∗] ≤ lim inf
n→+∞

I[un] = lim
n→+∞

I[un] = inf
u∈A

I[u].

This shows that the infimum is attained.

Proposition 5.22 can be applied to the examples (5.63) and (5.65), but not to (5.64), since
W 1,1

0 (U) is not a reflexive space. To minimize the area functional by such a direct approach, one
has to work in the space of functions of bounded variation, [Giu84]. See the discussion on the
case q = 1 in Section 5.4.1.

6 Distribution theory

Let U be an open subset of Rd. The theory of “distributions” elaborated by Laurent Schwartz
gives a suitable framework to work on “generalized” functions defined on U and to extend
some standard operations, like differentiation, composition by diffeomorphism, multiplication by
smooth functions, translation... from a well-known class of functions to the class of distributions.
Here are some examples of distributions (the justification that these are indeed distributions will
be given later, once distributions have been defined, or in exercises class).

1. A function in Ck(U) (k ≥ 0).

2. A function in L1
loc(U).

3. A measure µ on U which is finite on compact subsets of U .

4. The “principal value” p.v.
( 1
x

)
(d = 1, U = R).

If α is one of the three distributions of examples 1., 2., 3. above and u a smooth, compactly
supported test-function on U , then we know how to give a meaning to define an action 〈α, u〉
using the theory of integration. In the fourth case 4. we also exploit the averaging effect of
integration to give a meaning to 〈α, u〉. More precisely, on can check that, for u ∈ C∞c (R), the
three following quantities

lim
ε→0

ˆ
|x|>ε

u(x)
x

dx,

ˆ
R

u(x)− u(0)
x

χ(x)dx,
ˆ
R

ˆ 1

0
u′(tx)χ(x)dtdx (6.1)

are equal. The function χ in (6.1) is a “bump function”: a function χ ∈ C∞c (R) such that
0 ≤ χ ≤ 1 and such that the sets {χ = 1} and {χ = 0} have convenient properties. Here
we assume that {χ = 1} contains the support of u and we also assume assume that χ is an
even function. Any of the quantities in (6.1) can be used thus to define the action 〈α, u〉 for
α := p.v.

( 1
x

)
.

We have mentioned some operations that can be defined in a convenient way for distributions.
There are some other operations that are of great interest and defined without too much diffi-
culties: localization, definition of a support. Some important operations require more care to
be defined: convolution, Fourier transform, tensor product for instance. The definition of the
product of two distributions is a very delicate question.
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6.1 Distribution: definition, elementary operations
6.1.1 Space of distributions

Recall first that the support of a function, as we consider it, is the closed support: if U is an
open set of Rd and v ∈ C(U), the support supp(v) of a continuous function v is defined as the
closure (in U) of the set {x ∈ U ; v(x) 6= 0}. If we set Zv = U \ supp(v), then Zv is the interior
of {x ∈ U ; v(x) = 0}: the largest open set on which v = 0. The space C∞c (U), sometimes also
denoted D(U), is the set of infinitely differentiable, compactly supported functions on U . If K
is a compact subset of U , the set C∞K (U) (or DK(U)) is the subset of D(U) consisting in the
functions compactly supported in K. Each space DK(U) is a Fréchet space with family of semi
norms

pK,j(u) = sup
|m|≤j

sup
x∈K
|∂mx u(x)|,

where m ∈ Nd, |m| = m1 + · · · + md, ∂mx = ∂m1
x1
· · · ∂mdxd . On D(U), we consider the inductive

topology associated to the injections iK : DK(U) → D(U). As in Section 5.3.4, where we con-
sidered the inductive topology on Cc(U), it is possible to prove the following facts: a set B is
bounded in D(U) if

1. there exists a compact K ⊂ U such that all the functions u ∈ B are supported in K,

2. for all j ≥ 0, there exists Mj ≥ 0, such that pK,j(u) ≤Mj for all u ∈ B.

We also have the following fact: a sequence (un) in D(U) converges to an element u ∈ D(U) if

1. there exists a compact K ⊂ U such that all the functions un and u are supported in K,

2. un converges uniformly to u on K and all the derivatives ∂mx un, m ∈ Nd converge uniformly
to ∂mx u on K.

The space of distributions D′(U) is by definition the dual space of D(U). By definition of the
inductive topology, a linear functional α : D(U) → R is continuous if, and only if, all the linear
functionals iK ◦α : DK(U)→ R are continuous. This means that α is a distribution on U if, for
all compact K ⊂ U , there exists j ∈ N and a constant CK,j such that

|〈α, u〉| ≤ CK,j sup
|m|≤j

sup
x∈K
|∂mx u(x)|, (6.2)

for all u ∈ DK(U). In (6.2), we have used the notation 〈α, u〉 for α(u), traditional notation for
the duality D′(U)−D(U) that we will keep all along.

Let us come back to the examples considered previously. To a function u ∈ L1
loc(U), we associate

αu defined by
〈αu, w〉 =

ˆ
U

u(x)w(x)dx. (6.3)

Then αu satisfies (6.2) with j = 0:

|〈αu, w〉| ≤ CK sup
x∈K
|w(x)|, ∀w ∈ DK(U),

with CK = ‖u‖L1(K), so αu is a distribution. The map L1
loc(U)→ D′(U) given by u 7→ αu is an

injection of L1
loc(U) in D′(U). In particular, since Lp(U) injects in L1

loc(U) for p ∈ [1,+∞], we
also have an injection of Lp(U) in D′(U). The injective character of u 7→ αu will be proved in
exercises class. We frequently simply denote by u the distribution αu.
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A generalization is furnished by Mloc(U), the space described in Proposition 5.10. This space
Mloc(U) was introduced in Section 5.3.3 as the dual to Cc(U), when Cc(U) is endowed with
the inductive topology associated to the injections CK(U) ↪→ Cc(U). With that definition,
α ∈Mloc(U) if, and only if, for all compact K ⊂ U , there exists CK ≥ 0 such that

|〈αu, w〉| ≤ CK sup
x∈K
|w(x)|, ∀w ∈ DK(U). (6.4)

So it is clear that such a α is a distribution. We have also proved in Proposition 5.10 that each
such α can be written (see (5.42)) as

α(u) =
ˆ
U

u(x)σ(x)dµ(x), ∀u ∈ Cc(U), (6.5)

where µ is a non-negative Borel measure µ on U which is finite on the compact subsets of U and
a Borel map σ : U → {−1,+1}. If we introduce the two mutually singular measures µ+ and µ−
given by

µ±(A) = µ(A ∩ {σ = ±1}), A ∈ B(U), (6.6)

then µ+ and µ− are some non-negative measures finite on compact subsets of U and

α(u) =
ˆ
U

u(x)dµ+(x)−
ˆ
U

u(x)dµ−(x), ∀u ∈ Cc(U). (6.7)

If v ∈ L1
loc(U), we set σ(x) = sgn(v(x)) and dµ(x) = |v(x)|dx. Then αv is given by (6.5).

On the space D′(U), we will consider the weak-∗ topology, so a sequence of distributions (αn)
converges to a distribution α ∈ D′(U) if, for all u ∈ D(U), 〈αn, u〉 → 〈α, u〉. In particular one
can check the followings fact: convergence in L1

loc(U) (so in particular convergence in Lp(U))
implies convergence in the sense of distributions.

Proposition 6.1 (Weak-strong convergence for distributions). If (un) is converging to u in
D(U) and (αn) is converging to α in D′(U), then 〈αn, un〉 → 〈α, u〉.

Proof of Proposition 6.1. Let K be a compact subset of U such that un → u in DK(U). The
restriction βn := αn ◦ iK is a continuous linear functional on DK(U). By hypothesis, for each
u ∈ DK(U), (βn(u)) is convergent, and thus bounded. We admit the fact that DK(U) is a Fréchet
space and that the Banach-Steinhaus theorem (or uniform boundedness principle) is valid in the
framework of Fréchet spaces, giving the conclusion that (βn) is uniformly bounded on bounded
sets. We expand the product 〈αn, un〉 = 〈βn, un〉 as

〈βn, un〉 = 〈βn, un − u〉+ 〈βn − β, u〉+ 〈β, u〉. (6.8)

The set B = {un − u;n ∈ N} is bounded (see Section 5.2), so there exists M ≥ 0 such that
|〈βn, v〉| ≤ M for all v ∈ B. Let ε > 0 and let V be a neighbourhood of 0 in DK(U). Let t > 0
be such that B ⊂ tV . For n large enough, we have un − u ∈ εV and |〈βn − β, u〉| < ε, so

|〈βn, un − u〉+ 〈βn − β, u〉| < (1 + tM)ε.

We deduce from (6.8) that 〈αn, un〉 → 〈α, u〉.
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6.1.2 Bump functions, partition of unity, support

To work with distributions, we need the existence of bump functions: if K ⊂ U in Rd with K
compact and U open, then there exists a function χ of class C∞ such that K ≺ χ ≺ U . The
easiest way to prove this is to consider the convolution (with a kernel having a sufficiently small
support) of the characteristic function of a setW such thatW is open, W̄ compact, and K ⊂W ,
W̄ ⊂ U . More precisely, we can take

W = {x ∈ Rd; d(x,K) < ε}, χ = ρε ∗ 1W ,

for ε small enough, where ρε(x) = ε−dρ1(εx), with ρ1 ∈ C∞B̄(0,1)(R
d), 0 ≤ ρ1, and ρ1 of integral

1. We are left with the proof of the existence of ρ1. We can consider

ρ(x) = θ(|x|2)θ(1− |x|2), θ(r) =
{

exp
(
− 1

1−r

)
r < 1,

0 r ≥ 1,

and renormalize ρ to satisfy the condition of integral 1. To work with distributions, we also need
the existence of C∞ partitions of unity. Recall that a family of functions vi : Rd → R+, i ∈ I, is
said to be a (locally finite) partition of unity on A ⊂ Rd if every x ∈ X has a neighbourhood on
which all the vi but a finite number of them are identically 0 and if

∑
i∈I vi = 1 everywhere on

A. If Γ is an open cover of A, a partition of unity on A is said to be subordinate to Γ if each vi
is supported in a certain open set Ui member of Γ.

Proposition 6.2 (Partition of unity). Let K be a compact of Rd, U open in Rd. Let Γ =
{U1, . . . , Un} be a finite open cover of K. Then there exists a finite partition of unity v1, . . . , vm
on K, subordinate to Γ, such that each vi ∈ D(Rd). If K ⊂ U with U open, then we can ensure
that each vi ∈ D(U).

Proof of Proposition 6.2. The last assertion of the theorem is obtained by multiplication of each
vi by χ, a C∞ bump function such that K ≺ χ ≺ U , so it is sufficient to consider the case
U = Rd. If n = 1, the existence of a C∞ bump function χ1 such that K ≺ χ ≺ U1 gives the
result. Consider the case n = 2 (the general case n ≥ 2 will be treated similarly). If we have
shown that K ⊂ K1 ∪ K2 with Ki compact, Ki ⊂ Ui, then we can exhibit some C∞ bump
functions χi such that Ki ≺ χi ≺ Ui. Let w = χ1 + χ2 and w̄ = w+ (1− χ3), where χ3 is a C∞
bump functions such that K ≺ χ3 ≺ U3, U3 := {w > 0}. We have K ⊂ U3 since w ≥ 1 on K
and w̄ > 0 everywhere in Rd by construction, with w̄ = w on K. We set vi = χi/w̄ to obtain
the desired partition of unity. There remains to prove the existence of K1 and K2. For each
x ∈ K ∩ Ui, there is an open ball B(x, rx) with B(x, rx) ⊂ Ui. We can find a cover of K by the
balls B(x, rx/2) for x ∈ L with L finite subset of K. We then take Ki =

⋃
x∈L∩Ui B̄(x, rx/2).

Let α, β ∈ D(U) and let V be an open subset of U . We say that α = β on V if 〈α, u〉 = 〈β, u〉
for all u ∈ D(V ). We then have the following consistence result: if α = β on Vi, i ∈ I, where
each Vi is an open subset of U , then α = β on W =

⋃
i∈I Vi. Indeed, let u ∈ D(W ) and

let K be a compact subset of W such that u is supported in K. There is a finite cover of K
by Γ = {Vi; i ∈ IK}, where IK is finite. Let {v1, . . . , vm} be a C∞ partition of unity on K
subordinate to Γ. Then uvj ∈ D(Vi) for a certain i ∈ IK , so 〈α, uvj〉 = 〈β, uvj〉. It follows that

〈α, u〉 =
m∑
j=1
〈α, uvj〉 =

m∑
j=1
〈β, uvj〉 = 〈β, u〉,

and α = β on W . Take now β = 0. The consistency result shows that the class Z of open sets
V such that α = 0 on V , ordered by inclusion, has a maximal element, given by Zα :=

⋃
V ∈Z V .
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Definition 6.1 (Support of a distribution). The support supp(α) of a distribution α ∈ D(U) is
the complementary in U of the largest open set Zα on which α = 0.

According to this definition, a point x is not in the support of α if, and only if, α = 0 on an
open neighbourhood V of x. So a point x is in the support of α if, for all open neighbourhood
V of x, there is a u ∈ D(V ) with |〈α, u〉| > 0. Recall that the (closed) support supp(v) of a
continuous function v is defined as the closure (in U) of the set {x ∈ U ; v(x) 6= 0}. If we set
Zv = U \ supp(v) (this is the interior of {x ∈ U ; v(x) = 0}, the largest open set on which v = 0),
then we have (by definition, and then by taking the complementary)

〈α, u〉 = 0⇐= supp(u) ⊂ Zα ⇐⇒ supp(α) ⊂ Zu. (6.9)

The last two conditions in (6.9) are also equivalent to the condition

supp(u) ∩ supp(α) = ∅ ⇐⇒ d(supp(u), supp(α)) > 0, (6.10)

with the definitions

d(K,F ) := min
x∈K

d(x, F ), d(x, F ) := inf
y∈F
|x− y|,

for K compact and F closed in Rd. Note well that, in (6.9), it is not true that 〈α, u〉 = 0 implies
(6.10) (why?).

Proposition 6.3 (Support of a measure). Let U be an open set in Rd and let α be a locally
signed measure on U . Then the support of α as a measure and the support of α as a distribution
are the same.

Recall that α is given by (6.5) and (6.7). The support S(α) of α seen as a measure is defined as
follows:

S(α) = {x ∈ U ;µ(V ) > 0 for all open neighbourhood V of x} .

Proof of Proposition 6.3. Let Σ denote the support of α seen as a distribution. If x ∈ Σ and V
is an open neighbourhood of x, then there is a u ∈ D(V ) such that |〈α, u〉| > 0. Since

〈α, u〉 =
ˆ
U

udµ+ −
ˆ
U

udµ−, (6.11)

at least one of the integrals in (6.11), say the first one, is non trivial. Replacing u by −u if
necessary, we can assume that 〈µ+, u〉 > 0. In particular, 〈µ+, u+〉 > 0. By regularity of the
measure

θ : A 7→
ˆ
A

u+dµ+, A ∈ B(V ),

there is a compact K ⊂ V such that θ(K) > 0. Since u+ is continuous, it is bounded by a given
M on K, and we see that Mµ+(K) ≥ θ(K) > 0 and therefore µ+(K) > 0. We have then

µ(V ) ≥ µ+(V ) ≥ µ+(K) > 0.

This being true for every neighbourhood V of x, we have x ∈ S(α). If, conversely, x ∈ S(α)
and V is an open neighbourhood of x, then µ(V ) > 0. Assume for instance µ+(V ) > 0. By
regularity of µ, there is a compact K ⊂ V such that µ+(K) > 0. Let χ be a C∞ bump function
with K ≺ χ ≺ V . We have χ ∈ D(V ) and 〈µ+, χ〉 ≥ µ+(K) > 0. We need to adjust χ to be
certain that ˆ

U

χdµ+ 6=
ˆ
U

χdµ−.
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We will set A± = {σ = ±1} (cf. (6.6)) so that µ±(B) = µ(A± ∩ B). Let ε > 0 and let Hε, Wε

be some compact and open sets in U such that Hε ⊂ A+ ⊂ Wε and µ(Wε \Hε) < ε. Let θε be
a C∞ bump function with Hε ≺ θε ≺Wε. We have

ˆ
U

θεχdµ− ≤
ˆ
U

θεdµ− ≤ µ(A− ∩Wε) = µ(Wε \A+) < ε,

and ˆ
U

θεχdµ+ ≥ µ(Hε ∩K) ≥ µ(Wε ∩K)− ε ≥ µ(A+ ∩K)− ε = µ+(K)− ε,

so
〈α, χθε〉 ≥ µ+(K)− 2ε > 0,

if ε is chosen sufficiently small. Since χθε ∈ D(V ) and since V is an arbitrary neighbourhood of
x, we obtain x ∈ Σ.

Exercise 6.2 (Injection of locally integrable functions). Explain how to deduce from Proposi-
tion 6.3 that the map u 7→ αu defined in (6.3) is injective.

Exercise 6.3 (Convergence and support). Prove that, if (αn) is a sequence of distributions on an
open set U ⊂ Rd which converges to a distribution α ∈ D′(U), then supp(α) ⊂ lim inf supp(αn).

6.1.3 Order of a distribution, derivation of a distribution

Definition 6.4 (Order of a distribution). Let U be an open set in Rd and let α be a distribution
on U . Let K be a compact subset of U . The minimal integer j such that (6.2) is realized is
called the order of the distribution α on K. If one can find an integer j such that α is of order
j on every compact subset of U , then α is said to be of order j.

Exercise 6.5. Show that, if α is of order j, then the product 〈α, u〉 can be extended to functions
u ∈ Cjc (U). Show that the distribution p.v.

( 1
x

)
, defined by (6.1), is of order 1.

Definition 6.6 (Derivation of a distribution). Let U be an open set in Rd and let α be a
distribution on U . Let m ∈ Nd be a multi-index. The derivation ∂mx of α is defined by the
duality formula

〈∂mx α, u〉 = (−1)|m|〈α, ∂mx u〉,∀u ∈ D(U). (6.12)

If α is of order j on K, then ∂mx α is a distribution of order at most j + |m| on K.

We have to justify the last assertion of Definition 6.6. If (6.2) is satisfied, then clearly

|〈α, ∂mx u〉| ≤ CK,j sup
|m′|≤j+|m|

sup
x∈K
|∂m

′

x u(x)|, (6.13)

for all u ∈ DK(U). This shows that ∂mx α is a distribution, of order at most j + |m| on K (note
well that differentiation of distribution is not always increasing the order: if u ∈ D(Rd), it defines
a distribution of order 0 with all derivatives of order 0). The following properties are elementary
consequences of the equivalent property for smooth functions and/or the duality formula (6.12):

1. the map ∂mx : α 7→ ∂m
′

x α is continuous on D′(Rd). Note well, in particular, that convergence
in L1

loc(U) (and so convergence in Lp(U)) implies convergence of the derivatives in the sense
of distributions.

2. For all m,m′ ∈ Nd, ∂mx (∂m′x α) = ∂m+m′
x α.
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3. We have the inclusion supp(∂mx α) ⊂ supp(α).

Note also, to come back to the example of the distribution p.v.
( 1
x

)
, defined by (6.1), that we

have
p.v.

(
1
x

)
= ∂x(log(|x|)), (6.14)

with a slight abuse of notation (we indicate the variable x), with log being the inverse of exp.

Exercise 6.7. Prove (6.14) (check that you recover all the expressions given in (6.1)).

Proposition 6.4 (Order of distributions). We have the following results.

1. a distribution with compact support has a finite order,

2. distributions of order 0 are locally signed measures.

Proof of Proposition 6.4. Let α be a distribution with compact support K0 ⊂ U . Let V be an
open set with compact closure such that K0 ⊂ V ⊂ V̄ ⊂ U . Let χ be a bump function such that
V̄ ≺ χ ≺ U . Let u ∈ D(U). With the notations of (6.9), we have

supp(α) = K0 ⊂ V ⊂ Z(1−χ)u,

so 〈α, u〉 = 〈α, χu〉. Let K be such that χ ∈ DK(U) and let j be the order of α on K. For all
u ∈ D(U), we have

|〈α, u〉| = |〈α, χu〉| ≤ CK,jpK,j(χu). (6.15)
We use the bound

pK,j(χu) ≤ C(j)pK,j(χ)pK,j(u), (6.16)
which follows from the Leibniz formula

∂mx (χu) =
∑

p+q=m

(
m

p

)
∂pxχ∂

q
xu,

(
m

p

)
= m!
p!q! (with p+ q = m), m! = m1! · · ·md!. (6.17)

We obtain a bound uniform with respect to the support of u, which shows that α is of order j.
Let now α be a distribution of order 0. By Proposition 5.10, α is locally a signed measure.

Proposition 6.5 (Punctual support). A distribution supported on a singleton {z} is a finite
linear combination of the Dirac mass at z and of its derivatives.

