
Parallel and Distributed Algorithms and Programs
TP n°1 - Getting hands dirty with MPI

and so dirty will they become...

Julien Braine
julien.braine@ens-lyon.fr

Laureline pinault
laureline.pinault@ens-lyon.fr

11/09/2017

Part 1
Bitonic arrays

Definition 1 We call V-shaped a sequence which is either increasing and then decreasing or decreasing and then
increasing. Thus, sequences 〈2, 3, 7, 7, 4, 1〉 and 〈12, 5, 10, 11, 19〉 are V-shaped.

Definition 2 We call bitonic a sequence which is a circular shift of a V-shaped sequence. For example, sequences
〈4, 1, 2, 3, 7, 7〉 and 〈11, 19, 12, 5, 10〉 are bitonic.

Question 1

a) Open the script gen-bitonic-array.py and use it to generate a bitonic array (V-shaped in practice) in a file
named bitonic-array.txt

Part 2
Sequential sort of bitonic arrays

We suggest to sort bitonic arrays with the following algorithm. The algorithm is as follows :

1. Let a be a bitonic array of size 2k

2. Let start = 0, size = 2k

3. For each i ∈ [start, start + size[, if a[i] > a[i + size/2], swap cells i and i + size/2 in a .

4. If size 6= 1 do step 3 with start = start, size = size/2 and start = start + size/2, size = size/2.

The proof of correctness of this algorithm relies on the following invariant (we do not ask to show the correctness) :
after step 3, the subarrays A1 = a[start...start + size/2[and A2 = a[start + size/2...start + size[have the following
properties :

1. All elements of A1 are smaller than all elements of A2

2. A1 and A2 are bitonic

The sorting algorithm is written in file sort-bitonic.c.

Question 2

a) In file sort-bitonic.c edit the function sort_sequential and write this algorithm sequentially (recursive).

b) Test it on a few examples using gen-bitonic-array.py. (read the code of sort-bitonic.c to figure out how)

1

TP n°1 - Getting hands dirty with MPI

and so dirty will they become... 2017-2018
Part 3

Parallel sort of bitonic arrays

We wish to write a parallel algorithm using MPI for our bitonic sort. The key idea consists in parallelizing step 3.
The algorithm can be described as follows :

1. We launch a number of MPI processes equal to the number of cells in the array to be sorted

2. step = 2k

3. Each process number i receives exactly cell with index i : they do not own their own copy of the array (using
MPI Scatter)

4. Each process i "talks" with process i + step/2 (using MPI Send and MPI Receive) so that process i receives the
minimum and process i + step/2 receives the maximum of cells i and i + step/2.

5. step = step/2

6. if step 6= 1, redo 4

7. Retrieve the complete array (using MPI Gather)

Question 3

a) Understand the proposed parallel algorithm and convince yourself that it has same functionality

b) Implement it in the function sort_parallel

c) Check that it works on examples !

Part 4
Let’s analyze our algorithms

Question 4

a) What is the complexity of the sequential algorithm (number of comparaisons) ?

b) What is the parallel complexity of the parallel algorithm (for simplicity, the number of comparaison of the process
that does the most)

c) What is the complexity in communication of the parallel algorithm (for simplicity, the number of messages
exchanged between processes overall)

d) Prove the correctness of the sequential algorithm

Part 5
Let’s improve our algorithms

Question 5

a) How can you use bitonic sort to sort non bitonic arrays ?

b) Implement it and test it !

c) Make it work on arrays which have non power of two size

Part 6
Do not forget to keep a copy of the precious code you developed for later!

- 2-

	Bitonic arrays
	Sequential sort of bitonic arrays
	Parallel sort of bitonic arrays
	Let's analyze our algorithms
	Let's improve our algorithms
	Do not forget to keep a copy of the precious code you developed for later!