Proof of Proposition 6.5. Let α be a distribution supported on a singleton {z}. Since α has
compact support, there is a bump function χ1 such that 〈α, u〉 = 〈α, uχ1〉 for all u ∈ D(U)
(cf. the proof of Proposition 6.4 above). The bump function χ1 is constantly equal to 1 in a
neighbourhood of z. Actually, we can assume B̄(z, δ) ≺ χ1 ≺ B(z, 2δ) for a given δ > 0. If

α =
∑
|m|≤j

cm∂
m
x δ0, (6.18)

then
(∀|m| ≤ j, ∂mx u(z) = 0)⇒ 〈α, u〉 = 0. (6.19)

The converse implication is also true (compare with Lemma 5.2). Indeed, assuming that (6.19)
is satisfied and that 0 is in the support of u ∈ D(U), we can write the Taylor expansion

u(x) =
∑
|m|≤j

xm

m! ∂
m
x u(z) + v(x). (6.20)
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Since 〈α, u〉 = 〈α, uχ1〉 and since 〈α, χ1v〉 = 0 by (6.19), we see that α satisfies (6.18), with

cm := 〈α, vm〉, vm(x) = χ1(x)x
m

m! .

Let us prove (6.19). Let j be the order of α. Let χn(x) = χ1(z + n(x − z)). Since χn ≡ 1 in
a neighbourhood of z, we have 〈α, u〉 = 〈α, uχn〉, so |〈α, u〉| ≤ CpK,j(uχn). If u(z) = 0, then
|u(x)| ≤ pB̄(z,2δ),1(u)|x− z| for all x ∈ B̄(z, 2δ), so

pK,0(uχn) ≤ pB̄(z,2δ),1(u)2δ
n
,

since χn(x) 6= 0 implies |x− z| < 2δ/n. If u(z) = 0 and ∇u(z) = 0, then

|u(x)| ≤ C2pB̄(z,2δ),2(u)|x− z|2, (6.21)

for all x ∈ B̄(z, 2δ) (use Taylor’s formula with integral remainder to justify (6.21)), so

|∂xj (uχn)(x)| ≤ |∂xju(x)|+ n|u(x)|‖χ′1‖L∞ ≤ C(δ)n−1.

Similar arguments for higher derivatives show that, if ∂mx u(z) = 0 for all multi-index of length
|m| ≤ j, then pK,j(uχn)→ 0 when n→ +∞. It follows that 〈α, u〉 = 0, and (6.19) is satisfied.

6.1.4 Some operations on distributions

We have already defined the differentiation of distributions, based on a duality formula. With a
similar approach, we can define the following operations.

1. Multiplication by a smooth function. If α ∈ D′(U), w ∈ C∞(U), we define the distribution
wα by

〈wα, u〉 = 〈α,wu〉, (6.22)

for all u ∈ D(U). Multiplication of a distribution by a bump function is a standard tool
to localize distributions. This operation was used in the proof of 1. of Proposition 6.4 for
instance. It is an exercise to check on the duality formula (6.12) that the Leibniz’ Formula
(6.17) remains valid for the product of a distribution by a smooth function. We also have
the following property:

supp(wα) ⊂ supp(w) ∩ supp(α). (6.23)

The inclusion can be strict, as shown by the example d = 1, w(x) = x, α = δ0, for which
wα = 0. Let us also use this result to emphasize the difficulty to define properly the product
of two distributions. Indeed, assume that a product with “good” properties (associativity,
commutativity if one of the factor is a smooth function) is defined on D′(Rd). We have
xδ0 = δ0x = 0, so (δ0x)p.v.

( 1
x

)
= 0. By associativity,

(δ0x)p.v.
(

1
x

)
= δ0

(
xp.v.

(
1
x

))
,

and since xp.v.
( 1
x

)
= 1 (use (6.1)), we obtain 0 = δ0, which is absurd.

Exercise 6.8. Let H denote the Heavyside function H(x) = 1x>0. Show that Hδ0 can
not be well defined in D′(R), but that H(x)δy=0 is well-defined in D′(R2).
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2. Translation. If α ∈ D′(U), z ∈ Rd, we define the distribution τzα on V := z + U by

〈τzα, u〉 = 〈α, τ−zu〉, (6.24)

for all u ∈ D(V ).

3. Composition with a diffeomorphism. If α ∈ D′(U), and ψ : U → V is a C∞-diffeomorphisms
with Jacobian determinant Jψ, we define the distribution α ◦ ψ on V by

〈α ◦ ψ, u〉 = 〈α, (Jψ)−1u ◦ ψ−1〉, (6.25)

for all u ∈ D(V ). In particular, for ψ : Rd → Rd given by ψ(x) = −x, denoting ǔ = u ◦ ψ,
we define, for α ∈ D′(Rd), the distribution α̌ by

〈α̌, u〉 = 〈α, ǔ〉, (6.26)

for all u ∈ D(Rd).

4. Convolution with a function. Let α ∈ D′(Rd), w ∈ D(Rd). Based on the following formula
(valid when α ∈ L1

loc(Rd) for instance)

α ∗ w(x) =
ˆ
Rd
α(y)w(x− y)dy,

we define the real number α ∗ w(x) for x ∈ Rd by

α ∗ w(x) = 〈α, τxw̌〉. (6.27)

It is left as an exercise to check that the formula (6.22), (6.24), (6.25) define distributions (i.e.
that (6.2) is satisfied). Regarding convolution, we have the following result.

Proposition 6.6 (Convolution of a distribution by a function). Let α ∈ D′(Rd), w ∈ D(Rd).
Then we have α ∗ w ∈ C∞(Rd) with

∂mx (α ∗ w) = (∂mx α) ∗ w = α ∗ ∂mx w, (6.28)

for every multi-index m ∈ Nd. We also have

〈α ∗ w, u〉 = 〈α, u ∗ w̌〉, (6.29)

for all u ∈ D(Rd) and the inclusion

supp(α ∗ w) ⊂ supp(α) + supp(w), (6.30)

which shows that α ∗ w has a compact support if α has a compact support. If α has compact
support L and order k ∈ N, say |〈α, u〉| ≤ CpL,k(u), then

pK,j(α ∗ w) ≤ CpK−L,k+j(w). (6.31)

Remark 6.1 (Unit for the convolution product). The Dirac mass δ0 is the unit for the convolution
product: δ0 ∗ u = u for all u ∈ D(Rd). Indeed, using (6.27), we have

δ0 ∗ u(x) = 〈δ0, τxǔ〉 = u(x). (6.32)
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Proof of Proposition 6.6. we prove the existence of the differentials of α ∗w by recursion on the
order of differentiation. We will simply treat the case of order 1, i.e. ∂xj for a j ∈ {1, . . . , d},
since higher derivatives are treated similarly. For t 6= 0, using (6.27) and the formula τx+z = τxτz,
we have

α ∗ w(x+ tej)− α ∗ w(x)
t

= 〈α, τxDj,tw̌〉, Dj,tu(x) := u(x+ tej)− u(x)
t

,

whereas, for all fixed u ∈ D(Rd), Dj,tnu→ ∂xju in D(Rd) for all sequence (tn) in R∗ which tends
to 0. Indeed, the expansion

(Dj,tu− ∂xju)(x) =
ˆ 1

0
[∂xju(x+ tθej)− ∂xju(x)]dθ =

ˆ 1

0

ˆ 1

0
∂2
xju(x+ trθej)tθdrdθ,

gives, for K compact and l ∈ N, the estimate pK,l(Dj,tu− ∂xju) ≤ pL,l+2(u)|t| for |t| < 1, where
L is a compact which contains all the points at distance at most 1 of K. We have established the
existence of ∂xj (α∗w) therefore, and altogether the formula ∂xj (α∗w) = α∗∂xjw. By recursion,
we will obtain ∂mx (α ∗ w) = α ∗ ∂mx w. The second identity in (6.28) will follow from (6.29) and
the standard property of distributivity of the differentiation for the product of convolution of
functions. Since

〈α ∗ w, u〉 =
ˆ
Rd
〈α, τxw̌〉u(x)dx,

ˆ
Rd
τxw̌(y)u(x)dx = u ∗ w̌(y),

the formula (6.29) will be established if we can justify the exchange of α with the integral over
x. This is done by approximation of the integral by Riemann sums. Without loss of generality,
we can assume that u is supported in the unit cube Q = (0, 1)d. By regularity of the integrand,
we haveˆ

Q

〈α, τxw̌〉u(x)dx =
∑
Q′⊂Q

ˆ
Q′
〈α, τxw̌〉u(x)dx = N−d

∑
Q′⊂Q

〈α, τx′w̌〉u(x′) + o(1), (6.33)

when N → +∞, where the sum over Q′ ⊂ Q is done on the cubes Q′ = x′ +N−dQ of size N−d,
with corner at x′ ∈ N−dZd ∩ [0, 1)d. We have

N−d
∑
Q′⊂Q

〈α, τx′w̌〉u(x′) = 〈α, vN 〉, vN (y) = N−d
∑
Q′⊂Q

τx′w̌(y)u(x′).

To prove that vN → u ∗ w̌ in D(Rd), it will be sufficient to prove that all the sequence vN
is supported in a single compact set K and that vN → u ∗ w̌ uniformly on K. The result
can be transferred to derivatives then, by replacing w with one of its derivative. We can take
K = supp(w) + Q̄. The fact that vN → u ∗ w̌ uniformly on K is deduced from the C1-regularity
of u and w:

vN (y)− u ∗ w̌(y) =
∑
Q′⊂Q

ˆ
Q′

[ϕy(x′)− ϕy(x)]dx, ϕy(x) := w(x− y)u(x),

so
vN (y)− u ∗ w̌(y) =

∑
Q′⊂Q

ˆ
Q′

ˆ 1

0
(∇xϕy)(θx′ + (1− θ)x) · (x′ − x)dθdx

and
pK,0(vN − u ∗ w̌) ≤ 2N−1pK,1(w)pK,1(u),
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which gives vN → u∗ w̌ uniformly on K as desired. Let us establish the inclusion of the supports
(6.30) now. We can use directly the definition (6.27), or (6.29), and this is this the first option
we choose. If α ∗ w(x) 6 0 =, then supp(α) ∩ supp(τxw̌) 6= ∅, so there exists z ∈ supp(α) such
that z ∈ supp(τxw̌). We check that supp(τxw̌) = x − supp(w), so that x ∈ supp(α) + supp(w).
It follows that {α ∗ w 6= 0} ⊂ supp(α) + supp(w). If F is closed and K compact then F + K
is closed (use a sequential characterization of the closure for instance), so we obtain (6.30). Let
w ∈ D(Rd). We have the point-wise bound

|α ∗ w(x)| = |〈α, τxw̌〉| ≤ CpL,k(τxw̌) ≤ CpK−L,k(w),

for all x ∈ K, so pK,0(α ∗w) ≤ CpM−L,k(w), which is (6.31) for j = 0. Replacing u by ∂mx u (and
using (6.28)) gives the general case.

Corollary 6.7 (Density of smooth functions). Let α ∈ D′(Rd). Let (ρn) be an approximation
of the unit on Rd:

ρn(x) = ndρ1(nx), ρ1 ∈ D(B(0, 1)), ρ1 ≥ 0,
ˆ
Rd
ρ1(x)dx = 1. (6.34)

Then (α ∗ ρn) is a sequence of C∞-functions on Rd which converges to α in D′(Rd). Let χ1 be a
C∞-bump function such that B̄(0, 1) ≺ χ1 ≺ B(0, 2) and set χn(x) = χ1(n−1x). Then χn(α∗ρn)
is a sequence of functions of D(Rd) which converges to α in D′(Rd).

Proof of Corollary 6.7. We use the formula (6.29): if u ∈ D(Rd), then

〈χn(α ∗ ρn), u〉 = 〈α, (χnu) ∗ ρ̌n〉.

For n large enough, we have χnu = u, and since u ∗ ρ̌n → u in D(Rd) (proof left as exercise), the
result follows.

Proposition 6.8 (Convolution of distributions). Let α, β ∈ D′(Rd). If one of the two distribu-
tions, say β, is compactly supported, then we can define the convolution product α ∗ β by

〈α ∗ β, u〉 = 〈α, β̌ ∗ u〉, (6.35)

for all u ∈ D(Rd). We then have the following properties:

supp(α ∗ β) ⊂ supp(α) + supp(β), (6.36)

and, for all multi-index m ∈ Nd,

∂mx (α ∗ β) = (∂mx α) ∗ β = α ∗ (∂mx β). (6.37)

If γ ∈ D′(Rd) is also compactly supported, then

β ∗ γ = γ ∗ β, (α ∗ β) ∗ γ = α ∗ (β ∗ γ). (6.38)

Remark 6.2 (Unit for the convolution product). The Dirac mass δ0 is the unit for the convolution
product: α ∗ δ0 = α. Indeed, using Remark 6.1 and (6.35), we have

〈α ∗ δ0, u〉 = 〈α, δ̌0 ∗ u〉 = 〈α, δ0 ∗ u〉 = 〈α, u〉.
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Proof of Proposition 6.8. Let us first check that (6.35) defines a distribution. If u ∈ DK0(Rd),
we set K = − supp(β) + K0. Then K is compact and supp(β̌ ∗ u) ⊂ K by (6.30). There exists
j ∈ N, C1 ≥ 0 such that α satisfies the condition (6.2): |〈α, v〉| ≤ C1pK,j(v). With v = β̌ ∗ u,
this gives |〈α ∗ β, u〉| ≤ C1pK,j(β̌ ∗ u). We apply (6.31) to deduce that

pK,j(β̌ ∗ u) ≤ C2pK+L,j+k(u),

and the estimate |〈α ∗ β, u〉| ≤ C1C2pK+L,j+k(u), where L = supp(β) and k is the order of
β. Let now x ∈ supp(α ∗ β): for all neighbourhood V of x, there is a u ∈ D(V ) such that
〈α ∗ β, u〉 = 〈α, β̌ ∗ u〉 6= 0. We have then supp(α) ∩ supp(β̌ ∗ u) 6= ∅. Let z be an element in the
intersection. By (6.30), we have

supp(β̌ ∗ u) ⊂ supp(β̌) + supp(u) = − supp(β) + supp(u),

so there is z′ ∈ supp(β) and y ∈ supp(u) such that z = −z′ + y, which means that

supp(u) ⊂ supp(α) + supp(β).

Consequently x ∈ supp(α)+supp(β) is a necessary condition, and we obtain (6.36). The formula
(6.37) is deduced from (6.28) and (6.35). For instance, we have

〈∂mx (α ∗ β), u〉 = (−1)|m|〈α, β̌ ∗ (∂mx u)〉 = 〈∂mx α, β̌ ∗ u〉 = 〈(∂mx α) ∗ β, u〉,

for all u ∈ D(Rd). To justify the commutation formula and associativity property in (6.36), we
observe that the formula are true if α, β, γ are all elements of D(Rd), as a consequence of the
Fubini Theorem. The result in the general case will follow by approximation. Let us give the
details of this step for the commutation formula β ∗ γ = γ ∗ β, that is to say

〈β, γ̌ ∗ u〉 = 〈γ, β̌ ∗ u〉, (6.39)

where u ∈ D(Rd). Let γ = γn in (6.39) with γn ∈ D(Rd) and γn → γ in D′(Rd). We can assume
(construct γn by convolution) that each γn and γ are supported in the same compact K and
that we have

|〈γn, u〉| ≤ CpK,j(u), (6.40)

for a uniform constant C and a uniform order j. We can pass to the limit in the right-hand side
of (6.39) of course. To justify the limit in the left-hand side of (6.39), we simply note that

γ̌n ∗ u→ γ̌ ∗ u in D(Rd).

Indeed all the functions are supported in L := K + supp(u) by (6.30) and we see that, up to the
substitution of u by ∂mx u, it is sufficient to prove that γ̌n ∗ u→ γ̌ ∗ u uniformly on L. We have

γ̌n ∗ u(x) = 〈γ̌n, τxǔ〉 = 〈γn, τ−xu〉 → 〈γ, τ−xu〉 = γ̌ ∗ u(x),

for all x ∈ L. This is only a punctual convergence, but the functions γ̌n ∗ u are equi-continuous,
since by (6.40) and (6.31), we have the Lipschitz bound pL,1(γ̌n ∗ u) ≤ CpK+L,j+1(u). So
the convergence is uniform. We obtain (6.39) when β ∈ D(Rd) and γ ∈ D′(Rd) is compactly
supported. The same reasoning then shows that the results holds true when β ∈ D′(Rd) is
compactly supported. The proof of the associativity property in (6.36) is left as an exercise.
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6.1.5 Fundamental solutions of PDEs - I

If P (X) =
∑
|m|≤j amX

m is a complex polynomial in the d variables X1, . . . , Xd, we introduce
the following notations

Dm = (2πi)−|m|∂mx , P (D) =
∑
|m|≤j

amD
m. (6.41)

We say that P (D) is a linear differential operator with constant coefficients. The choice of the
convention for the derivative D comes from the formula

F(P (D)u)(ξ) = P (ξ)(Fu)(ξ), (6.42)

where F is the Fourier Transform defined in (2.151):

Fv(ξ) = v̂(ξ) =
ˆ
Rd
v(x)e−2πix·ξdx. (6.43)

We deduce (6.42) from the formulas (2.162).

Definition 6.9 (Fundamental solution). Let P (D) be a linear differential operator with constant
coefficients as in (6.41). A fundamental solution for the Poisson equation associated to P (D) is
a distribution Φ on Rd such that P (D)Φ = δ0.

The Poisson equation associated to P (D) is the equation

P (D)u = f, (6.44)

where f is the data and u the unknown. Since the Dirac mass δ0 is the unit for the convolution
product, and in virtue of (6.28), one way to solve (6.44) is to set u = Φ∗f , where Φ is fundamental
solution. This has even a meaning if f is a distribution with compact support. When

P (ξ) = 4π2 (ξ1 + · · ·+ ξ2
d

)
= 4π2|ξ|2,

which corresponds to P (D) = −∆, (6.44) is simply called the Poisson equation.

Proposition 6.9 (Fundamental solution of the Poisson Equation). Let ωd = 2πd/2

Γ(d/2) denote the
volume of the unit sphere in Rd. Let Φ(x) be defined by

Φ(x) =


− 1

2π log(|x|) if d = 2,
1

(d− 2)ωd
1

|x|d−2 if d ≥ 3.
(6.45)

Then Φ is a fundamental solution of the Poisson Equation.

Proof of Proposition 6.9. Note first that Φ is locally integrable, because, using polar coordinates,
and writing Φ(x) = Φ̄(r), r = |x|, we have

ˆ
B(0,1)

|Φ(x)|dx = ωd

ˆ 1

0
|Φ̄(r)|rd−1dr < +∞.

By similar computations, we see that ∇Φ is locally integrable also, but that, on the contrary,
∂2
xixjΦ has a singularity at 0 which may be not integrable. We will have to work therefore to
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prove that Φ is a fundamental solution. First, let us specify the computations in question. With
the notation r = |x| =

√
|x|2, we have

∇Φ̄(r) = Φ̄′(r)∇r = Φ̄′(r)x
r
. (6.46)

We then use the formulas

∆w = div(∇w), div(wΨ) = w div(Ψ) +∇w ·Ψ, (6.47)

where w : Rd → R, Ψ: Rd → Rd, to obtain, since div(x) = d,

∆Φ̄(r) = d
Φ̄′(r)
r

+ ∂

∂r

(
Φ̄′(r)
r

)
x · x
r

and thus
∆Φ̄(r) = Φ̄′′(r) + (d− 1)Φ̄′(r)

r
. (6.48)

Let Φε be the approximation of Φ defined by

Φε(x) =


− 1

4π log(|x|2 + ε2) if d = 2,
1

(d− 2)ωd
1

(|x|2 + ε2)d/2−1 if d ≥ 3.
(6.49)

By (6.48), we have −∆Φε(x) = gε(x) := ε−dg(ε−1x), where

g(x) =


1
π

1
(|x|2 + 1)2 if d = 2,
d

ωd

1
(|x|2 + 1)d/2+1 if d ≥ 3.

(6.50)

Let I(d) denote the integral of g over Rd. Using polar coordinates, we compute I(2) = 1 and,
with an additional integration by parts, I(d) = I(d− 2) for d ≥ 3, with

I(1) :=
ˆ ∞

0

1
(r2 + 1)3/2 dr.

With the change of variable s = 1/r, we compute

I(1) =
ˆ ∞

0

s

(s2 + 1)3/2 ds = 1.

So all the integrals I(d) are equal to 1. Consequently gε → δ0 in D′(Rd). Since (Φε) converges
to Φ in L1

loc(Rd), it also converges to Φ in D′(Rd). We deduce that −∆Φ = δ0.

6.2 Tempered distributions
6.2.1 Definition of tempered distributions

We denote by f̂ or Ff , depending on the context, the Fourier transform of a function f , cf.
(6.43). For f, g ∈ L1(Rd), Fubini’s Theorem gives the symmetry formula

ˆ
Rd
f̂(y)g(y)dy =

¨
Rd×Rd

f(x)g(y)e−2πix·y =
ˆ
Rd
f(x)ĝ(x)dx, (6.51)
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Based on (6.51), we may define the Fourier transform α̂ of a distribution α ∈ D′(Rd) by the
duality formula

〈α̂, u〉 = 〈α, û〉. (6.52)

This is not possible however, the reason being that D(Rd) is not stable by u 7→ û. Indeed, if we
examine the formula

û(ξ) =
ˆ
Rd
u(x)e−2πix·ξdx,

there is no reason for û to be compactly supported. The fact is, that we have the following result
(in the same spirit as Proposition 2.22).

Proposition 6.10 (Localization in space and frequency are not compatible). Let u ∈ S (Rd).
If both u and û are compactly supported, then u = 0.

Proof of Proposition 6.10. If u is compactly supported in B(0, R), then

û(ξ) =
ˆ
B(0,R)

e−2πix·ξu(x)dx

can be extended as an holomorphic function Cd → C given by

z 7→
ˆ
B(0,R)

e−2πix·zu(x)dx,

so û = 0 if it vanishes on a subset of Rd having an accumulation point.

Exercise 6.10. Show that, if u ∈ S (Rd) and û is compactly supported, then there exists
ψ ∈ S (Rd) such that u = u ∗ ψ:

u(x) =
ˆ
Rd
u(x− y)ψ(y)dy, ∀x ∈ Rd.

Hint: consider a bump function χ such that û = ûχ.

A first idea is to restrict (6.52) to the case where α is compactly supported, but we will see that
it is possible to consider the largest class of tempered distributions. Recall that the Schwartz
space was defined in Definition 2.3: we denote by S (Rd) the space of infinitely differentiable
functions whose derivatives decay faster at infinity than any polynomial: v ∈ S (Rd) if v is of
class C∞ and all the semi-norms

qN,k(v) = sup
x∈Rd,|α|≤k

(1 + |x|2)N/2|∂αx v(x)| (6.53)

are finite. We have seen in (2.160) that S (Rd) ⊂ Lp(Rd) for all p ∈ [1,+∞]. The formulas
(2.162), or Proposition 2.21, show that the class S (Rd) is stable by the Fourier Transform F .
Since S (Rd) ⊂ L1(Rd), we can apply the Fourier inversion formula to deduce that the Fourier
Transform F is an isomorphism on the Schwartz space S (Rd) of inverse F̌ (remember the
notation θ̌(x) = θ(−x)).

Definition 6.11 (Tempered distributions). The dual of the Schwartz space S (Rd) is called the
set of tempered distributions and denoted S ′(Rd).
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A tempered distribution is a distribution, since we have an injection D(Rd) ↪→ S (Rd), which
automatically implies S ′(Rd) ⊂ D′(Rd). In more details, if α ∈ S ′(Rd), then there exists C ≥ 0,
N, k ≥ 0, such that

|〈α, u〉| ≤ CqN,k(u). (6.54)

If K is a compact of Rd, we have then |〈α, u〉| ≤ C(K)pK,k(u), where

C(K) = C sup
x∈K

(1 + |x|2)N .

We will now prove that D(Rd) is dense in S (Rd), with the consequence that a distribution
satisfying (6.54) for some N, k,C and for all u ∈ D(Rd) can be extended in a unique way as a
tempered distribution.

Proposition 6.11 (Dense subset of the Schwartz space). The set D(Rd) is dense in S (Rd).

The Schwartz space S (Rd) is a Fréchet space. A sequence (un) converges to an element u in
S (Rd) if, for all neighbourhood V of the origin, un ∈ u + V for n large enough. A base of
neighbourhoods of the origin is given by the sets {qN,K < ε} so (un) converges to an element
u in S (Rd) if, and only if, for all N, k, ε, we have qN,k(un − u) < ε for n large enough, i.e.
qN,k(un − u) → 0 when n → +∞. This can also be seen by considering the following metric
(cf.(4.4))

d(u, v) =
∑
j∈N

2−jΦ(qNj ,kj (u− v)), Φ(q) := q

1 + q
, (6.55)

where (Nj) ↑ +∞, (kj) ↑ +∞. Since the topology is metrizable, we can use a sequential criterion
to characterize dense sets in S (Rd).

Proof of Proposition 6.11. Let χ1 be a bump function with B̄(0, 1) ≺ χ1 ≺ B(0, 2) and χn(x) =
χ1(n−1x). Let u ∈ S (Rd) and let un = uχn. Each un ∈ D(Rd) and we are going to show that
un → u in S (Rd). Let N, k ≥ 0. To prove qN,k(u − un) → 0, we first consider the case k = 0.
We have then

sup
|x|>n

(1 + |x|2)N |(1− χn)u(x)| ≤ sup
|x|>n

(1 + |x|2)N |u(x)| ≤ n−2qN+1,0(u),

so qN,0(un − u)→ 0 when n→ +∞. If k > 0 and |m| = k, then

∂mx (u− un) = (1− χn)∂mx u+ ηn,

where ηn contains some derivatives of u and some derivatives of χn or order at least 1. More
precisely, the Leibniz formula gives

ηn = −
∑

p+q=m,|p|≥1

(
m

p

)
∂qxu∂

p
xχn.

Since
|∇χn(x)| = n−1|(∇χ1)(n−1x)| ≤ ‖∇χ1‖L∞(Rd)n

−1,

and, similarly, |∂mχn(x)| ≤ Cm(χ1)n−|m|, we have

qN,0(ηn) ≤
∑

p+q=m,|p|≥1

C(m, p, χ1)qN,k(u)n−|p| ≤ C(m,χ1, u)n−1,
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so qN,0(ηn)→ 0 when n→ 0. The case k = 0 gives us

lim
n→+∞

qN,0((1− χn)∂mx u) = 0.

Since qN,0 is subadditive, we obtain

lim
n→+∞

qN,0(∂mx (u− un)) = 0.

Finally, the convergence qN,k(u− un)→ 0 follows since

qN,k(v) = sup
|m|≤k

qN,0(∂mx v).

In parallel to this discussion on distributions and tempered distributions, we can discuss distri-
butions and compactly supported distributions. The space of compactly supported distributions
(on Rd) is usually denoted by E ′(Rd). We have the following characterization of E ′(Rd). To state
it, let us recall that C∞(Rd), the space of infinitely differentiable functions on Rd is a Fréchet
space, when endowed with the family of semi-norms

pK,j(u) = sup
x∈K

sup
|m|≤j

|∂mu(x)|,

associated to the topology of uniform convergence of a function and its derivatives over compact
sets. In particular, a linear map C∞(Rd)→ R is continuous if, and only if, there exists a compact
K, an index j ∈ N and A ≥ 0 such that

|α(u)| ≤ ApK,j(u), (6.56)

for all u ∈ C∞(Rd).

Proposition 6.12 (Compactly supported distribution). The space E ′(Rd) of compactly supported
distributions is the dual space to C∞(Rd). More precisely:

1. any element in the topological dual of C∞(Rd) gives rise (by restriction to D(Rd)) to a
compactly supported distribution,

2. any compactly supported distribution can be extended in a unique way as a continuous linear
functional on C∞(Rd).

Proof of Proposition 6.12. If α is an element of the topological dual of C∞(Rd), we define
〈α, u〉 = α(u) for u ∈ D(Rd). By hypothesis, α satisfies (6.56). If L is a compact subset of
Rd, and u ∈ C∞L (Rd), then

pK,j(u) ≤ sup
x∈Rd

sup
|m|≤j

|∂mx u(x)| = pK,j(u),

so |〈α, u〉| ≤ ApL,j(u) and α is a distribution (of finite order j). If u is supported in Rd \K, then
〈α, u〉 = 0 by (6.56), so α is supported inK. This proves the first assertion 1. The second point 2.
uses the fact that D(Rd) is dense in C∞(Rd). The proof of this result is easier than the proof of
Proposition 6.11: we consider the same cut-off function χn and also set un = χnu, the function
u being given in C∞(Rd). If L is a compact subset of Rd and k ∈ N, then pL,k(un − u) = 0 as
soon as L ⊂ B̄(0, n), so clearly pL,k(un − u) → 0 when n → +∞. Consider now a compactly
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supported distribution α. Our aim is to prove (6.56) for all u ∈ D(Rd), then we can extend α by
density as a continuous linear functional on C∞(Rd). Let χ be a bump function such that χ = 1
on supp(α). Let K = supp(χ). There exists j ∈ N and A ≥ 0 such that (6.56) is satisfies for all
u ∈ D(Rd) supported in K. If u is a general element of D(Rd), then 〈α, u〉 = 〈α, χu〉, so

|〈α, u〉| ≤ ApK,j(χu) ≤ A′pK,j(u) (6.57)

for a given constant A′ (we use the Leibniz formula to get the second inequality in (6.57), the
procedure is standard now). This concludes the proof.

Note well, to conclude this paragraph, that we have D(Rd) ↪→ S (Rd) ↪→ C∞(Rd), so any
compactly supported distribution is a tempered distribution, both being distributions.

6.2.2 Operations on tempered distributions

In this section, we will give the details of some admissible operations on tempered distributions
(Fourier transform in particular). Let us first list some examples of tempered distributions.

1. a compactly supported distribution is a tempered distribution,

2. if u ∈ L1
loc(Rd), then u is a tempered distribution, provided

ˆ
Rd

|u(x)
(1 + |x|2)N dx < +∞,

for some N ≥ 0,

3. u(x) = ex is not tempered, but u(x) = ex cos(ex) is tempered (use integration by parts).

Exercise 6.12. Give a function w ∈ C∞(R) such that

1. there is no polynomial function P such that |w(x)| ≤ |P (x)| for all x ∈ R,

2. w defines a tempered distribution.

Multiplication by moderately growing function. A function w ∈ C∞(Rd) is said to be
moderately growing (or slowly increasing sometimes) if w and all its derivatives have at most
polynomial growth at infinity: for all m ∈ Nd, there exists N = N(m) ≥ 0 and C = C(m) ≥ 0
such that

|∂mx w(x)| ≤ C(1 + |x|2)N , (6.58)

for all x ∈ Rd. If u ∈ S (Rd) and w is moderately growing, then wu ∈ S (Rd) by the Leibniz
formula, so we can define the product of w by a tempered distribution w as in (6.22): 〈wα, u〉 :=
〈α,wu〉.

Differentiation. If m ∈ Nd is a multi-index, then ∂mx : S (Rd) → S (Rd) is continuous since
qN,k(∂mx u) ≤ qN,k+|m|(u). We can define the differentiation of a tempered distribution α ∈
S ′(Rd) by

〈∂mx α, u〉 = (−1)|m|〈α, u〉. (6.59)
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Fourier Transform. If α ∈ S ′(Rd), Proposition 2.21 shows that we can define the tempered
distribution α̂ by the duality formula (6.52). By duality, the Fourier Transform F is an isomor-
phism on S ′(Rd), of inverse F̌ . The duality (6.52) also transfers the properties (2.162) to the
Fourier transform on S ′(Rd). Expressed in terms of Dm

x = (2πi)−|m|∂mx , we have therefore

F(Dm
x α) = ξmFα, Dm

ξ Fα = (−1)|m|F(xmα), (6.60)

for all α ∈ S ′(Rd). Note that each term in (6.60) is well defined: either we multiply a tempered
distribution by a moderately growing function, or we differentiate a tempered distribution (or
apply the Fourier transform), this is why it can be simply justified by duality. Since

Fu(0) =
ˆ
Rd
u(x)dx = 〈1, u〉, u ∈ S (Rd),

(6.52) gives us the following expression for the Fourier transform of δ0: F(δ0) = 1. The Fourier
transform maps the unit for the convolution to the unit for the punctual product, which is
consistent with the homomorphism property (6.63) proved below.

Exercise 6.13. We use the notations in (6.41). Prove that

F(P (D)δ0)(ξ) = P (ξ), (6.61)

for all ξ ∈ Rd. The formula (6.61) shows that, for α := P (D)δ0, F(α) is a function, and more
precisely a moderately growing function. Generalize this to the case where α is a distribution
with compact support, and prove that F(α)(ξ) = 〈α, eξ〉 where eξ ∈ C∞(Rd) is given by eξ(x) :=
exp(−2πix · ξ).

Solution: by (6.60), we have F(P (D)δ0)(ξ) = P (ξ)F(δ0) = P (ξ). We have seen in Proposi-
tion 6.12 that, if α is a distribution with compact support, then it can be extended in a unique
manner as a continuous linear form on C∞(Rd) (we still denote by α this extension). Then
〈α, eξ〉 is well defined. By linearity and continuity, we have

ˆ
Rd
u(ξ)〈α, eξ〉dξ = 〈α,Fu〉, (6.62)

for all u ∈ D(Rd). To prove (6.62), we approach the integral by a Riemann sum, as in the
proof of Proposition 6.6 (we will not give the details). Since 〈α,Fu〉 = 〈Fα, u〉, (6.62) is the
identity 〈Fα, u〉 = 〈θ, u〉, where θ(ξ) := 〈α, eξ〉. Admit for the moment that θ is a moderately
growing function. It is a locally integrable function then, and the identity Fα = θ follows from
the injection of L1

loc(Rd) in D′(Rd). Since α is compactly supported, (6.56) is realized for some
K, j,A. We have

|∂mx eξ(x)| = |(−2πiξ)m| ≤ (2π)|m|(1 + |ξ|2)|m|/2,

so pK,j(eξ) ≤ (2π)j(1 + |ξ|2)j/2 and θ is therefore moderately growing.

Convolution. If α ∈ S ′(Rd), u ∈ S (Rd), we define the number α ∗ u(x) = 〈α, τxǔ〉 as in
(6.27). We have the following results then.

Proposition 6.13 (Convolution S ′-S ). Let α ∈ S ′(Rd), w ∈ S (Rd), m ∈ Nd. Then α ∗w is
a moderately growing function and

F(α ∗ w) = Fα · Fw. (6.63)
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Moreover, the distributivity of the derivation holds true:

∂mx (α ∗ w) = (∂mx α) ∗ w = α ∗ ∂mx w. (6.64)

We also have
〈α ∗ w, u〉 = 〈α, u ∗ w̌〉, (6.65)

for all u ∈ S (Rd).
Proof of Proposition 6.13. Let A ≥ 0, N, k ≥ 0 such that |〈α, u〉| ≤ AqN,k(u) for all u ∈ S (Rd).
For m ∈ Nd with |m| ≤ k and w ∈ S (Rd), we have

(1 + |y|2)N |∂my τxw(y)| = (1 + |y|2)N |∂my w(y − x)| ≤ C(N)(1 + |x|2)NqN,k(w), (6.66)

for all x, y ∈ Rd, where

C(N) =
[

sup
y∈Rd

(1 + |y − x|2)
(1 + |x|2)(1 + |y|2)

]N
.

The constant C(N) is finite, with C(N) ≤ 2N , since

〈x− y〉 ≤
√

2〈x〉〈y〉, 〈x〉 := (1 + |x|2)1/2. (6.67)

Indeed, we have |x − y|2 ≤ 2(|x|2 + |y|2) and so 〈x − y〉2 ≤ 2〈x〉2〈y〉2. We deduce from (6.66)
that

|α ∗ w(x)| ≤ AC(N)qN,k(w)(1 + |x|2)N , (6.68)
for all x ∈ Rd. The estimate (6.68) shows that α ∗ w is a locally bounded function, hence a
distribution. The estimate (6.68) also shows that, given u ∈ D(Rd), the map w 7→ 〈α ∗ w, u〉 is
continuous on S (Rd). Therefore, since D(Rd) is dense in S (Rd), (6.65) is a consequence of the
identity already proved in the case w, u ∈ D(Rd) (see (6.29)). The distributivity of the derivation
for the convolution on S (Rd) and (6.65) imply now (6.64). If n ∈ Nd, the result (6.68) applied
to ∂nxw instead of w gives the bound

|∂nx (α ∗ w)(x)| ≤ AC(N)qN,k+|n|(w)(1 + |x|2)N ,

for all x ∈ Rd. We deduce that α ∗w is a moderately growing function. To establish the formula
F(α ∗ w) = Fα · Fw, we use (6.52) and (6.65): for u ∈ S (Rd),

〈F(α ∗ w), u〉 = 〈α ∗ w,Fu〉 = 〈α, (Fu) ∗ w̌〉 = 〈F̌Fα, (Fu) ∗ w̌〉 = 〈Fα, F̌((Fu) ∗ w̌)〉
= 〈Fα, uFw〉 = 〈FwFα, u〉. (6.69)

In the sequence of equalities (6.69), the crucial identity is

F̌((Fu) ∗ w̌) = uFw,

which is simply a consequence (6.63) in the case α ∈ S (Rd). This particular case follows from
Fubini’s theorem sinceˆ

Rd

[ˆ
Rd
|α(x− y)w(y)|dy

]
dx = ‖α‖L1(Rd)‖w‖L1(Rd) < +∞,

and thus

F(α ∗ w)(ξ) =
ˆ
Rd

[ˆ
Rd
α(x− y)w(y)dy

]
e−2πix·ξdx

=
ˆ
Rd

[ˆ
Rd
α(x− y)e−2πix·ξdx

]
w(y)dy =

ˆ
Rd

(Fα)(ξ)e−2πiy·ξw(y)dy = (Fα)(ξ)(Fw)(ξ).
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In Proposition 6.8, we have seen that the convolution product D′ ∗D can be extended to D′ ∗ E ′.
We can therefore define the convolution product of a tempered distribution with a compactly
supported distribution. We will show that it is a tempered distribution.

Proposition 6.14 (Convolution of a tempered distribution with a compactly supported distri-
bution). Let α be a tempered distribution and β be a compactly supported distribution. Then
α ∗ β is a tempered distribution.

Proof of Proposition 6.14. By Exercise 6.13, Fβ is a moderately growing function. The product
FαFβ is a tempered distribution therefore, and the distribution F̌(FαFβ) is tempered. If
u ∈ D(Rd), we have

〈F̌(FαFβ), u〉 = 〈FαFβ, F̌u〉 = 〈Fα,FβF̌u〉 = 〈α,F(FβF̌u)〉.

Since F̌u = F ǔ and F(β ∗ ǔ) = FβF ǔ by (6.63), it turns out that

F̌(FβF̌u) = β ∗ ǔ.

It follows that
〈F̌(FαFβ), u〉 = 〈α, β̌ ∗ u〉,

and as 〈α ∗ β, u〉 = 〈α, β̌ ∗ u〉 by definition, we see that α ∗ β coincide on D(Rd) with a tempered
distribution, so is (after extension by density) a tempered distribution as well.

6.2.3 Fundamental solutions of PDEs - II

Fundamental solution. To find fundamental solutions to evolution equations of the form
∂tu+P (Dx)u = 0, where P (Dx) is a linear differential operator with constant coefficients in the
variable x ∈ Rd and t ∈ R or t ≥ 0, we will use a partial Fourier transform in the variable x only.
For u ∈ S (R× Rd), we set (sp=space)

(Fspu)(t, ξ) =
ˆ
Rd
u(t, x)e−2πix·ξdx, ξ ∈ Rd.

Then Fsp : S (R× Rd)→ S (R× Rd) is bijective of inverse

(F̌spu)(t, x) =
ˆ
Rd
u(t, x)e2πix·ξdξ, x ∈ Rd.

By the duality formula 〈Fspα, u〉 = 〈α,Fspu〉 we can extend Fsp to S ′(R× Rd). We have then
the following identities in S ′(R× Rd)

Dm
x Fspα = ξmFspα, Fsp(Xmα) = (−Dξ)mFspα, (6.70)

where (recall (6.41)) Dm
x = (2πi)−|m|∂mx , and

Fsp(∂nt α) = ∂nt Fspα, (6.71)

for n ∈ N,m ∈ Nd. A tempered distribution α is then a solution to the equation

∂tα+ P (Dx)α = δ(0,0), (6.72)

(where δ(0,0) denotes the Dirac mass at (0, 0)) if, and only if

∂tFspα+ PFspα = Fspδ(0,0). (6.73)
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We compute

〈Fspδ(0,0), u〉 = (Fspu)(0, 0) =
ˆ
Rd
u(0, x)dx = 〈δt=0 ⊗ 1freq, u〉,

where (freq=frequency) 1freq(ξ) = 1 for all ξ. So a α is a fundamental solution for ∂t + P (D) if,
and only if, Fspα is solution to

∂tFspα+ PFspα = δt=0 ⊗ 1freq. (6.74)

Weak solution to the Cauchy Problem. Suppose now that we have found a fundamental
solution α for ∂t + P (D). We want to solve the Cauchy Problem{

∂tv + P (Dx)v = f in (0,+∞)× Rd

v(0, ·) = u0 in Rd,
(6.75)

where the data are u0 ∈ D(Rd), f ∈ D(R × Rd). We first merge both equations into the single
equation

∂tv + P (Dx)v = f + δt=0 ⊗ u0, (6.76)
and solve (6.76) by setting

v = α ∗ (f + δt=0 ⊗ u0). (6.77)
This defines a tempered distribution since f is in the Schwartz class and δt=0 ⊗ u0, defined by

〈δt=0 ⊗ u0, w〉 =
ˆ
Rd
u0(x)w(0, x)dx, w ∈ S (R× Rd),

is a compactly supported distribution (apply Proposition 6.14). The distributivity of the deriva-
tion (6.64) ensures that

∂tv + P (Dx)v = (∂tα+ P (Dx)α) ∗ (f + δt=0 ⊗ u0) = δ(0,0) ∗ (f + δt=0 ⊗ u0) = f + δt=0 ⊗ u0.

Using duality, it appears that (6.76) is equivalent to the fact that

〈v, ∂tw + P (Dx)∗w〉+
ˆ
R

ˆ
Rd
f(t, x)w(t, x)dxdt+

ˆ
Rd
u0(x)w(0, x)dx = 0, (6.78)

for all w ∈ S (R× Rd), where, given P (ξ) =
∑
|m|≤k amξ

m, we set

P (Dx)∗ =
∑
|m|≤k

am(−1)|m|Dm
x .

Assume now that

v is represented by a locally integrable function u in S ′(R× Rd). (6.79)

Then we can rewrite (6.78) as
¨

R×Rd
u(t, x)(∂tw(t, x) + P (Dx)∗w(t, x))dxdt

+
¨

R×Rd
f(t, x)w(t, x)dxdt+

ˆ
Rd
u0(x)w(0, x)dx = 0, (6.80)

for all w ∈ S (R × Rd). Equation (6.80) is called the weak formulation of the Cauchy Prob-
lem (6.75).
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Fundamental solution of the Heat Equation. The Heat Equation is associated to the
operator ∂t −∆x, i.e. P (ξ) = 4π2|ξ|2. The equation (6.74) is then (β = Fspα)

∂tβ(·, ξ) + 4π2|ξ|2β(·, ξ) = δt=0,

which we solve by setting
β(t, ξ) = H(t)e−4π2|ξ|2t,

where H(t) = 1t>0 is the Heavyside function. Since the Gaussian Ga : x 7→ e−π
2a|x|2 satisfies

Ĝa(ξ) = a−d/2Ga−1(x) for a > 0 ([Fol99, Prop. 8.24, p.251]), we obtain the fundamental solution

α(t, x) = H(t)Kt(x), Kt(x) := 1
(4πt)d/2

e−
|x|2

4t , (t, x) ∈ R× Rd. (6.81)

The set of functions {Kt; t > 0} is called the Heat Kernel. Since α is a moderately growing
function, the discussion above (and Fubini’s theorem to justify the expression of α ∗ f in (6.82)
below) shows that

u(t) = H(t)Kt ∗x u0 +
ˆ t

0
Kt−s ∗x f(s)ds (6.82)

satisfies
¨

R×Rd
u(t, x)(∂tw(t, x)−∆w(t, x))dxdt

+
¨

R×Rd
f(t, x)w(t, x)dxdt+

ˆ
Rd
u0(x)w(0, x)dx = 0, (6.83)

for all w ∈ S (R × Rd). One can extend (6.82)-(6.83) for less regular/supported data u0 and f
in various ways, using the following property: for all r ≥ p and t > 0,

‖Kt ∗ u‖Lr(Rd) ≤ C(p, r) 1
t
d
2 ( 1

p−
1
r ) ‖u‖Lp(Rd). (6.84)

Exercise 6.14. Prove (6.84) and show that, given f ∈ C(R+;Lp(Rd)), u0 ∈ Lp(Rd), the Cauchy
Problem {

∂tu−∆u = f in (0,+∞)× Rd

u(0, ·) = u0 in Rd,
(6.85)

admits a weak solution u ∈ C(R+;Lp(Rd)). Hint: use the Young inequality for convolution

‖Kt ∗ u‖Lr(Rd) ≤ ‖Kt‖Lq(Rd)‖u‖Lp(Rd),
1
p

+ 1
q

= 1 + 1
r
,

and use the homogeneity property Kt(x) = t−d/2K1(t−1/2x) to prove (6.84).

Fundamental solution of theWave Equation. The Cauchy Problem for theWave Equation
is {

∂2
t u−∆u = f, in (0,+∞)× Rd

u(0, ·) = u0, ∂tu(0, ·) = v0 in Rd.
(6.86)

It can be put in the form of a first order equation for unknowns taking values in R2:{
∂tU + P (Dx)U = F in (0,+∞)× Rd

U(0, ·) = U0 in Rd,
(6.87)
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where
U =

(
u
v

)
, F =

(
0
f

)
, P (Dx) =

(
0 −1
−∆ 0

)
.

The Fourier Transform in x gives the equation

∂tB(t, ξ) +M(ξ)B(t, ξ) =
(

0
δt=0 ⊗ 1freq

)
, M(ξ) =

(
0 −1
|ξ|2 0

)
(6.88)

for the partial Fourier transform B = FspA of the fundamental solution A, with

∂tA+ P (Dx)A =
(

0
δ(0,0)

)
.

We solve (6.88) by taking B(t, ξ) = H(t)E(t, ξ), where E(0, ξ) = 1 and

∂tE(t, ξ) +M(ξ)E(t, ξ) =
(

0
1

)
=⇒ E(t, ξ) = exp(−tM(ξ))

(
0
1

)
. (6.89)

We compute M(ξ)2 = −|ξ|2I2, so on the diagonal of exp(−tM(ξ)) we will have
∞∑
n=0

(−1)n (t|ξ|)2n

(2n)! = cos(t|ξ|).

Since ∂t exp(−tM(ξ)) = −M(ξ) exp(−tM(ξ)) and M(ξ)−1 = −|ξ|−2M(ξ), we can deduce the
terms on the anti-diagonal and obtain

exp(−tM(ξ)) =
(

cos(t|ξ|) sin(t|ξ|)/|ξ|
− sin(t|ξ|) cos(t|ξ|)

)
, E(t, ξ) =

(
sin(t|ξ|)/|ξ|

cos(t|ξ|)

)
.

We conclude that
B(t, ξ) = H(t)

(
sin(t|ξ|)/|ξ|

cos(t|ξ|)

)
gives an expression of the Fourier Transform in x of the fundamental solution of the wave equa-
tion. One then has to compute the inverse Fourier Transform. See [Zui02, p.122] for instance.

Fundamental solution of the Schrödinger Equation. The Schrödinger Equation is asso-
ciated to the operator ∂t − i∆x, where i2 = −1. The fundamental solution for the Schrödinger
Equation is

α(t, x) = H(t)
td/2

KS
( x

t1/2

)
, KS(x) = e−idπ/2

(4π)d/2
ei
|x|2

4t .

See [Zui02, p.123] on that topic.

7 Sobolev spaces
We follow for some parts L.C. Evans, [Eva10], and C. Zuily, [Zui02]. When the Sobolev space
is defined on an open bounded subset U , the geometry of the boundary ∂U is involved in a
number of results (extension, trace, approximation by functions smooth up to the boundary...).
A number of authors work locally, using a transport by diffeomorphism onto a flat boundary.
We use a global approach, by means of a parametrization of a tubular neighbourhood of the
boundary based on the natural splitting into tangential and normal coordinates. The results we
give are not optimal however. Those optimal statements can be found in the classical book by
R.A. Adams, [Ada75]. We also refer to the on-line preprint by J. Droniou, [Dro01].
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7.1 Definition and first properties
Definition 7.1 (Sobolev space). Let U be an open subset. Let k ∈ N, p ∈ [1,+∞]. The space
W k,p(U) is the set of functions in Lp(U) such that ∂mx u ∈ Lp(U) for all m ∈ Nd with |m| ≤ k.
The norm on W k,p(U) is

‖u‖Wk,p(U) =

 ∑
|m|≤k

‖∂mx u‖
p
Lp(U)

1/p

, 1 ≤ p < +∞, (7.1)

and
‖u‖Wk,∞(U) = max

{
‖∂mx u‖L∞(U); |m| ≤ k

}
,

if p = +∞.

Equivalent norms when k = 1. We use the following convention of notation

‖∇u‖Lp(U) = ‖v‖Lp(U), v := |∇u|. (7.2)

We have then
‖u‖W 1,2(U) =

[
‖u‖2L2(U) + ‖∇u‖2L2(U)

]1/2
.

When p ∈ [1,+∞) is different from 2 and k = 1, we will often use the norm

‖u‖W 1,p(U) =
[
‖u‖pLp(U) + ‖∇u‖pLp(U)

]1/p
. (7.3)

This is an abuse of notation, but the norm in (7.3) is equivalent to the norm in (7.1) when k = 1
by equivalence of the norms `2 and `p on Rd.

Bessel spaces. When p = 2 and U = Rd, the formula F(Dm
x α) = ξmFα for α a tempered

distribution (cf. (6.60)), shows that

W k,2(Rd) =
{
u ∈ L2(Rd);

ˆ
Rd

(1 + 4π2|ξ|2)k|Fu(ξ)|2dξ < +∞
}
,

and that the norm ‖ · ‖Wk,2(Rd) is equivalent to the norm

u 7→
[ˆ

Rd
(1 + 4π2|ξ|2)k|Fu(ξ)|2dξ

]1/2
.

For s ∈ R, the Bessel space Hs,p(Rd) (also denoted Ls,p(Rd) is defined as the set of functions
u ∈ Lp(Rd) such that the tempered distribution (Id −∆)s/2u is (represented by) an element of
Lp(Rd). The associated norm is

‖u‖Hs,p(Rd) = ‖(Id−∆)s/2u‖Lp(Rd)

The operator (Id−∆)s/2 is defined in S ′(Rd) by the formula

F
[
(Id−∆)s/2u

]
= (1 + 4π2|ξ|2)s/2Fu.

It is clear then that Hk,2(Rd) = W k,2(Rd) when k ∈ N (the equality here means that they
coincide as sets and that the norms are equivalent). That Hk,p(Rd) = W k,p(Rd) is satisfied more
generally for p ∈ (1,+∞) is true, but the proof requires the theory of singular integrals
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Weak estimates. In Definition 7.1, ∂mx u is understood in the sense of distribution. This can
be formalized by considering the injective map Lp(U) → D′(U) which to u ∈ Lp(U) associates
the distribution obtained by integration of the test-functions against u. Nevertheless it is not
strictly necessary to use the theory of distribution to assert that ∂mx u ∈ Lp(U) in Definition 7.1.
The notion of weak derivative in Lp is sufficient for that purpose, [Eva10, p.256]. In relation
with the definition of Sobolev spaces by use of weak notions of derivatives, we give the following
proposition.

Proposition 7.1 (Sobolev and weak inequalities). Let U be a non-empty open set in Rd. Let
p ∈ [1,+∞] and let u ∈ Lp(U) satisfy the following estimate: there exists a constant A ≥ 0 such
that ∣∣∣∣ˆ

U

u(x)∂xiv(x)dx
∣∣∣∣ ≤ A‖v‖Lp′ (U), ∀v ∈ D(U), (7.4)

where p′ = p
p−1 is the conjugate exponent to p. Then

1. If 1 < p ≤ +∞, then (7.4) is a characterization of the fact that u ∈W 1,p(U),

2. if p = 1, then (7.4) characterizes the fact that u ∈ BV(U), the space of functions “of
bounded variation”. This is the space of functions u ∈ L1(U) such that the derivatives ∂xiu
are represented by signed measures on U (recall that, with our convention, signed measures
have a finite total variation precisely). This space is strictly bigger than W 1,1(U).

Proposition 7.1 prevents us (at least when p = 1) from the possibility of working on weak
inequalities when manipulating Sobolev functions. However, weak inequalities are not sufficient
in themselves. For instance, assume 1 < r ≤ p, q and 1

p + 1
q = 1

r . We expect the following
statement to be true:

u ∈W 1,p(U), v ∈W 1,q(U)⇒ uv ∈W 1,r(U) and ∇(uv) = u∇v + v∇u a.e. (7.5)

How can we prove (7.5)? An answer will be furnished by Proposition 7.2 below (see Exercises
class).

Proof of Proposition 7.1. Assume first 1 < p ≤ +∞. Then D(U) is dense in Lp
′(U) (we have

p′ < +∞) so v 7→ 〈∂xiu, v〉 can be extended as a continuous linear form on Lp′(U). The dual space
of Lp′(U) is Lp(U), so there exists wi ∈ Lp(U) such that 〈∂xiu, v〉 = 〈wi, v〉 for all v ∈ D(Rd).
This means precisely that the distribution ∂xiu is represented by an element of Lp(U). If p = 1
now, the closure of D(U) for the L∞ norm is the space BC(U) of bounded continuous functions
on U . Actually, (7.4) for p = 1 tells us that the distribution ∂xiu is of order 0, and we have
seen that distributions of order 0 are signed measures. It is clear that BV(U) is strictly bigger
than W 1,1(U). The example with d = 1, U = Rd, u(x) = H(x) (Heavyside function), for which
u′ = δ0, can easily be generalized to higher dimension and general open non-empty set U .

Some examples. If U = B(0, 1) and u(x) = |x|s, s ∈ R, then u ∈ W k,p(U) if, and only if the
integral ˆ

B(0,1)
|x|p(s−k)dx = |S(0, 1)|

ˆ 1

0
rp(s−k)+d−1dt

is finite, i.e. s > k
p − d. If U = Rd and u = 1B(0,1), we have u ∈ Lp(Rd) for all p ∈ [1,+∞]. We

have
〈∇u, v〉 = −

ˆ
S(0,1)

xv(x)dσ(x), (7.6)
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where σ is the surface measure on S(0, 1) (see Proposition 7.6 below for more details on that point,
or simply consider polar coordinates). For any p ∈ [1,+∞], we cannot have ∇u ∈ Lp(Rd;Rd),
otherwise σ would be absolutely continuous with respect to the Lebesgue measure. So u is not
belonging to any Sobolev space W k,p(Rd), k ≥ 1.

Local approximation by smooth functions. We give now a result of approximation by
smooth functions (restricted to the case k = 1 for facility), the approximation being valid only
locally in U . Better approximation results can be given, as in Theorem 7.7 below, but this first
statement will be useful in many places.

Proposition 7.2 (Local approximation by smooth functions). Let U be an open subset of Rd.
Let 1 ≤ p < +∞ and let u ∈W 1,p(U). There is a sequence of functions un ∈ C∞(U)∩W 1,p(U)
such that ‖u− un‖W 1,p(V ) → 0 when n→ +∞, for all open set V with compact closure V̄ ⊂ U .

Proof of Proposition 7.2. Let (ρn) be a standard approximation of the unit, as in (2.139). Let ũ
denote the extension6 of u by 0 outside U . Set vn = ρn ∗ ũ and define un as the restriction of vn
to U . We will see that (un) has the desired property. Let V be an open set with compact closure
V̄ ⊂ U . There exists η > 0 and W an open set with compact closure W̄ ⊂ U which contains the
η-neighbourhood V + B(0, η). Let χ be a bump function such that W̄ ≺ χ ≺ U . Then ũ = χu
in W , so

vn = wn := ρn ∗ (χu), u = w := χu

in V if n > η−1 since ρn is supported in B(0, n−1). It will be sufficient now to prove that wn → w
in W 1,p(Rd). Standard results on the convolution give wn → w in Lp(Rd). By Proposition 6.6,
we know that ∂xiwn = ρn ∗ (∂xiw) (identity between C∞ functions). Again, standard results on
the convolution with an approximation of the unit give ∂xiwn → ∂xiw in Lp(Rd). This concludes
the proof.

Calculus of variations. The Sobolev norms appear in a great number of classical problems
in the theory of partial differential equations (PDEs), especially when one looks for some a priori
estimates on the solution. Actually, some standard equations are derived as Euler-Lagrange
equations for a functional that involves some Sobolev norms. The most famous example is the
Dirichlet energy (where f ∈ L2(U) for instance)

J(u) =
ˆ
U

|∇u|2

2 dx−
ˆ
U

fudx. (7.7)

Suppose that J admits a minimum over a set A ⊂ W 1,2(U). Suppose also that u is interior to
A. Then u is a critical point: for all v ∈ W 1,2(U), DJ(u) · v = 0. Note that the functional J is
the sum of a quadratic term with a linear term, so we compute

J(u+ v) = J(u) +
ˆ
U

(∇u · ∇v − fv)dx+
ˆ
U

|∇v|2

2 dx. (7.8)

The last term in (7.8) is smaller than ‖v‖2W 1,2(U), so

DJ(u) · v =
ˆ
U

(∇u · ∇v − fv)dx. (7.9)

6beware that we may have ũ /∈W 1,p(Rd), see the example (7.6). See also Theorem 7.8 for the construction of
accurate extensions.
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By integration by parts (we will discuss later to what extent this is licit), we also obtain the
expression

∀v ∈W 1,2
0 (U), DJ(u) · v =

ˆ
U

(−∆u− f)vdx, (7.10)

where the subscript 0 in v ∈ W 1,2
0 (U) indicates that v ∈ W 1,2(U) and v = 0 on ∂U (this will

also been explained in greater details). Finally (modulo a discussion on the boundary conditions
that should be done), we obtain the Poisson Equation −∆u = f as the Euler-Lagrange equation
(i.e. the equation for critical points) of the Dirichlet Energy.

7.2 Sobolev spaces defined on the whole space
Here is a list of properties of the Sobolev spaces W k,p(Rd). We employ the following notation:
if u ∈ L1

loc(Rd), we denote by u∗ the precise representative of u defined by

u∗(x) =

 lim
r→0+

1
|B(x, r)|

ˆ
B(x,r)

u(y)dy if the limit exists,

0 otherwise.
(7.11)

By Lebesgue’s differentiation theorem, Theorem 2.27, we know that u∗ = u a.e., so u∗ is in the
class of u for the equivalence relation of “equality a.e.” By definition also, we have u∗ = v∗

everywhere if u = v a.e. We use this precise representative when some continuity properties
of u are put forward. Indeed, if v is continuous, then v = v∗ everywhere, so if u admits a
representative that is continuous, then this representative is necessarily u∗.

1. For all p ∈ [1,+∞], the Sobolev spaces W k,p(Rd) are complete.

2. For 1 ≤ p < +∞, the Sobolev spaces W k,p(Rd) are separable (false for p = +∞, cf. the
case k = 0).

3. Approximation by smooth functions: D(Rd) is dense in W k,p(Rd) for 1 ≤ p < +∞ (false
for p = +∞, cf. the case k = 0)

4. A function u ∈W 1,∞(Rd) if, and only if, u∗ is a globally Lipschitz function.

5. Operation on Sobolev spaces: if F ∈ C1(R) is has bounded derivatives and F (0) = 0, then
u 7→ F ◦ u defines a linear continuous map W 1,p(Rd)→W 1,p(Rd) and we have

∂xiF (u) = F ′(u)∂xiu (7.12)

for all i ∈ {1, . . . , d}. Note: the result can be extended to the case where F is a globally
Lipschitz continuous function, see Section 7.4.

6. Gagliardo-Nirenberg-Sobolev Inequality: if 1 ≤ p < d, then

‖u‖Lp∗ (Rd) ≤
p(d− 1)
d− p

‖∇u‖Lp(Rd),
1
p∗

:= 1
p
− 1
d
, (7.13)

for all u ∈W 1,p(Rd), so we have a continuous injection W 1,p(Rd) ↪→ Lp
∗(Rd).

7. Morrey’s inequality: if d < p, then there exists a constant C(p, d) ≥ 0 such that

‖u∗‖BC0,µ(Rd) ≤ C(p, d)‖u‖W 1,p(Rd), µ := 1− d

p
, (7.14)

for all u ∈ W 1,p(Rd), so we have a continuous injection W 1,p(Rd) ↪→ BC0,µ(Rd) (modulo
the map u 7→ u∗).
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In (7.14), we have introduced the space BC0,µ(Rd) of µ-Hölder bounded continuous functions u
(here 0 ≤ µ ≤ 1), which consists of functions u ∈ BC(Rd) (bounded and continuous functions)
with finite norm

‖u‖BC0,µ(Rd) = ‖u‖BC(Rd) + [u]C0,µ(Rd) ,

where
‖u‖BC(Rd) = sup

x∈Rd
|u(x)|, [u]C0,µ(Rd) := sup

x 6=y∈Rd

|u(x)− u(y)|
|x− y|µ

.

As a closed subspace of the Banach space of bounded functions B(Rd) (endowed with the sup-
norm), BC0,µ(Rd) is a Banach space.

The points 1.-2.-3.-5. will be proved in exercises class. For 4., we refer to Theorem 7.16 below.
Remark 7.1 (Index of regularity). Define the following indexes of regularity:

ind(W k,p(Rd)) = k

d
− 1
p
, ind(BCk,µ(Rd)) = k + µ

d
.

Then note that the index of regularity is preserved in the “Sobolev’s injections” (7.13) and (7.14).
An other way to find a posteriori the values of p∗ and µ is to consider the behaviour of the various
norms at stake under the rescaling u 7→ θλu, where θλu(x) = u(λx) (see Exercises class). It works
for (7.14) if you replace it with the “homogeneous” estimate

[u]C0,µ(Rd) ≤ C(p, d)‖∇u‖Lp(Rd), µ := 1− d

p
, (7.15)

which is true (see the proof of Morrey’s inequality below, see (7.22) in particular).

7.2.1 Proof of Morrey’s inequality

Let A ⊂ Rd be Borel set with positive Lebesgue measure |A|. We introduce the notation
 
A

f(x)dx = 1
|A|

ˆ
A

f(x)dx,

where f is a non-negative measurable function. By Ci, i = 1, 2, . . . we denote various depend-
ing on the dimension d and on the exponent p only. We will use some results established in
Section 2.5.4, in particular the estimate

|u(x)− u(y)| ≤ C1|x− y|(M2r[|∇u|](x) +M2r[|∇u|](y)), r = |x− y|, (7.16)

where
Mr[|∇u|](x) = sup

0<t<r

 
B(x,t)

|∇u(z)|dz. (7.17)

In (7.16), the function u is assumed to be smooth and compactly supported: u ∈ D(Rd). The
estimate (7.16) is deduced from (2.263), which was established for a vector field a : Rd → Rd.
Considering a(x) = u(x)e1 where e1 is the first basis vector of Rd will indeed give (7.16). The
estimate (7.16) as such is not completely satisfactory because, if we want to use the Lp-bound
(2.249) on the local maximal function, we will need to integrate somehow with respect to x and
y. We will first prove the following inequality: for all ρ ≤ 1,∣∣∣∣∣

 
B(x,ρ)

u−
 
B(x,ρ/2)

u

∣∣∣∣∣ ≤ C2ρ
µ‖∇u‖Lp(Rd). (7.18)
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By iteration and triangular inequality, (7.18) gives∣∣∣∣∣
 
B(x,ρ)

u−
 
B(x,2−nρ)

u

∣∣∣∣∣ ≤ C2

n−1∑
k=0

2−kµρµ‖∇u‖Lp(Rd) ≤ C3ρ
µ‖∇u‖Lp(Rd), (7.19)

where

C3 = C2

∞∑
k=0

2−kµ = C2

1− 2−µ .

Taking the limit [n→ +∞], (7.19) gives∣∣∣∣∣
 
B(x,ρ)

u− u(x)

∣∣∣∣∣ ≤ C3ρ
µ‖∇u‖Lp(Rd). (7.20)

To conclude then, we may apply (7.20) with ρ = r = |x− y| to obtain, by triangular inequality,

|u(x)− u(y)| ≤ 2C3r
α‖∇u‖Lp(Rd) +

∣∣∣∣∣
 
B(x,r)

u−
 
B(y,r)

u

∣∣∣∣∣ . (7.21)

The bound
[u]C0,µ(Rd) ≤ C4‖∇u‖Lp(Rd), (7.22)

will follow from the inequality∣∣∣∣∣
 
B(x,r)

u−
 
B(y,r)

u

∣∣∣∣∣ ≤ C5r
α‖∇u‖Lp(Rd), r = |x− y|. (7.23)

Both (7.18) and (7.23) can be deduced from the single estimate∣∣∣∣∣
 
B(x,ρ1)

u−
 
B(y,ρ2)

u

∣∣∣∣∣ ≤ C6(|x− y|+ ρ1 + ρ2)(ρ−d/p1 + ρ
−d/p
2 )‖∇u‖Lp(Rd). (7.24)

Let us establish (7.24). We have∣∣∣∣∣
 
B(x,ρ1)

u−
 
B(y,ρ2)

u

∣∣∣∣∣ ≤
 
B(x,ρ1)

 
B(y,ρ2)

|u(x′)− u(y′)|dx′dy′.

If x′ ∈ B(x, ρ1) and y′ ∈ B(y, ρ2), then |x′ − y′| ≤ R := |x− y|+ ρ1 + ρ2 so

|u(x′)− u(y′)| ≤ C1(|x− y|+ ρ1 + ρ2)(M2R[|∇u|](x′) +M2R[|∇u|](y′))

by (7.16). By integration with respect to x′ and y′, we obtain∣∣∣∣∣
 
B(x,ρ1)

u−
 
B(y,ρ2)

u

∣∣∣∣∣
≤ C1(|x− y|+ ρ1 + ρ2)
|B(x, ρ1)||B(y, ρ2)|

[ˆ
B(x,ρ1)

ˆ
B(y,ρ2)

(M2R[|∇u|](x′) +M2R[|∇u|](y′))dx′dy′
]
,
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that is∣∣∣∣∣
 
B(x,ρ1)

u−
 
B(y,ρ2)

u

∣∣∣∣∣
≤ C1(|x− y|+ ρ1 + ρ2)

[ 
B(x,ρ1)

M2R[|∇u|] +
 
B(y,ρ2)

M2R[|∇u|](y′)
]
. (7.25)

By Hölder’s inequality and (2.249), we have
 
B(x,ρ1)

M2r[|∇u|] ≤
C6

ρd1
|B(x, ρ1)|1/p

′
‖M2R[|∇u|]‖Lp(B(x,ρ1) ≤ C7ρ

−d/p
1 ‖∇u‖Lp(Rd).

Together with the estimate (7.25), this gives us (7.24). To complete the estimate (7.22), we must
also give a bound

‖u‖BC(Rd) ≤ C8‖u‖W 1,p(Rd). (7.26)

We start from (7.20) with ρ = 1 to write

|u(x)| ≤

∣∣∣∣∣
 
B(x,1)

u

∣∣∣∣∣+

∣∣∣∣∣
 
B(x,1)

u− u(x)

∣∣∣∣∣ ≤ C9

ˆ
B(x,1)

|u(x)|dx+ C3‖∇u‖Lp(Rd). (7.27)

By Hölder’s inequality, we have
ˆ
B(x,1)

|u(x)|dx ≤ C10

ˆ
B(x,1)

|u(x)|pdx ≤ C10‖u‖Lp(Rd),

hence
|u(x)| ≤ C10‖u‖Lp(Rd) + C3‖∇u‖Lp(Rd).

Taking the sup over x ∈ Rd, we obtain (7.26). At this point, we have proved (7.14) when
u ∈ D(Rd). If u is an arbitrary function of W 1,p(Rd), we consider a sequence (un) of D(Rd)
which converges to u in W 1,p(Rd). The Morrey estimate applied to up − uq shows that (un) is
Cauchy in the Banach space BC0,µ(Rd): it admits a limit v in BC0,µ(Rd). By convergence of the
norms, we have

‖v‖BC0,µ(Rd) ≤ C(p, d)‖u‖W 1,p(Rd), (7.28)

Since both convergences in W 1,p(Rd) and BC0,µ(Rd) imply convergence in the sense of distribu-
tions, we have u = v in D′(Rd), and therefore u = v as L1

loc(Rd) functions, which means that
u = v a.e. It follows that u∗ = v∗. Since v is continuous, v = v∗ = u∗ and (7.28) is the desired
Morrey estimate. (7.14).
Remark 7.2 (Limit case p = d). When p = d, the space dimension, we have W 1,d(Rd) ↪→ BMO,
where BMO is the space of functions with bounded mean oscillations. The mean oscillation of a
locally integrable function u on a set A of positive measure being defined as

 
A

|u− uA|dx, uA :=
 
A

udx,

BMO is the space of locally integrable functions u such that the semi-norm

[u]BMO = sup
{ 

Q

|u− uQ|dx; Q cube in Rd
}
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is finite. This semi-norm is a norm on the quotient space BMO/R, where R represents the set
of constant functions on Rd, and the resulting space is a Banach space. The function x 7→ ln |x|
is an example of functions in BMO which is not bounded. If χ ∈ D(Rd) and χ(0) 6= 0, then
x 7→ χ(x) ln(| ln |x||) is a function in W 1,d(Rd) which is not in L∞(Rd).

Let us prove that there exists a constant A(d) such that

[u]BMO ≤ A(d)‖∇u‖Ld(Rd), (7.29)

for all u ∈ W 1,d(Rd). Assume first u ∈ D(Rd). Let x, y ∈ Q, where Q ⊂ Rd is a cube of side
length ` and volume `d. We have |x− y| ≤ r := C11` so, by integration in (7.16), we obtain

 
Q

|u− uQ|dx ≤
 
Q

 
Q

|u(x′)− u(y′)|dx′dy′ ≤ C12`

 
Q

M2r[|∇u|]dx. (7.30)

By the Hölder inequality,
 
Q

M2r[|∇u|]dx = 1
|Q|

ˆ
Q

M2r[|∇u|]dx ≤ |Q|−1+ d−1
d

[ˆ
Q

|M2r[|∇u|]|ddx
]1/d

,

and thus  
Q

M2r[|∇u|]dx ≤ `−1‖∇u‖Ld(Rd), (7.31)

by (7.17). Returning to (7.30), we see that (7.31) gives (7.29). In the general case where
u ∈ W 1,d(Rd), we approximate u in W 1,d(Rd) by a sequence (un) of elements of D(Rd). The
estimate (7.29) applied to up − uq shows that (un) is Cauchy in BMO/R, so un → u+ c for the
BMO semi-norm, where c is a constant. Passing to the limit [n→ +∞] in the estimate

[un]BMO ≤ A(d)‖∇un‖Ld(Rd)

yields (7.29).

7.2.2 Proof of the Gagliardo-Nirenberg-Sobolev Inequality

We will use the following result.

Lemma 7.3 (Gagliardo). Let d ≥ 2, let w1, . . . , wd be some positive functions in Ld−1(Rd−1)
and let v be a non-negative measurable function Rd → R. Assume

v(x) ≤
d∏
i=1

wi(x̂i), (7.32)

for all x ∈ Rd, where x̂i is the vector of Rd−1 obtained by removing the component xi from the
components of x: x̂i = (xj)j 6=i. Then v ∈ L1(Rd) and

‖v‖L1(Rd) ≤
d−1∏
i=1
‖wi‖Ld−1(Rd−1). (7.33)

Proof of Lemma 7.3. Let us consider the case d = 2 first: we have v(x, y) ≤ w1(y)w2(x) so
‖v‖L1(R2) ≤ ‖w1‖L1(R)‖w2‖L1(R) by Fubini’s theorem. When d = 3 now, we have

v(x1, x2, x3) ≤ w1(x2, x3)w2(x1, x3)w3(x1, x2).
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By integration with respect to x1 and the Cauchy-Schwarz inequality,
ˆ
R
v(x1, x2, x3)dx1 ≤ w1(x2, x3)

[ˆ
R
|w2(x1, x3)|2dx1

]1/2 [ˆ
R
|w3(x1, x2)|2dx1

]1/2
.

We integrate with respect to x2 next and use the Cauchy-Schwarz inequality again to obtain
ˆ
R2
v(x1, x2, x3)dx1dx2 ≤

[ˆ
R
|w1(x2, x3)|2dx2

]1/2 [ˆ
R
|w2(x1, x3)|2dx1

]1/2
‖w3‖L2(R2).

At last, we integrate with respect to x3 and use the Cauchy-Schwarz inequality one last time to
get (7.33). In greater dimensions d ≥ 4, the proof follows the same procedure, except that we
need to replace the Cauchy-Schwarz inequality by the generalized Hölder inequality

ˆ
R
|z1(t) . . . zk(t)|dt ≤

k∏
i=1
‖zi‖Lk(R), (7.34)

which can be deduced from the normalized case ‖zi‖Lk(R) = 1 and from the convexity inequality

z1 . . . zk ≤
1
k

(
zk1 + · · ·+ zkk

)
, (7.35)

for z1, . . . , zk ≥ 0. The inequality (7.35) is a convexity inequality when written for zi = e−ti .

We can now give the proof of (7.13). We begin with the case p = 1. We have 1∗ = d
d−1 then. By

an argument of approximation similar to the one used in Section 7.2.1, it is sufficient to consider
the case u ∈ D(Rd). We can write

u(x) =
ˆ x1

−∞
∂x1u(y1, x2, . . . , xd)dy1,

and obtain

|u(x)| ≤ [w1(x̂1)]d−1, w1(x̂1) :=
[ˆ

R
|∂x1u(y1, x2, . . . , xd)|dy1

] 1
d−1

.

A similar reasoning on the (d− 1) other variables gives

|u(x)| ≤ [wi(x̂i)]d−1, wi(x̂i) :=
[ˆ

R
|∂xiu(x1, . . . , xi−1, yi, xi+1, . . . , xd)|dyi

] 1
d−1

.

It follows that

v(x) := |u(x)|1
∗

= |u(x)|
d
d−1 ≤

d∏
i=1

wi(x̂i).

Each wi is in Ld−1(Rd−1) with ‖wi‖Ld−1(Rd−1) ≤ ‖∇u‖
1
d−1
L1(Rd). By Gagliardo’s lemma 7.3, u ∈

L
d
d−1 (Rd) and

‖u‖
L

d
d−1 (Rd)

= ‖v‖
d−1
d

L1(Rd) ≤

[
d∏
i=1
‖∇u‖

1
d−1
L1(Rd)

] d−1
d

= ‖∇u‖L1(Rd).
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When 1 < p < d, we consider v = |u|r (and still u ∈ D(Rd)) where r > 0 will be chosen later. By
approximation of s 7→ |s|r by smooth functions, we can justify the identity |∇v| = r|u|r−1|∇u|.
By (7.13) in the case p = 1, we can estimate[ˆ

Rd
|u|r

d
d−1 dx

] d−1
d

≤ r
ˆ
Rd
|u|r−1|∇u|dx.

By Hölder’s inequality,[ˆ
Rd
|u|r

d
d−1 dx

] d−1
d

≤ r
[ˆ

Rd
|u|p

′(r−1)dx

]1/p′

‖∇u‖Lp(Rd). (7.36)

We choose r such that r d
d−1 = p′(r − 1). We expect this common value to be p∗, i.e.

r
d

d− 1 = dp

d− p
= p′(r − 1),

which is realized indeed for r = p(d−1)
d−p since

p′(r − 1) = p

p− 1
p(d− 1)− (d− p)

d− p
= dp

d− p
.

With this choice of the parameter r, (7.36) reads

‖u‖rLp∗(Rd) ≤ r‖u‖
r−1
Lp∗(Rd)‖∇u‖Lp(Rd),

which gives (7.13).

7.2.3 Sobolev’s embeddings

In the following result, we use the following notion: a map T : E → F between two Banach
spaces E and F is said to be compact if it maps bounded sets on relatively compact sets.

Theorem 7.4 (Sobolev’s embeddings). 1. If 1 ≤ p < d, then we have a continuous injection
W 1,p(Rd) ↪→ Lr(Rd) for all r ∈ [p, p∗]. If r ∈ [p, p∗), we obtain a compact operator by
restriction to a bounded domain. More precisely, if A is a bounded set in W 1,p(Rd) and
R > 0, then

AR :=
{
u|B(0,R);u ∈ A

}
(7.37)

is relatively compact in Lr(B(0, R)).

2. For p = d, we have an injection W 1,d(Rd) ↪→ Lr(Rd) for all r ∈ [d,+∞). If A is a bounded
set in W 1,d(Rd) and R > 0, then AR defined in (7.37) is relatively compact in Lr(B(0, R))
for all r ≥ d.

3. If d < p, we have (modulo the composition with u 7→ u∗) a continuous injectionW 1,d(Rd) ↪→
BC0,ν(Rd), for all 0 < ν ≤ µ := 1 − d/p. If ν < µ, we obtain a compact operator by
restriction to a compact set: if A is bounded in W 1,p(Rd) and R > 0, then the set

AR :=
{
u∗|B̄(0,R);u ∈ A

}
(7.38)

is relatively compact in BC0,ν(B̄(0, R)).
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Remark 7.3 (Sliding bump function). The Sobolev norm on Rd is invariant by translation. If
ψ ∈ D(Rd) and (zn) is a sequence of points in Rd, then (τznψ) is therefore a bounded sequence in
W 1,p(Rd). By considering a sequence (zn) such that |zn| → +∞, we see the necessity to restrict
to bounded or compact sets in Theorem 7.4 to obtain some results of compactness.

Proof of Theorem 7.4. Step 1. Case 1 ≤ p < d. If u ∈ Lp ∩ Lq(Rd) with 1 ≤ p < q < +∞ and
r ∈ [p, q], then

‖u‖Lr(Rd) ≤ ‖u‖θLp(Rd)‖u‖
1−θ
Lq(Rd),

1
r

= θ

p
+ 1− θ

q
. (7.39)

To prove (7.39), one can use Hölder’s inequality: for 1 ≤ m ≤ +∞,

‖u‖rLr(Rd) =
ˆ
Rd
|u|rθ|u|r(1−θ)dx ≤ ‖u‖rθLmrθ‖u‖

r(1−θ)
Lm′r(1−θ) .

We choose m such that mrθ = p, then

1
m′

= 1− 1
m

= 1− rθ

p
= r(1− θ)

q
,

so m′r(1− θ) = q. It follows from (7.13) and (7.39) with q = p∗ that, for 1 ≤ p < d, we have a
continuous injection W 1,p(Rd) ↪→ Lr(Rd) for all r ∈ [p, p∗]. Assume r ∈ [p, p∗) now and let A be
a bounded set in W 1,p(Rd), say ‖u‖W 1,p(Rd) ≤ M for all u ∈ A. To prove that AR is relatively
compact in Lr(B(0, R)), we will use the Riesz-Fréchet-Kolmogorov criterion, Theorem 2.15. The
set AR is bounded in Lr(B(0, R)) since we have proved that W 1,p(Rd) ↪→ Lr(Rd). We now have
to prove the uniform convergence of the translations (equi-continuity in Lr): we use (7.39) to
obtain

‖τzu− u‖Lr(Rd) ≤ ‖τzu− u‖θLp(Rd)‖τzu− u‖
1−θ
Lp∗ (Rd) ≤ 2‖u‖1−θ

Lp∗ (Rd)‖τzu− u‖
θ
Lp(Rd). (7.40)

In (7.40), we have 1
r = θ

p+ 1−θ
p∗ , so θ > 0 since r < p∗. We use the estimate (2.118) (which remains

true for u ∈ W 1,p(Rd) by a density argument) and the bound ‖u‖Lp∗ (Rd) ≤ C(p, d)M to obtain
‖τzu− u‖Lr(Rd) ≤ C(p, d,M)ηθ. This gives the desired uniform control on the translations. We
deduce that AR is compact in Lr(B(0, R).

Step 2. Case p = d. Once we have established the continuous injection W 1,d(Rd) ↪→ Lr(Rd)
for all r ∈ [d,+∞), the proof of compactness is the same as in step 1, so we concentrate on the
injection itself. Let F ∈ C1(R) with bounded derivatives, and such that F (0) = 0. This function
F will be seen as a C1 approximation of a truncate function s 7→ Tk(s) equal to s if |s| ≤ k and
to k if |s| > k. More precisely, we will assume T1 ≤ F ≤ T2. We have then F (u) ∈ L∞(Rd) with
‖F (u)‖L∞(Rd) ≤ 2 and also F (u) ∈ Lp(Rd) if u ∈ Lp(Rd) since |F (u)| ≤ |u|, so

‖F (u)‖Lr(Rd) ≤ 21−d/r‖F (u)‖d/r
Ld(Rd) ≤ 21−d/r‖u‖d/r

Ld(Rd), (7.41)

if u ∈ Ld(Rd) and r ≥ d. The function H : u 7→ u−F (u) is of class C1, with bounded derivatives
and satisfies H(u) = 0 for |u| ≤ 1. We have therefore

∇H(u) = H ′(u)∇u = 1{|u|≥1}H
′(u)∇u.

The set {|u| ≥ 1} has finite measure, which can be bounded from above with the Markov
inequality:

|{|u| ≥ 1}| = |{|u|d ≥ 1}| ≤ ‖u‖dLd(Rd).
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If p ∈ [1, d), if follows by the Hölder inequality that

‖∇H(u)‖Lp(Rd) ≤ ‖H ′‖L∞ |{|u| ≥ 1}|1/p
∗
‖∇u‖Ld(Rd) ≤ ‖H ′‖L∞‖u‖

d/p∗

Ld(Rd)‖∇u‖Ld(Rd).

By the Gagliardo-Nirenberg-Sobolev inequality (7.13),

‖H(u)‖Lp∗ (Rd) ≤
p(d− 1)
d− p

‖H ′‖L∞‖u‖d/p
∗

Ld(Rd)‖∇u‖Ld(Rd) ≤
p(d− 1)
d− p

‖H ′‖L∞‖u‖1+d/p∗
W 1,d(Rd). (7.42)

Any r ≥ d can be written r = p∗ where p ∈ [1, d), so (7.41) and (7.42) give u ∈ Lr(Rd) with

‖u‖Lr(Rd) ≤ C(r, d)
[
‖u‖d/r

W 1,d(Rd) + ‖u‖1+d/r
W 1,d(Rd)

]
. (7.43)

To obtain the right power of ‖u‖W 1,d(Rd), we apply (7.43) to λu, λ > 0, to get

‖u‖Lr(Rd) ≤ C(r, d)
[
λd/r−1‖u‖d/r

W 1,d(Rd) + λd/r‖u‖1+d/r
W 1,d(Rd)

]
. (7.44)

Taking λ = ‖u‖−1
W 1,d(Rd) gives ‖u‖Lr(Rd) ≤ 2C(r, d)‖u‖W 1,d(Rd) as expected.

Step 3. Case d < p. The Morrey inequality (7.14) gives the injection W 1,d(Rd) ↪→ BC0,ν(Rd),
as already seen. If 0 < ν < µ, and x, y ∈ Rd, then

|u(x)− u(y)|
|x− y|ν

=
[
|u(x)− u(y)|
|x− y|µ

]ν/µ
|u(x)− u(y)|1−ν/µ ≤ 21−ν/µ‖u‖1−ν/µBC(Rd) [u]ν/µBC0,µ(Rd) ,

so
[u]BC0,ν(Rd) ≤ 21−ν/µ‖u‖1−ν/µBC(Rd) [u]ν/µBC0,µ(Rd) . (7.45)

By (7.45), there is an injection BC0,µ(Rd) ↪→ BC0,ν(Rd). Assume now that A is bounded in
W 1,p(Rd) and let K = B̄(0, R). The set AR defined in (7.38) is compact in C(K) by Ascoli’s
Theorem. If (un) is a sequence in A, then there is a sequence still denoted (un) such that
vn := u∗n|K is converging in C(K). A proof similar to (7.45) gives

[vp − vq]BC0,ν(K) ≤ 21−ν/µ‖vp − vq‖1−ν/µC(K) [vp − vq]ν/µBC0,µ(K) .

Since [vp − vq]BC0,ν(K) is bounded from above uniformly in p, q, we see that (vn) is Cauchy in
BC0,ν(K), which is complete, so (vn) is convergent in BC0,ν(K).

7.3 Sobolev spaces defined on bounded domains
In this section, we study the Sobolev space W 1,p(U), p ∈ [1,+∞], where U is a bounded open
subset of Rd. Various results (extension, trace, approximation, Green’s formula) involve the
geometry of the boundary ∂U of U . Section 7.3.1 gives the material to treat these questions of
geometry.

7.3.1 Geometry of the boundary of bounded open sets

Definition 7.2 (Regular bounded open set). Let U be an bounded open set of Rd, d ≥ 2. We
say that U is of class Ck (k ≥ 1) if there exists a function ρ : Rd → R of class Ck such that

U = {x ∈ Rd; ρ(x) < 0}, ∇ρ(x) 6= 0, ∀x ∈ ∂U. (7.46)
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Remark 7.4 (Global equation). Let Γ = ∂U . If U is of class Ck, then, for x sufficiently close to
a z ∈ Γ, dxρ : v 7→ ∇ρ(x) · v is a surjective map Rd → R since ∇ρ(x) 6= 0. So ρ is a submersion,
and Γ admits the global equation {ρ = 0}. In particular, Γ is a sub-manifold of dimension d− 1
of Rd (an hypersurface of Rd). The outward unit normal ν(z) to a point z ∈ Γ is given by
ν(z) = ∇ρ(z)

|∇ρ(z)| . It is a continuous function of z, so the manifold Γ is orientable and the normal
bundle is trivial. It is known, conversely, that an hypersurface of Rd with trivial normal bundle
admits a global equation.
Remark 7.5 (Jordan-Brouwer separation theorem). We say that U is Ck if the boundary ∂U is an
hypersurface of class Ck and, in our description, ∂U is compact, orientable, closed as a manifold
(i.e. without boundary). The Jordan-Brouwer theorem, [Lim88, McG16], states, conversely, that
a compact, orientable, closed, connected hypersurface Γ of Rd separates Rd into two connected
open components. One of this component, say U , is bounded since Γ is bounded, and we have
then Γ = ∂U .
The outward unit normal ν(z) to a point z ∈ Γ is given by ν(z) = ∇ρ(z)

|∇ρ(z)| . We will need to
compute the differential of ν at a point x close to Γ. When U is of class C2 at least, a careful
calculation gives

dxν(v) · w = (A(x)v) · w, (7.47)

with
A(x) = 1

|∇ρ(x)|

[
D2ρ(x)− 1

|∇ρ(x)|2 [∇ρ(x)⊗∇ρ(x)]D2ρ(x)
]
. (7.48)

In (7.48), we have used the following notation: for a, b ∈ Rd, the matrix a ⊗ b is the rank-1
matrix with (i, j)-element given by aibj . It is clear that the matrix A(x) is symmetric. By
the spectral theorem, there is an orthogonal basis (εi(x))1,d in which dxν is diagonal. We can
assume moreover that εd(x) = ν(x). Indeed, by differentiation of the identity |ν(x)|2 = 1, we
have dxν(v) = 0 for v = ν(x). Let z ∈ Γ. The tangent space TzΓ is the orthogonal to ν(z),
so (εi(z))1,d−1 is an orthogonal basis of TzΓ. The eigenvalues (λi(z))1,d−1 of A(z) associated to
(εi(z))1,d−1 are called the principal curvatures of Γ at z.

7.3.2 Local parametrization in a tubular neighbourhood of ∂U

Consider the local parametrization of U near Γ = ∂U given by

x = z − tν(z), ν(z) = ∇ρ(z)
|∇ρ(z)| , z ∈ Γ, t > 0. (7.49)

We denote by Vε(Γ) the ε-neighbourhood

Vε(Γ) = {x ∈ Rd; d(x,Γ) < ε}.

We first prove the following result.

Proposition 7.5 (Parametrization of a tubular neighbourhood of Γ). Let U be an open bounded
set of class Ck, according to Def. 7.2, with k ≥ 2. Then there exists ε > 0 such that Vε(Γ) is
diffeomorphic to Γ× (−ε, ε) via the Ck−1-map

Φ: Γ× (−ε, ε)→ Rd, (z, t) 7→ z − tν(z).

Moreover, each point Φ(z, t) has a unique closest point in Γ, namely z.
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Proof of Proposition 7.5. Note that Φ can be seen as the restriction of a function Φ̃ defined for
η small enough on Vη(Γ)× (−ε, ε) and given by (y, t) 7→ y − tν(y). We have

d(x,t)Φ̃(y, s) = y − sν(x)− tdxν(y), (y, s) ∈ Rd × R. (7.50)

We will deduce the expression of d(z,0)Φ by restriction to TzΓ × R: if v ∈ TzΓ, with v = γ̇(0),
z = γ(0), where {γ(s); s ∈ (−δ, δ)} is a curve in Γ, we have

d

ds
Φ(γ(s), t) = d(z,t)Φ̃(γ̇(s), 0) = γ̇(s)− tdzν(γ̇(s)).

It follows that
d(z,t)Φ(v, s) = v − sν(z)− tdzν(v). (7.51)

The differential d(z,0)Φ: (v, s) 7→ v − sν(z) is invertible: the equation d(z,0)Φ(v, s) = y is solved
by

y = v − sν(z), s := −y · ν(z), v := y + sν(z).

This corresponds to the orthogonal decomposition of y on 〈ν(z)〉⊥⊕ 〈ν(z)〉. By the local inverse
mapping theorem, Φ is a local diffeomorphism. To show that it is a global diffeomorphism
on its image, we need to show that it is injective when ε is sufficiently small. Assume on
the contrary that there are some sequences (zn, tn) and (z′n, sn) in Γ × (−1/n, 1/n) such that
Φ(zn, tn) = Φ(z′n, sn). Then sn, tn → 0 and, by compactness, we can assume, by consideration
of a subsequence if necessary, that zn → z, z′n → z′. Then Φ(zn, tn) → z, Φ(z′n, sn) → z, and
so z = z′. Since Φ is a diffeomorphism in restriction to a neighbourhood of V × (−δ, δ) of (z, 0),
we will obtain a contradiction for n large enough. Let now Σε := Φ(Γ × (−ε, ε)). We have
Σε ⊂ Vε(Γ). Indeed, if x = z − tν(z) ∈ Σε, then x ∈ Vε(Γ) since

d(x,Γ) ≤ |x− z| = t|ν(z)| = t < ε.

Denote by z∗ ∈ Γ the point at which d(x,Γ) is realized. The sphere of center x and radius d(x,Γ)
is tangent to Γ at z∗, so x− z∗ is orthogonal to Tz∗Γ. Indeed, let (γ(s))|s|<δ be a curve in Γ such
that γ(0) = z∗. Then ϕ : s 7→ |x− γ(s)|2 has a minimum at s = 0. By differentiation,

0 = ϕ̇(0) = 2(x− z∗) · γ̇(0).

Since Tz∗Γ⊥ is the straight line generated by ν(z∗), we have x = z∗ − λν(z∗), where λ = d(x,Γ)
necessarily. As Φ is injective on Γ×(−ε, ε), we obtain z = z∗ and t = λ = d(x,Γ). This concludes
the proof.

7.3.3 Measure on the boundary

Proposition 7.6 (Measure on the boundary). Assume that U is of class C2. Then there is a
finite measure σ on Γ endowed with the σ-algebra of Borel sets such that the Green formula

ˆ
U

Ψ(x) · ∇u(x)dx = −
ˆ
U

div(Ψ)(x)u(x)dx+
ˆ
∂U

Ψ(z) · ν(z)u(z)dσ(z) (7.52)

is satisfied for all Ψ ∈ C1(Rd;Rd) and u ∈ C1(Rd). We also have the following change of variable
formula: let u be a continuous and bounded function on Vε(Γ). The integral of u on Vε(Γ) is
given by ˆ

Vε(Γ)
u(x)dx =

ˆ
Γ

ˆ ε

−ε
u ◦ Φ(z, t)π(z, t)dσ(z)dt, (7.53)
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with

π(z, t) :=
d−1∏
i=1

(1− tλi(z)), (7.54)

where (λi(z))1,d−1 are the principal curvatures of Γ at z.

The proof of Proposition 7.6 is given in Appendix A.
Remark 7.6 (Green’s formula with u ≡ 1). It is sufficient to establish (7.52) in the case u ≡ 1:

ˆ
U

div(Ψ)(x)dx =
ˆ
∂U

Ψ(z) · ν(z)dσ(z). (7.55)

Apply (7.55) to Ψu then, and use the formula div(Ψu) = div(Ψ)u+Ψ ·∇u to recover the original
Green formula (7.52).
Remark 7.7 (Expression in local coordinates). Assume that u is a continuous function supported
in an open set W such that U and Γ = ∂U admit a parametrization by local graph in W : there
exists an open set V in Rd−1 and a function ψ : V → R of class Ck such that

U ∩W = {(x′, xd) ∈ V × R;xd > ψ(x′)} ∩W, Γ ∩W = {(x′, xd) ∈ V × R;xd = ψ(x′)} ∩W.
(7.56)

Such a parametrization is always possible if W is chosen sufficiently small, and if we authorize
ourselves a rotation of the axis (which means precisely that we should replace U ∩W and Γ∩W
in (7.56) by R(U ∩W ) and R(Γ ∩W ) respectively, where R is a rotation). Note that we obtain
in particular a parametrization of Γ ∩W by

g : V →W, x′ 7→ (x′, ψ(x′)).

We have then the following local expression of the measure σ:
ˆ

Γ
udσ =

ˆ
Rd−1

u(g(x′))
√

1 + |∇ψ(x′)|2dx′ =
ˆ
Rd−1

u(x′, ψ(x′))
√

1 + |∇ψ(x′)|2dx′. (7.57)

Example 7.8 (Polar coordinates). Take U = B(0, r). Using polar coordinates, we have, for ε < r,
ˆ
Vε(Γ)

u(x)dx =
ˆ
S(0,1)

ˆ r+ε

r−ε
u(sz)sd−1dsdσS(0,1)(z).

Use the change of variable z′ = rz to write
ˆ
Vε(Γ)

u(x)dx =
ˆ

Γ

ˆ r+ε

r−ε
u(sz/r)(s/r)d−1dsrd−1dσ(z).

where σ is the measure on Γ. We have ν(z) = z
r for z ∈ Γ. Use next the change of variable

(s/r)z = z − tν(z), i.e. s = r − t. We get the formula
ˆ
Vε(Γ)

u(x)dx =
ˆ

Γ

ˆ ε

−ε
u(z − tν(z))

(
1− t

r

)d−1
dtdσ(z).

This corresponds to (7.53) since all the principal curvatures are identically equal to r−1.
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7.3.4 Approximation by smooth functions

Theorem 7.7 (Approximation by smooth functions). Let U be a bounded open set of Rd of class
C2. Denote by BC∞(Ū) the set of restrictions to U of functions in C∞(Rd). If 1 ≤ p < +∞,
then BC∞(Ū) is dense in W 1,p(U).

Remark 7.9 (Approximation by functions smooth in the interior). Without any hypothesis on
the regularity of ∂U , one can show that C∞(U) ∩W 1,p(U) is dense in W 1,p(U), [Eva10, p.265].
Functions in C∞(U) ∩W 1,p(U) may be unbounded near the boundary of U , whereas functions
in BC∞(Ū) are smooth “up to the boundary”.

Proof of Theorem 7.7. We divide the proof into three steps.

Step 1. Definition of the approximation. Let (ρη) be a standard approximation of the unit:

ρη(x) = η−dρ1(η−1x), ρ1 ∈ C∞B̄(0,1)(R
d), ρ1 ≥ 0,

ˆ
Rd
ρ1(x)dx = 1.

Let ũ denote the extension of u by 0 outside U . We fix an ε > 0 such that the parametrization
(7.49) of the tubular neighbourhood V2ε(Γ) of Γ is valid. Let η ∈ (0, ε). If x ∈ Vη(Γ), with
x = Φ(z, t) = Φ(z(x), t(x)), we denote by

sη(x) = Φ(z(x), t(x) + η) = x− ην(z(x))

the point obtained by shifting x from a distance η in the interior normal direction −ν(z(x)).
Note that x 7→ z(x) is of class C1 on Vη(Γ) by Proposition 7.5. Let (χb, χint) be a C∞ partition
of unity subordinate to the open cover (Vε(Γ), U \ V̄ε/2(Γ)) of Ū . We define

vη(x) = u(x)χint(x) + ũ ◦ sη(x)χb(x), x ∈ Rd,

and
wη(x) = ρη ∗ vη(x), x ∈ Rd.

Clearly, wη ∈ C∞(Rd) by the regularization properties of the convolution with smooth functions,
so the restriction uη of wη to u is in BC∞(Ū).

Step 2. Convergence in Lp(U). Using the expansion

ũ(x) = u(x)χint(x) + ũ(x)χb(x), x ∈ Rd, (7.58)

we obtain vη − ρη ∗ ũ = ρη ∗ [(ũ− ũ ◦ sη)χb]. We have

‖uη − u‖Lp(U) ≤ ‖vη − ũ‖Lp(Rd) ≤ ‖vη − ρη ∗ ũ‖Lp(Rd) + ‖ρη ∗ ũ− ũ‖Lp(Rd) (7.59)

and the last term in (7.59) converges to 0. We focus on the remaining term thus. The bump
function χb being supported in Vε(Γ), we can use the bound

‖vη − ρη ∗ ũ‖Lp(Rd) ≤ ‖ρη‖L1(Rd)‖ũ− ũ ◦ sη‖Lp(Vε(Γ)) = ‖ũ− ũ ◦ sη‖Lp(Vε(Γ)).

But |sη(x)− x| < η in Vε(Γ), so

‖vη − ρη ∗ ũ‖Lp(Rd) ≤ ωLp(ũ; η),

where the Lp-modulus of continuity is introduced in (2.95). Since ωLp(ũ; η) → 0 when η → 0,
we obtain uη → u in Lp(U).
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Step 3. Convergence of the gradient in Lp(U). When x ∈ U , only the values of vη in
U + B(0, η) are involved in the computation of wη(x), so ũ ◦ sη(x) = u ◦ sη(x): the extension
by 0 is not manifest here, which is fortunate since ũ may have a too severe discontinuity on
∂U and not belong to W 1,p(Rd) (see next section 7.3.5 for the construction of a more suitable
extension). We used the extension by 0 of u only to define vη globally on Rd. Let now B be
a ball with B̄ ⊂ U + B(0, η): there exists η′ < η such that B ⊂ U + B(0, η′). If x ∈ B, then
sη(x) ∈ V := U \ V̄η−η′(Γ)). By Proposition 7.2, we can approximate u by smooth functions in
V . We have then

∇u ◦ sη(x) = Dsη(x)∗(∇u) ◦ sη(x), (7.60)

Where Dsη(x) is the matrix in the canonical basis of dxsη = Id − ηdz(x)ν ◦ dxz. In particular,
Dsη(x) is bounded in x, so the identity (7.60) remains true in our general case u ∈ W 1,p(U).
The expansion of Dsη also justifies that

∇uη(x) = ∇vη(x) = ∇[uχint](x) + u ◦ sη(x)∇χb(x) + (∇u) ◦ sη(x)χb(x) + wη,

for x ∈ U , where |wη| = O(η) in Lp(U). Using (7.58), which gives the expansion

∇u(x) = ∇[uχint](x) + u(x)∇χb(x) + (∇u)(x)χb(x)

for x ∈ U , we see that the estimate of the difference |∇uη − ∇u| in Lp(U) will follow from the
estimates of

‖ũ− ũ ◦ sη‖Lp(Vε(Γ)), ‖∇̃u− ∇̃u ◦ sη‖Lp(Vε(Γ)). (7.61)

But the terms in (7.61) can be controlled, as in Step 2., by

ωLp(ũ; η) +
d∑
i=1

ωLp(∂̃xiu; η),

which tends to 0 when η → 0. This concludes the proof.

7.3.5 Extension

Theorem 7.8 (Extension of Sobolev functions). Let p ∈ [1,+∞]. Suppose that U is of class C2

(according to Def. 7.2). Then, there is a linear continuous operator Ep : W 1,p(U) → W 1,p(Rd)
such that Ep(u)|U = u a.e. for all u ∈W 1,p(U).

To rephrase Theorem 7.8, there exists a constant Cp ≥ 0, and, for each u ∈W 1,p(U), an extension
Ep(u) of u in W 1,p(Rd), such that

‖Ep(u)‖W 1,p(Rd) ≤ Cp‖u‖W 1,p(U). (7.62)

We will see in the proof of Theorem 7.8 that the operator Ep is the same for all p. The examination
of the proof of Theorem 7.8 also shows that we can assume that Ep(u) is supported in W , where
W is a given open set such that Ū ⊂ W . By Theorem 7.4 applied to Ep(u), we obtain the
following result.

Corollary 7.9 (Sobolev’s injection). Let p ∈ [1,+∞). Suppose that U is of class C2.

1. If 1 ≤ p < d, then we have a continuous injection W 1,p(U) ↪→ Lr(U) for all r ∈ [p, p∗].
The injection is compact if r ∈ [p, p∗).

2. For p = d, we have a compact injection W 1,d(U) ↪→ Lr(U) for all r ∈ [d,+∞).
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3. If d < p, we have (modulo the composition with u 7→ u∗) a continuous injectionW 1,d(Rd) ↪→
BC0,ν(Ū), for all 0 < ν ≤ µ := 1− d/p. This injection is compact if ν < µ.

We have introduced the space BC0,µ(Ū), defined as the space of restrictions to U of functions in
BC0,µ(Rd) with norm

BC0,µ(Ū) = inf
{
‖v‖BC0,µ(Rd); v ∈ BC0,µ(Rd), v = u in U

}
. (7.63)

An alternative description is the following one: let X = BC0,µ(Rd), and let M = {v ∈ X; v =
0 on U}. Then BC0,µ(Ū) is the quotient space X/M with the quotient norm (3.5). Since M is
closed, BC0,µ(Ū) is a Banach space (Proposition 3.3).

Proof of Theorem 7.8. We fix an ε > 0 such that the parametrization (7.49) of the tubular
neighbourhood Vε(Γ) of Γ is valid. If x ∈ Vε(Γ) and (z(x), t(x)) is the notation for the couple
(z, t) realizing (7.49), we set

S(x) = Φ(z(x), |t(x)|) = z(x)− |t(x)|ν(z(x))

From (7.53), it is clear that
ˆ
Vε(Γ)

ϕ(S(x))dx ≤ 2
ˆ
U∩Vε(Γ)

ϕ(x)dx, (7.64)

for any non-negative integrable function ϕ on U ∩ Vε(Γ). Let (χb, χint) be a C∞ partition of
unity subordinate to the open cover (Vε(Γ), U \ V̄ε/2(Γ)) of Ū . If u ∈ Lp(Rd), we set

Eu(x) = u(x)χint(x) + u(S(x))χb(x), x ∈ Rd. (7.65)

By Theorem 7.7, we can assume that u ∈ BC∞(Ū) to establish (7.62). For u with this regularity,
we can compute directly the derivative

∇(uχint) = χint∇u+ u∇χint,

so it is clear that ‖uχint‖W 1,p(Rd) ≤ C(U, p, d)‖u‖W 1,p(U). Set v = Eu− uχint. We apply (7.64)
with ϕ(x) = |u(x)|p to obtain

‖v‖Lp(Rd) ≤ 2‖u‖Lp(U).

By the chain-rule, we also have

∇v(x) = χb(x)DS(x)∗(∇u)(S(x)) + u(S(x))∇χb(x), x ∈ Vε(Γ) \ Γ,

where DS(x) is the matrix in the canonical basis of dxS. We have dxS = Id if x ∈ U and
(differentiating the expression S(x) = 2z(x) − x), dxS = 2dxz − Id if x ∈ Vε(Γ) \ Ū . Therefore
DS(x) is uniformly bounded in Vε(Γ) \ Γ. Using (7.64), we deduce that

‖∇v‖Lp(Rd) ≤ C(U, p, d)‖∇u‖Lp(U).

This gives the desired result.

Remark 7.10 (Extension of Lipschitz continuous functions). See Proposition 7.18 in Section 7.4.1.
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7.3.6 Trace

Theorem 7.10 (Trace of Sobolev functions). Let p ∈ [1,+∞) and let U be a bounded open
subset of Rd class C2 (according to Def. 7.2). Then, there is a linear continuous operator
γp : W 1,p(U)→ Lp(Γ, σ) such that γp(u) = u|Γ for all u ∈ BC∞(Ū).

Proof of Theorem 7.10. Define γp(u) = u|Γ for u ∈ BC∞(Ū). We will show that there exists a
constant A ≥ 0 such that

‖γp(u)‖Lp(Γ,σ) ≤ A‖u‖W 1,p(U), u ∈ BC∞(Ū). (7.66)

By Theorem 7.7, the space BC∞(Ū) is dense in W 1,p(U), so (7.66) will allow us to extend γp
as a linear continuous operator γp : W 1,p(U)→ Lp(Γ, σ) which satisfies the bound (7.66) for all
u ∈ W 1,p(U). Fix ε > 0 such that the parametrization of Proposition 7.5 is valid in Vε(Γ). For
t ∈ (0, ε) and z ∈ Γ, we have

u(z) = u(Φ(z, t)) +
ˆ t

0

d

ds
u(Φ(z, s))ds = u(Φ(z, t))−

ˆ t

0
(∇u)(Φ(z, s)) · ν(z)ds. (7.67)

By the triangular inequality, we obtain

|u(z)| ≤ |u|(Φ(z, t)) +
ˆ t

0
|∇u|(Φ(z, s))ds, (7.68)

and
|u(z)|p ≤ 2p|u|p(Φ(z, t)) + 2ptp−1

ˆ t

0
|∇u|p(Φ(z, s))ds, (7.69)

since (a+ b)p ≤ 2p(ap + bp) for all a, b ≥ 0. We integrate then (7.69) with respect to z ∈ Γ and
t ∈ (0, ε). Introduce a constant C ≥ 0 (depending on D2ρ) such that |λi(z)| ≤ C for all z ∈ Γ.
Suppose that ε < (2C)−1. Then 1− ε|λi(z)| > 1

2 for all z ∈ Γ, and π(z, t) defined by the product
(7.54) satisfies

(1/2)d−1 ≤ π(z, t) ≤ (3/2)d−1. (7.70)

The formula (7.53) (and Fubini’s theorem for the last term) gives

ε

2d−1 ‖u‖
p
Lp(Γ,σ) ≤ 2p‖u‖pLp(Vε(Γ)∩U) + 2p

ˆ
Γ

ˆ ε

0

ˆ ε

s

tp−1π(z, t)dt|∇u|p(Φ(z, s))dsdσ(z). (7.71)

We also have
π(z, t) ≤ 3d−1π(z, s) (7.72)

for 0 ≤ s ≤ t ≤ ε by (7.70), and so

ε

2d−1 ‖u‖
p
Lp(Γ,σ) ≤ 2p‖u‖pLp(Vε(Γ)∩U) + 3d−1(2ε)p‖∇u‖pLp(Vε(Γ)∩U). (7.73)

It follows that
‖u‖Lp(Γ,σ) ≤

C(d, p)
ε1/p ‖u‖W 1,p(U),

which is (7.66).
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Proposition-Definition 7.11 (Kernel of the trace map). Let p ∈ [1,+∞) and let U be a
bounded open subset of Rd class C2. We denote by W 1,p

0 (U) the set {u ∈ W 1,p(U); γp(u) = 0}.
Then D(U) is dense in W 1,p

0 (U) and, given m < p, we have
ˆ
U

|u(x)|p

d(x, U)m dx ≤ C(p,m,U)‖u‖pW 1,p(U), ∀u ∈W 1,p
0 (U), (7.74)

where C(p,m,U) is an absolute constant depending on p,m,U only.

Remark 7.11 (Hardy-Sobolev Inequality). The inequality (7.74) holds true when m = p, but is
more difficult to prove, [Haj99]:

ˆ
U

|u(x)|p

d(x, U)p dx ≤ C(p, d, U)‖u‖pW 1,p(U), ∀u ∈W 1,p
0 (U), (7.75)

where C(p, d, U) is an absolute constant depending on p, d, U only. The functional inequality
(7.75) is sometimes called the Hardy-Sobolev Inequality.

Proof of Proposition-Definition 7.11. Fix ε > 0 such that the parametrization of Proposition 7.5
is valid in Vε(Γ). We divide the proof into three steps.

Step 1. Estimate on a tubular neighbourhood of the boundary. As a preliminary
result, we will establish the estimate

ˆ
Γ

ˆ ε

0

|v(Φ(z, t))− v(z)|p

tm
π(z, t)dσ(z)dt ≤ εp−mC(p, d,m)

ˆ
Vε(Γ)∩U

|∇v(x)|pdx, (7.76)

for all v ∈ BC∞(Ū), where m ∈ [0, p). For such a v, we can use (7.67), (7.72) and the Hölder
inequality, to obtain

|v(Φ(z, t))− v(z)|pπ(z, t) ≤ 3d−1tp−1
ˆ t

0
|∇v|p(Φ(z, s))π(z, s)ds.

Then (7.53) will give (7.76) by integration, with a constant

C(p, d,m) = 3d−1

εp−m

ˆ ε

0

dt

tm−p+1 = 3d−1

p−m
.

Let now u ∈ W 1,p(U). There is a sequence (vn) of functions in BC∞(Ū) which converges to
u in W 1,p(U). By (7.66), γpvn → γu in Lp(Γ, σ). We also have convergence of (vn) to u in
Lp(U), so (vn ◦Φ) is converging to u ◦Φ in Lp(Γ× (0, ε), µ), where µ is the measure with density
π(z, t) with respect to dσ(z)dt. Up to subsequences, we can assume γpvn → γu σ-a.e. on Γ and
vn ◦ Φ→ u ◦ Φ µ-a.e. on Γ× (0, ε). By Fatou’s lemma in (7.76) written for vn, we obtain

ˆ
Γ

ˆ ε

0

|u(Φ(z, t))− γpu(z)|p

tm
π(z, t)dσ(z)dt ≤ εp−mC(p, d,m) lim inf

n→+∞

ˆ
Vε(Γ)∩U

|∇vn(x)|pdx.

(7.77)
As ‖∇vn‖Lp(Vε(Γ)∩U) → ‖∇u‖Lp(Vε(Γ)∩U), we deduce from (7.77) the estimate

ˆ
Γ

ˆ ε

0

|u(Φ(z, t))− γpu(z)|p

tm
π(z, t)dσ(z)dt ≤ εp−mC(p, d,m)

ˆ
Vε(Γ)∩U

|∇u(x)|pdx, (7.78)

for all u ∈W 1,p(U).
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Step 2. Use of a cut-off function on a tubular neighbourhood of the boundary. Let
u ∈W 1,p

0 (U). Consider the cut-off function

χr(x) = θ(r−1d(x, U)), 0 < r < 1,

where θ ∈ C∞c (0,+∞) is non-decreasing, such that 0 ≤ θ ≤ 1 with θ ≡ 1 on [1,+∞). For r < ε,
we have χr(x) = θ(t) with x = Φ(z, t) (consequence of Proposition 7.5). Since Φ, is of class C1,
χr ∈ C1

c (U). Let vr = uχr. Then vr ∈ W 1,p(U) (cf. (7.5)) and v is compactly supported in U .
Suppose that we manage to prove that vr → u in W 1,p(U) when r → 0. Then an additional step
of regularization by convolution (which we will not write in details, it is similar to the proof of
Proposition 7.2, on the local approximation by smooth functions) ensures that D(U) is dense in
W 1,p(U). Let us establish the convergence vr → u in W 1,p(U) thus. We have, by (7.5),

∇vr = χr∇u+ u∇χr.

Let η > 0. By dominated convergence, there exists r > 0 such that[ˆ
U

|1− χr|p|u|pdx+
d∑
i=1

ˆ
U

|1− χr|p|∂xiu|pdx
]1/p

< η.

This gives
‖vr − u‖W 1,p(U) < η + ‖u∇χr‖Lp(U). (7.79)

We will use (7.78) to show that the remaining term in (7.79) can be made arbitrarily small. Since
x 7→ d(x, U) is 1-Lipschitz continuous, we have |∇xd(x, U)| ≤ 1 (actually, |∇xd(x, U)| = 1) for
x ∈ Vε(Γ) ∩ U so

|∇χr(x)| ≤ r−1, supp(∇χr) ⊂ Vr(Γ) ∩ U. (7.80)

Consequently ‖u∇χr‖Lp(U) ≤ r−1‖u‖Lp(Vr(Γ)∩U). We use (7.53) and (7.78) (where γpu ≡ 0)
with ε = r and m = 0 to obtain

‖u∇χr‖Lp(U) ≤ C(p, d,m)1/p‖∇u‖Lp(Vr(Γ)∩U).

By dominated convergence, we have C(p, d,m)1/p‖∇u‖Lp(Vr(Γ)∩U) < η for r small enough, and
thus ‖vr − u‖W 1,p(U) < 2η. This is the desired result.

Step 3. Sub-optimal Hardy’s inequality. Since t = d(Φ(z, t), U) in (7.78) (Proposi-
tion 7.5), we have

ˆ
Vε(Γ)∩U

|u(x)|p

d(x, U)m dx ≤ ε
p−mC(p, d,m)

ˆ
U

|∇u(x)|pdx, (7.81)

if u ∈W 1,p
0 (U). We complete (7.81) with the estimate

ˆ
U\V̄ε(Γ)

|u(x)|p

d(x, U)m dx ≤
1
εm

ˆ
U

|u(x)|pdx,

to obtain (7.74).

We have seen that the Green formula (7.52) is equivalent to (7.55). We have the following
generalizations of both formulas for functions in Sobolev spaces.

125



Proposition 7.12 (Extended Green Formula). Let U be a bounded open subset of Rd class C2.
Let Ψ: U → Rd such that Ψi ∈W 1,1(U) for all i ∈ {1, . . . , d}. Then

ˆ
U

div(Ψ(x))dx =
ˆ
∂U

γ1Ψ(x) · ν(x)dσ(x). (7.82)

If Ψi ∈W 1,p(U) for all i ∈ {1, . . . , d}, where 1 ≤ p < +∞, then
ˆ
U

div(Ψ(x))u(x)dx = −
ˆ
U

Ψ(x) · ∇u(x)dx+
ˆ
∂U

γpΨ(x) · ν(x)γp′u(x)dσ(x), (7.83)

for all u ∈W 1,p′(U) (p′ conjugate exponent to p).

Proof of Proposition 7.12. The second formula (7.83) follows from (7.82) applied to the product
uΨ, which is in W 1,1(U) by (7.5). Formula (7.82) is deduced from (7.55) and approximation by
functions in BC∞(Ū).

7.3.7 Kernel of the trace operator

Let U be an open bounded set of Rd. For p ∈ [1,+∞), let H1,p
0 (U) denote the closure of D(U)

in W 1,p(U). We have seen that H1,p
0 (U) = W 1,p

0 (U) if U is sufficiently regular (Proposition-
Definition 7.11). A fundamental property of functions in H1,p

0 (U) is that they their extension by
0 provides function in W 1,p(Rd).

Proposition 7.13 (Extension by 0). The extension operator E0 : D(U)→ D(Rd) defined by

E0u(x) =
{
u(x) if x ∈ U,
0 if x ∈ Rd \ U,

can be extended as linear continuous operator H1,p
0 (U) → W 1,p(Rd) with norm ‖E0‖ ≤ 1. We

also have
‖∇(E0u)‖W 1,p(U) ≤ ‖∇u‖Lp(U), (7.84)

for all u ∈ H1,p
0 (U).

Proof of Proposition 7.13. This is an immediate consequence of the fact that 1) D(U) is dense
in H1,p

0 (U) for the Sobolev norm by definition, 2) ‖E0u‖W 1,p(Rd) ≤ ‖u‖W 1,p(U) if u ∈ D(U).

Theorem 7.14 (Poincaré’s inequality). Let p ∈ [1,+∞). Let U be an open bounded set of Rd.
Then there is a constant C = C(p, U) ≥ 0 such that

‖u‖Lp(U) ≤ C‖∇u‖Lp(U) (7.85)

for all u ∈ H1,p
0 (U). In particular, the norm ‖·‖W 1,p(U) is equivalent to the norm u 7→ ‖∇u‖Lp(U)

on H1,p
0 (U).

Proof of Theorem 7.14. Let E0 be the operator “extension by 0”. Assume first p < d and let
p∗ = pd

d−p as in (7.13). We have ‖u‖Lp(U) ≤ |U |1/q‖u‖Lp∗ (U) by the Hölder inequality (q is the
conjugate exponent to p∗/p), and thus, using the Gagliardo-Nirenberg-Sobolev inequality (7.13)
and (7.84),

‖u‖Lp(U) ≤ |U |1/q‖E0u‖Lp∗ (Rd) ≤ |U |1/q
p(d− 1)
d− p

‖∇(E0u)‖W 1,p(U) ≤ |U |1/q
p(d− 1)
d− p

‖∇u‖Lp(U).
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If d ≤ p, we fix q < d such that p ≤ q∗ = qd
d−q . and use the following estimate (1/m = 1− p/q∗)

‖u‖Lp(U) ≤ |U |1/m‖u‖Lq∗ (U) ≤ |U |1/m‖E0u‖Lq∗ (Rd).

Since
‖E0u‖Lq∗ (Rd) ≤

q(d− 1)
d− q

‖∇(E0u)‖Lq(Rd)

and ‖∇(E0u)‖Lq(Rd) = ‖∇u‖Lq(U) ≤ |U |1/l‖∇u‖Lp(U) (1/l = 1 − q/p), we obtain the desired
result.

7.4 Operation of Lipschitz maps on Sobolev spaces
7.4.1 Lipschitz functions

Let U be an open set in Rd. We define the space

Lip(U) = {u ∈ C(U); Lip(u;U) < +∞} , Lip(u;U) = sup
x6=y∈U

|u(x)− u(y)|
|x− y|

,

with norm ‖u‖Lip(U) = supx∈U |u(x)| + Lip(u;U). In this section, we prove the following two
results.

Theorem 7.15 (Rademacher). Let U be an open set of Rd. A Lipschitz function on U is
differentiable a.e. on U .

Theorem 7.16 (W 1,∞(U) = Lip(U)). Let U be an open set of Rd. We have then

1. if u ∈ Lip(U), then u ∈W 1,∞(U), with ‖∇u‖L∞(U) ≤ Lip(u;U),

2. if C is a bounded convex set with C̄ ⊂ U and u ∈ W 1,∞(U), then u∗ ∈ Lip(C) and
Lip(u∗;C) ≤ ‖∇u‖L∞(U).

To establish Rademacher’s theorem 7.15, we will need this following version of the fundamental
theorem of calculus.

Proposition 7.17 (Fundamental theorem of calculus for Lipschitz functions). Let u : R→ R be
a bounded Lipschitz continuous function. Then

1. u ∈W 1,∞(R), with ‖u′‖L∞(R) ≤ Lip(u),

2. u is differentiable a.e. and
u(x)− u(0) =

ˆ x

0
u′(y)dy, (7.86)

for all x ∈ R.

Remark 7.12. The fundamental theorem of calculus asserts that 2. is satisfied in the more
general case of an absolutely continuous functions, [Rud87, Theorem 7.18]. Note that item 1. of
Proposition 7.17 is 1. of Theorem 7.16, when d = 1.

Proof of Proposition 7.17. To prove 2., we apply Proposition 7.1 with p = +∞. It is sufficient
to establish the bound ∣∣∣∣ˆ

R
u(y)v′(y)dy

∣∣∣∣ ≤ Lip(u)‖v‖L1(R), (7.87)
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for all v ∈ D(R). To obtain (7.87), we use the fact that

u′ = lim
ε→0

Dεu in D′(R), Dεu(x) := 1
ε

(u(x+ ε)− u(x)),

see the proof of Proposition 6.6. Using the bound |Dεu(x)| ≤ Lip(u), (7.87) follows. The identity
(7.86) is satisfied by u ∗ ρε, where (ρε) is an approximation of the unit:

u ∗ ρε(x)− u ∗ ρε(0) =
ˆ x

0
(u ∗ ρε)′(y)dy. (7.88)

We have u ∗ ρε(x) → u(x) for all x ∈ R when ε → 0, since u is continuous. We also have
(u∗ρε)′ = u′∗ρε (apply (6.28)) and since u′ ∈ L∞(R), (u∗ρε)′ → u′ in L1

loc(R). Therefore passing
to the limit ε → 0 in (7.88) gives (7.86). Once (7.86) is established, Lebesgue’s differentiation
theorem asserts that, for almost every x ∈ R, the limit

lim
t→0+

u(x+ t)− u(x− t)
2t = lim

t→0+

1
2t

ˆ x+t

x−t
u′(y)dy (7.89)

exists and is equal to u′(x). A simple modification of the argument that we admit shows that,
for almost every x ∈ R, the limits

lim
t→0+

u(x+ t)− u(x)
t

and lim
t→0+

u(x)− u(x− t)
t

(7.90)

exist and are both equal to u′(x), the function u being therefore differentiable a.e.

Before we give the proof of Rademacher’s theorem, let us also give some details on the extension
of Lipschitz continuous functions.

Proposition 7.18 (Extension of Lipschitz continuous functions). Let U be an open bounded set
of Rd (no regularity is assumed on ∂U) and let u ∈ Lip(U). Let

Eu(x) = inf
z∈U
{u(z) + Lip(u;U)|x− z|} .

Let k > supx∈U |u(x)| and define the operator (truncation at level k) Tk(s) = max(−k,min(k, s)).
The function Tk(Eu) is bounded and Lipschitz continuous on Rd, Tk(Eu) ∈ Lip(Rd), with
Lip(Tk(Eu);Rd) ≤ Lip(u;U) and Tk(Eu)(x) = u(x) if x ∈ U .

A corollary of Proposition (7.18) is that the space BC0,1(Ū) (defined in (7.63)) coincides (as
normed vector space) with the space Lip(U).

Proof of Proposition 7.18. If x ∈ U , then u(x) ≤ u(z) + Lip(u;U)|x − z| for all z ∈ U , so
Eu(x) = u(x). Let x, y ∈ Rd. For all z ∈ U , we have

Eu(x) ≤ u(z) + Lip(u;U)|x− z| ≤ u(z) + Lip(u;U)|y − z|+ Lip(u;U)|x− y|.

Taking the inf over z ∈ U gives Eu(x) ≤ Eu(y) + Lip(u;U)|x − y|, so Eu is Lip(u;U)-globally
Lipschitz continuous. We have Tk(Eu(x)) = u(x) if x ∈ U since k has been chosen greater than
supx∈U |u(x)|. To conclude there remains to check that Lip(Tk(F );Rd) ≤ Lip(F ;Rd) for any
Lipschitz function F on Rd. This is left as an (easy) exercise.
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Proof of Theorem 7.15. The proof is not difficult, it uses two essential facts: 1) Proposition 7.17,
2) the fact that existence of directional derivatives, together with some consistency property,
implies differentiability (an instance of this principle is the fact that existence of continuous
partial derivatives implies differentiability, but this is not what we will use here). Note also that
it is sufficient to consider the case U = Rd, otherwise we can first apply the extension method
described in Remark 7.10. So let u be a Lipschitz continuous function on Rd. We begin with
the existence of directional derivatives. Let (ei)1,n be the canonical basis of Rd and let x ∈ Rd.
The function φx : t 7→ u(x + te1) is Lipschitz continuous. By Proposition 7.17, t 7→ φx(t) is
differentiable for a.e. t ∈ R. Denote by E1 the set

E1 =
{
x ∈ Rd; lim

t→0

u(x+ te1)− u(x)
t

does not exists
}
.

By continuity of u, we have

Ec1 =
{
x ∈ Rd; lim

t→0,t∈Q

u(x+ te1)− u(x)
t

exists
}
.

Using a characterization by a Cauchy condition of the convergence, we can then prove that E1
c

is a Borel set, as well as E1. By Fubini’s theorem, we have,

|E1| =
ˆ
Rd−1

|E1(y)|dy, E1(y) := E1 ∩ (y + 〈e1〉), (7.91)

where |E1| is the d-dimensional Lebesgue measure of E1 and |E1(y)| is the 1-dimensional Lebesgue
measure of the section E1(y). More precisely, using the parametrization s 7→ y+ se1 of y+ 〈e1〉,
we have

|E1(y)| = | {s ∈ R; t 7→ u(y + se1 + te1) is not differentiable at t = 0} |
= | {s ∈ R;φy is not differentiable at s} |,

and thus |E1(y)| = 0. This being true for all y, (7.91) shows that |E1| = 0. Since e1 has no
privileged role here, we have |Ea| = 0 for all a ∈ S(0, 1), where

Ea =
{
x ∈ Rd; lim

t→0+

u(x+ ta)− u(x)
t

does not exists
}
.

Define

Dau(x) =

 lim
t→0+

u(x+ ta)− u(x)
t

if x ∈ Rd \ Ea,

0 if x ∈ Ea.
(7.92)

Then Dau is Borel-measurable, and thus Dau ∈ L∞(Rd), with ‖Dau‖L∞(Rd) ≤ Lip(u). It is also
clear that Dau is the directional derivatives of u in the sense of distributions:

〈Dau, v〉 = −〈u,Dav〉, v ∈ D(Rd), Dav(x) := ∇v(x) · a. (7.93)

Define the gradient ∇u = (Deiu)1,n. Let a ∈ S(0, 1). We will show that

Dau(x) = ∇u(x) · a, (7.94)

for a.e. x ∈ Rd. It is sufficient to prove (7.94) in the sense of distributions (both members are
functions in L∞(Rd)). Taking (7.93) into account, this amounts to establish that

〈u,Dav〉 =
d∑
i=1

ai〈u,Deiv〉 = 〈u,∇v · a〉, v ∈ D(Rd). (7.95)
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But (7.95) is clear, so (7.94) is true for a.e. x ∈ Rd. Eventually, let us consider a countable set
A of vectors a ∈ S(0, 1) such that A is dense in S(0, 1). We know that there is a negligible set
E such that, if x ∈ Rd \ E, then, for all a ∈ A, for all i ∈ {1, . . . , d},

Dau(x) = lim
t→0+

u(x+ ta)− u(x)
t

, Deiu(x) = lim
t→0+

u(x+ tei)− u(x)
t

, Dau(x) = ∇u(x) · a.
(7.96)

We will show that, if x ∈ Rd \ E, then u is differentiable at x, i.e. for all y ∈ Rd,

lim
t→0+

η(x, y, t) = 0, η(x, y, t) := u(x+ ty)− u(x)
t

−∇u(x) · y. (7.97)

This is trivial if y = 0 and, if y 6= 0, then

η(x, y, t) = |y|η(x, z, t|y|), z = y

|y|
,

so it is sufficient to consider the case y ∈ S(0, 1): we assume that |y| = 1. If z ∈ S(0, 1), then

|η(x, y, t)− η(x, z, t)| ≤
(
Lip(u) + ‖∇u‖L∞(Rd)

)
|y − z|, (7.98)

so y 7→ η(x, y, t) is Lipschitz continuous with respect to y ∈ S(0, 1), uniformly in t. The conver-
gence (7.97) being satisfied for all y in the dense set A, it remains true when y is any element of
the unit sphere. This concludes the proof.

Proof of Theorem 7.16. If u ∈ Lip(U), then u ∈ W 1,∞(U) with ‖∇u‖L∞(U) ≤ Lip(u;U). The
proof is exactly the same as in dimension d = 1, and we refer to the proof of Proposition 7.17 for
the details. Assume now that C is a bounded convex set with C̄ ⊂ U and let u ∈ W 1,∞(U). If
B is a ball with B ⊂ U , then u ∈W 1,∞(B) ⊂W 1,p(U) where p is any exponent strictly greater
then d, so u∗ is continuous on B by Corollary 7.9. Without loss of generality, we assume u = u∗.
The set C̄ is compact, included in U , so there exists ε0 > 0 such that the ε0-neighbourhood
Vε0(C) of C is included in U . Let (ρε) be an approximation of the unit as in (2.139). Then, for
ε < ε0, and for x, y ∈ C,

|u ∗ ρε(x)− u ∗ ρε(y)| =
∣∣∣∣ˆ 1

0
∇(u ∗ ρε)((1− t)x+ ty) · (y − x)dt

∣∣∣∣
≤
ˆ 1

0
|∇(u ∗ ρε)((1− t)x+ ty)|dt|x− y|.

We have ∇(u ∗ ρε) = (∇u) ∗ ρε by (6.28) so

‖∇(u ∗ ρε)‖L∞(Vε(C)) ≤ ‖∇u‖L∞(U).

It follows that
|u ∗ ρε(x)− u ∗ ρε(y)| ≤ ‖∇u‖L∞(U)|x− y|.

We have also u ∗ ρε(x)→ u(x) when ε→ 0 since u is continuous, so

|u(x)− u(y)| ≤ ‖∇u‖L∞(U)|x− y|,

which is the desired result.
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7.4.2 Operation of Lipschitz functions on Sobolev spaces

Theorem 7.19 (Composition on the left with Lipschitz functions). Let U be an open subset of
Rd. Let u ∈W 1,p(U), p ∈ [1,+∞].

1. if A is a Borel subset of R of measure 0 then ∇u = 0 a.e. on the set u−1(A) = {x ∈
U ;u(x) ∈ A},

2. if F : R→ R is Lipschitz continuous, then F (u) ∈W 1,p(U) and we have the chain rule

∇F (u) = F ′(u)∇u (7.99)

a.e in U .

One may wonder what is the exact meaning on F ′(u)∇u in (7.99). Indeed F ′(s) is only defined
a.e., say for s ∈ R \A, where A is a Borel negligible set, by Rademacher’s theorem. If u(x) ∈ A,
then we cannot give a meaning to F ′(u(x)). However, the first point 1. ensures that ∇u = 0 on
the set {u ∈ A}. Consequently, we can use the convention F ′(u)∇u = 0 on u−1(A). We will see
then that (7.99) is satisfied for good. Theorem 7.19 can be applied with F (u) = u+ in particular.
We obtain u+ ∈W 1,p(U), with

∇u+ = 1u≥0∇u = 1u>0∇u.

The theorem is not true for Sobolev functions u ∈ W k,p(U) with k ≥ 2. This can be expected
from the computation

∆F (u) = div(F ′(u)∇u) = F ′′(u)|∇u|2 + F ′(u)∆u

One may restrict to functions in W 1,kp(U) ∩W k,p(U) for instance, [Bou91, Hof13].

Proof of Theorem 7.19. We first want to prove that

|A| = 0⇒ µ(A) = 0, µ(A) := ν(u−1(A)), ν(B) :=
ˆ
U∩B

|∇u|pdx. (7.100)

In (7.100), µ is a bounded Borel measure, so µ is inner regular:

µ(A) = sup {µ(K);K ⊂ A} .

Therefore it is sufficient to prove (7.100) for K compact. If K is compact with |K| = 0, we set

χε(x) = (1− ε−1d(K,x))+, Gε(x) =
ˆ ε

−∞
χε(y)dy.

Note that χε is continuous, bounded, with supp(χε) ⊂ Vε(K). We have Gε ∈ C1
b (R), hence

Gε(u) ∈W 1,p(U) and ∇Gε(u) = G′ε(u)∇u = χε(u)∇u, as seen in exercises class. Let v ∈ D(U).
For 1 ≤ i ≤ d, we can write∣∣∣∣ˆ

U

χε(u)∂xiuvdx
∣∣∣∣ =

∣∣∣∣ˆ
U

Gε(u)∂xivdx
∣∣∣∣ ≤ C(v)|U |‖Gε‖L∞(R). (7.101)

When we pass to the limit ε → 0 in (7.101), the left-hand side converges by dominated conver-
gence and

‖Gε‖L∞(R) ≤ ‖χε‖L1(R) → |K| = 0,
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so ˆ
U

1K(u)∂xiuvdx = 0, (7.102)

and, (7.102) being satisfied for all v ∈ D(U), 1K(u)∇u = 0 a.e. in U . Let us establish (7.99)
now. Let (ρε) be an approximation of the unit as in (2.139), when d = 1. Let Fε = F ∗ ρε. By
the chain-rule with functions in C1

b (R), we have
ˆ
U

Fε(u)∂xivdx =
ˆ
U

F ′ε(u)∂xiuvdx, v ∈ D(U), 1 ≤ i ≤ d. (7.103)

We have Fε(s) → F (s) for all s ∈ R, so the left-hand side of (7.103) converges to the integral
of F (u)∂xiv by dominated convergence. Let A denote the complementary in R of the set of
Lebesgue points of F ′. If s /∈ A, then F ′ε(s) = (F ′ ∗ ρε)(s)→ F ′(s). By dominated convergence,
we obtain ˆ

U

F ′ε(u)∂xiuvdx =
ˆ
U\A

F ′ε(u)∂xiuvdx→
ˆ
U\A

F ′(u)∂xiuvdx,

and thus ˆ
U

F (u)∂xivdx =
ˆ
U

F ′(u)∂xiuvdx,

with the convention F ′(u)∂xiu = 0 if u ∈ A.

A Surface measure
In this section, we give the proof of Proposition 7.6. We will first need the following result.

Lemma A.1 (Convergence of distributions of finite order). Let (αn) be a sequence in D′(U)
converging to a distribution α ∈ D′(U). Assume that all distributions αn and α are uniformly of
finite order k in the sense that, for each compact L ⊂ U , there exists A ≥ 0 such that

|〈α,u〉| ≤ ApL,k(u), |〈αn, u〉| ≤ ApL,k(u), (A.1)

for all u ∈ C∞L (U). Then αn and α can be extended as linear functional on Ckc (U), and we have

〈αn, u〉 → 〈α, u〉 (A.2)

when n→ +∞, for all u ∈ Ckc (U).

Remark A.1 (Uniform condition (A.1)). The convergence αn → α in D′(Rd) is not sufficient
to ensure the uniform condition (A.1). Consider for instance an approximation of the unit
(ρn), a sequence (εn) of real numbers converging to 0 not too rapidly (ε−1

n = o(n) will do) and
αn = εn(ρn)′. Then (A.1) will not be satisfied for k = 0 (but will be for k = 1). Nevertheless, it
is clear that assuming simply

|〈αn, u〉| ≤ ApL,k(u), (A.3)

for all u ∈ C∞L (U), will give |〈α, u〉| ≤ ApL,k(u), and thus (A.1) for all u ∈ C∞L (U).

Proof of Lemma A.1. We use the density of D(U) in Ckc (U), simply obtained by convolution
with a compactly supported approximation of the unit (ρm) (as in (6.34) for instance). For each
u ∈ Ckc (U), we have ρm ∗ u ∈ D(U) for m large enough (such that supp(u) + B̄(0, 1/m) ⊂ U)
and pK,k(ρm ∗ u − u) → 0 for each semi-norm pK,k, K compact subset of U . For such a fixed
K, there is a compact L ⊃ K such that supp(ρm ∗ u) ⊂ L for all m large enough. Since
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pL,k(ρm ∗ u − ρm′ ∗ u) → 0 when m,m′ → +∞, (A.1) shows that the sequence (〈α, ρm ∗ u〉) is
Cauchy. We denote by 〈α̃, u〉 its limit. It is easy to check that we define indeed a linear functional
α̃ on Ckc (U). Since |〈α̃, u〉| ≤ ApL,k(u), this functional is continuous. We proceed similarly with
αn. We have then

|〈α̃, u〉 − 〈α̃n, u〉| ≤ |〈α̃, ρm ∗ u− u〉|+ |〈α̃n, ρm ∗ u− u〉|+ |〈α, ρm ∗ u〉 − 〈αn, ρm ∗ u〉|,

which we can bound by

2ApL,k(ρm ∗ u− u) + |〈α, ρm ∗ u〉 − 〈αn, ρm ∗ u〉|.

Given ε > 0, we choose first a fixed m such that 2ApL,k(ρm ∗ u− u) < ε, and then N such that
|〈α, ρm ∗ u〉 − 〈αn, ρm ∗ u〉| < ε for all n ≥ N to obtain

|〈α̃, u〉 − 〈α̃n, u〉| < 2ε,

for all n ≥ N . This gives the convergence (A.2).

Proof of Proposition 7.6. There are several steps in the proof of this result.

Step 1: Existence of σ. We will not try to establish the intrinsic character of the measure
σ (but σ is indeed the normalized volume form of the orientable manifold Γ). Instead, we first
consider the distribution

α = −div(1U∇ρ) + 1U∆ρ. (A.4)

Note that, in virtue of the second formula in (6.47), α is formally given by

α = −∇1U · ∇ρ. (A.5)

We will show that α is a measure supported in Γ and then set σ = 1
|∇ρ|α. Then (A.5) gives the

formal expression
σ = −∇1U · ν (A.6)

for σ. Note first that α is well defined as a distribution since 1U∇ρ and 1U∆ρ are distributions,
by injection of L1

loc(Rd) in D′(Rd). Let us prove that the distribution α is supported in Γ. Let
u ∈ D(Rd \Γ), let K = supp(u)∩ Ū . Since d(supp(u),Γ) > 0, we have K ⊂ U . Let χ be a bump
function such that K ≺ χ ≺ U . We have χu = u and ∇(χu) = χ∇(χu), so

〈α, u〉 =
ˆ
U

∇ρ∇(χu)dx+
ˆ
U

χu∆ρdx =
ˆ
Rd
∇ρ∇(χu)dx+

ˆ
Rd
χu∆ρdx,

and integration by parts gives 〈α, u〉 = 0. Let us now show that α is a non-negative distribution.
We approximate 1U by the sequence Hε = θε ◦ ρ, where θε is a bump function such that
]−∞,−ε] ≺ θε ≺ R− and θε is monotone non-increasing. Since Hε → 1U in L1

loc(Rd), we have

Hε∇ρ→ 1U∇ρ, Hε∆ρ→ 1U∆ρ

in L1
loc(Rd), hence in D′(Rd), so αε → α in D′(Rd), where

αε = −div(Hε∇ρ) +Hε∆ρ.

By (6.47), we have
αε = −∇Hε · ∇ρ = −θ′ε(ρ)|∇ρ|2 ≥ 0, (A.7)
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so α ≥ 0 in the sense of distributions (i.e. 〈αε, u〉 ≥ 0 if u ∈ D(Rd) and u ≥ 0). We have seen (in
exercise class) that a non-negative distribution is represented by a non-negative Borel measure,
finite on compact sets. It now makes sense to define σ as the product of the continuous function
|∇ρ|−1 with α. To establish the Green formula (7.55), we use again the approximation of 1U by
Hε: by integration by parts,

ˆ
Rd

div(Ψ)Hεdx = −
ˆ
Rd

Ψ · ∇Hεdx = −
ˆ
Rd

Ψ · ∇ρθ′ε(ρ)dx.

Since ∇ρ = ν|∇ρ|, we have
ˆ
Rd

div(Ψ)Hεdx = −
ˆ
Rd

Ψ · ν 1
|∇ρ|

θ′ε(ρ)|∇ρ|2dx, (A.8)

which is 〈αε, ϕ〉 by (A.7), where ϕ = Ψ · ν|∇ρ|−1. We know that αε → α in the sense of
distributions. We also have, for L compact in Rd and u ∈ C∞L (Rd),

|〈αε, u〉| ≤ ‖αε‖L1(Rd)pL,0(u) ≤ ApL,0(u),

since
‖αε‖L1(Rd) = −

ˆ
Rd
∇Hε · ∇ρdx =

ˆ
Rd
Hε∆ρdx ≤ A := ‖∆ρ‖L1(V1(Γ)),

where we use the fact that Hε is supported in V1(Γ) for ε small enough. By Lemma A.1 and
Remark A.1, we can then justify the convergence 〈αε, ϕ〉 → 〈α,ϕ〉 since ϕ is continuous (note
that we should add here a discussion on the support of ϕ and αε since ϕ is well-defined in a
neighbourhood of Γ only, but there is no difficulty in this point). We can now pass to the limit
in (A.8) to obtain (7.55).

Step 2: Expression of σ in local coordinates. In a second step, we give the demonstration
of (7.57). So let W be an open set such that U and Γ = ∂U admit a parametrization by local
graph in W as in (7.56). Note well that expression of ν on Γ at the point g(x′) = (x′, ψ(x′)) is

ν(g(x′)) = 1√
1 + |∇ψ(x′)|2

[
∇ψ(x′)
−1

]
. (A.9)

Let v ∈ C1(Rd) be supported in W . Our aim is to compute the expression 〈σ, v〉. Without loss
of generality, we can assume that ∇ρ 6= 0 in W so that ν = ∇ρ

|∇ρ| is well defined on W . By the
Green Formula (7.55), we have

〈σ, v〉 =
ˆ

Γ
v(z)dσ(z) =

ˆ
W∩U

div(θ(x)v · ν(x))dx, (A.10)

where θ is any function in C1(W ) such that θ = 1 on Γ∩W . On the other hand, for any function
F ∈ C1(Rd;Rd) supported in W , (7.56) yields the expression

ˆ
U

div(F (x))dx =
ˆ
V

ˆ ∞
0

div(F )(x′, xd + ψ(x′))dxddx′.

By the chain-rule,

div(F )(x′, xd + ψ(x′)) = div[F (x′, xd + ψ(x′))]−∇ψ(x′) · (∂xdF ′)(x′, xd + ψ(x′)),
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where F ′ = (F )1≤i≤d−1. By explicit integration, the expression of the integral of the divergence
in coordinates isˆ

U

div(F (x))dx = −
ˆ
V

Fd(g(x′))dx′ −
ˆ
V

ˆ ∞
0
∇ψ(x′) · (∂xdF ′)(x′, xd + ψ(x′))dxddx′. (A.11)

Let (ζη) be an approximation of the unit on R such that ζη is supported in (0, η) and define, for
t ∈ R, x = (x′, xd + ψ(x′))) ∈ U ∩W ,

ξη(t) =
ˆ ∞
t

ζη(s)ds, ωη(x) = ξη(xd − ψ(x′)).

We will take θ = ωη in (A.10), which means that we will apply (A.11) with F η = vνωη. Note
that ωη tends to 0 in L1(U ∩W ) by dominated convergence, since 0 ≤ ωη ≤ 1 and ωη(x) = 0 as
soon as xd − ψ(x′) > η. Consequently,

∇ψ(x′) · (∂xdF ′)(x′, xd + ψ(x′)) = −∇ψ(x′) · ν′(g)ζη(xd) + o(1)

in L1(U ∩W ), which gives

〈σ, v〉 = lim
η→0

ˆ
U

div(F η(x))dx = −
ˆ
V

F 0
d (g(x′))dx′ −

ˆ
V

∇ψ(x′) · ∂xd(F 0)′(g((x′))dx′,

where F 0(x) = v(x)ν(x). We can compute then, with (A.9), that

〈σ, v〉 =
ˆ
V

1√
1 + |∇ψ(x′)|2

(1 + |∇ψ(x′)|2)v(g(x′))dx′,

and obtain (7.57).

Step 3: proof of (7.53). By use of an appropriate partition of unity, it is sufficient to establish
(7.53) when u is a continuous function supported in an open set W such that U and Γ = ∂U
admit a parametrization by local graph in W as in (7.56). We will then derive the formula

ˆ
Vε(Γ)

u(x)dx =
ˆ
Rd−1

ˆ ε

−ε
u ◦ Φ(g(y′), t)π(g(y′), t)

√
1 + |∇ψ(y′)|2dy′dt, (A.12)

where g(y′) := (y′, ψ(y′)) and π(g(y′), t) is given by (7.54) with z = g(y′). The local expression
(7.57) of σ shows that (A.12) is precisely (7.53) under the local parametrization given by g. The
identity (A.12) results from the change of variable x = f(y′, t) := Φ(g(y′), t), once we show that
the Jacobian determinant Jf of f is given by

Jf(y′, t) = π(g(y′), t)
√

1 + |∇ψ(y′)|2. (A.13)

Let z = g(y′). By the chain rule, the linear map T := d(y′,t)f is given by T = S ◦ h, where
S : Rd+1 → R and h : Rd → Rd+1 are given by

S(x, s) = d(z,t)Φ(x, s) = x− sν(z)− tdzν(x), h(x′, s) = (dy′g(x′), s) = (x′,∇ψ(y′) · x′, s),

for z ∈ Rd, x′ ∈ Rd−1. We have used the formula (7.51) to express the differential of Φ. We will
also use the fact that there is an orthonormal basis (εi)1,d of Rd such that

εd = ν(z), dzν(εi) = λiεi, 1 ≤ i ≤ d,
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where we have set λd = 0. This was mentioned after (7.48) and the product in (7.54) involves
the principal curvatures λi, i = 1, . . . , d − 1. We denote by (ei) the canonical basis of Rd. We
expand εi as εi = (ε′i, εdi ) ∈ Rd−1 × R and compute, for 1 ≤ i ≤ d− 1,

0 = εi · ν(z) = 1√
1 + |∇ψ(y′)|2

[
∇ψ(y′) · ε′i − εdi

]
,

hence εdi = ∇ψ(y′) · ε′i and h(εi) = (ε′i,∇ψ(y′) · ε′i, εdi ) = (εi, εdi ), from which follows the first
identity

T (εi) = S(εi, εdi ) = (1− tλi)εi − εdi ν(z). (A.14)
We also compute h(ed) = (0, ed) ∈ Rd × R and get

T (ed) = S(0, 1) = −ν(z) = −εd. (A.15)

We will extract the value of |det(T )| from the identity

|det(T (ε1), · · · , T (εd−1), T (ed))| = |det(T )||det(ε1, · · · , εd−1, ed)|.

Since

|det(T (ε1), · · · , T (εd−1), T (ed))| =
d−1∏
i=1

(1− tλi)|det(ε1, . . . , εd)| =
d−1∏
i=1

(1− tλi) = π(g(y′), t),

we will obtain the desired conclusion if we show that

|det(ε1, · · · , εd−1, ed)| =
1√

1 + |∇ψ(y′)|2
. (A.16)

To compute the determinant in (A.16), we use the formula

|det(ε1, · · · , εd−1, ed)| =
√

Gram(ε1, · · · , εd−1, ed),

where the Gram determinant Gram(u1, · · · , ud) of d vectors ui ∈ Rd is the determinant of the
Gram matrix G = (ui · uj)1≤i,j≤d. We compute

εi · εj = δij , εi · ed = εdi ,

so

Gram(ε1, · · · , εd−1, ed) = det


1 εd1

. . .
...

1 εdd−1
εd1 . . . εdd−1 1

 .
We develop the determinant along the last column to obtain

Gram(ε1, · · · , εd−1, ed) = 1−
[
|εd1|2 + · · ·+ |εdd−1|2

]
.

By decomposition of the vector ed in the orthonormal basis (εi)1,d, we have

1 =
d−1∑
i=1
|εdi |2 + 1

1 + |∇ψ(y′)|2 ,

so
Gram(ε1, · · · , εd−1, ed) = 1

1 + |∇ψ(y′)|2 ,

and (A.16) follows.
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