
Parallel and Distributed Algorithms and Programs
TP 2 - The Broadcast on the Rings

One Message to find them all. One Routine to send them,

One Routine to receive them all and in the buffers, bind them.

Julien Braine
julien.braine@ens-lyon.fr

Laureline Pinault
laureline.pinault@ens-lyon.fr

In this session, we will be dealing with the good-old one-to-all broadcast communication routine on a ring topology,
and implementing/optimizing a couple of algorithms of different costs. We will broadcast the data available at the root
process with rank 0 to all other processes. In this TP session and the following ones, we will start using SMPI/SimGrid
as our testbench to be able to measure the performance of our code and better understand how algorithms perform
according to different network parameters. Indeed, there is a lot of coding involved to test, implement, and verify
these algorithms. But lucky you! Your teaching assistants have already done the most of this coding for you! You
will only need to implement the algorithms in a skeleton code that we provide, and everything else (input, output,
verification) will work like magic afterwards! Cool, huh?
You will find the skeleton code that we provide in bcast_skeleton.c. The code might look like a “bazaar” if you

were curious enough to already look at it. If you have not, it is not a problem as you will not even need to touch
it! Instead, try to open bcast_solution.c which includes some variables that are commented at the top. Do not
uncomment them! These are variables already defined in the skeleton code, and the comments are there to help you
develop your code without messing with the skeleton file. Here is a description of these variables:

• num_procs, rank: They speak for themselves. The number of MPI ranks, and rank of the current process.

• bcast_implementation_name: The name of the broadcast algorithm to be executed. The exact names you will
use are given in the description of each section below.

• chunk_size: The size of each chunk in the pipelined algorithms. We will come to this later.

• buffer: A char array containing the data to be communicated.

• NUM_BYTES: The size of the buffer (in bytes, or the number of char elements).

We will use SMPI to simulate a ring topology consisting of 32 processors. Using SMPI is almost identical to using
MPI, except that to compile and run your code you need to execute SMPI routines smpicc and smpirun. To create
the executable bcast, you can simply compile your code by typing the following line:

smpicc bcast_skeleton.c -lm -o bcast

As you might already expect, in order to “simulate” the code on a particular interconnection topology, we need to
provide SMPI with the description of this particular topology. This description involves the list of available virtual
nodes, or hosts, which is provided in a host file, and the interconnections between these nodes, which is given in
a platform file. Creating these topologies can be complicated, and that is precisely where your assistants come to
rescue again!1 We provide you a python script called smpi-generate-ring.py that creates a ring topology for a
given number of nodes, and allows you to specify the latency and the bandwidth of the links of the ring topology. To
generate a 32-processor ring with a 1µs link latency and 100Gbps link bandwidth, simply type

python smpi-generate-ring.py 32 100 100 100Gbps 1us

which should generate the host file ring-32-hostfile.txt and the platform file ring-32-platform.xml. Normally,
the second and the third parameters correspond to the computational power of your local machine, and each node
in the simulated topology, respectively (both are set to 100 gigaflops per second in this example). However, in this
exercise we will only be doing communications, so you can ignore these values for now.
Now that you have your hostfile and the platform file, you are finally ready to execute the code by typing
1My coffee preference is without sugar, just saying...

1



1. KEEP IT SIMPLE, AND STUPID! 2018-2019

smpirun -hostfile ring-32-hostfile.txt -platform ring-32-platform.xml ./bcast
[bcast_implementation_name]

.We have already provided the default MPI broadcast algorithm default_bcast in the solution code, so you can go
ahead and try the code to make sure that the skeleton code works as expected.

Part 1
Keep it simple, and stupid!

The path to wisdom always passes through idiocity, and so shall we do! In this exercise you are asked to implement the
foolest and the simplest broadcast algorithm you can imagine. The root directly sends its buffer to all other processes
one by one. Make sure to implement this with the name it deserves to the best, naive_bcast (or equivalently, expect
this name in the variable bcast_implementation_name from the skeleton code).

Question 1

a) Implement a broadcast algorithm that simply sends the data residing at the root process 0 to all other processes
one by one using MPI_Send and MPI_Recv.

b) Run the algorithm on a ring topology with 100Gpbs bandwidth and 1µs latency. Note the execution time.

c) Find the cost of this algorithm on a ring topology using the α − β model, assuming M being the message size,
P being the number of processes, α corresponding to the latency cost of sending a message, and β representing
the bandwith of each link in the interconnection network.

d) Change the parameters of your ring topology (and number of processes) to see if your implementation satisfies
the theoritical model.

Part 2
(Don’t) Use the ring!

You might have realized that sending all the messages from the root process P0 at each step could be inefficient,
and that the naive algorithm exploits nothing related to the topology being ring. However, the ring may bestow
unprecedented powers to thoso who know how to wield it! For example, once a process Pk receives the message on a
ring, what is preventing it from simply passing it to its neighbor Pk+1?

Question 2

a) Implement the described ring algorithm with the name ring_bcast. The process Pk should always expect and
receive the message from its left neighbor Pk−1, then store it in its local buffer, and finally pass it over to its
right neighbor Pk+1.

b) Run your implementation and compare it to your naive implementation.

c) Find the cost of this algorithm using the α− β model as before.

d) Change the parameters of your ring topology (and number of processes) to see if your implementation satisfies
the theoritical model.

Part 3
One bite at a time...

One major problem with the previous ring broadcast algorithm is that it involves P − 1 send/receive rounds, in each
of which only one of the links in the network is active. In order to make use of the bandwidth available in all other
links at the same time, the idea of pipelining comes into play. Instead of sending M bytes of data in one chunk, we
can divide it into chunks of size C, and send it in dM/Ce rounds that can be pipelined. For instance, once P1 receives
the first chunk from P0, it can pass it to P2 and start receiving the second chunk from P0, and so on. If we continue
in this manner, after P − 1 steps all links in the network will start to be actively used.

- 2-



4. TO RECURSE, OR NOT TO RECURSE, WHICH ONE IS THE CURSE? 2018-2019

Question 3

a) Implement the described algorithm with the name pipelined_ring_bcast. In the executable, use the option
-c [chunk_size] to fill in the varible chunk_size.

b) Experiment with the algorithm and compare it to your previous implementations.

c) Find the cost of this algorithm using the α− β model as before.

d) Change the parameters of your ring topology (and number of processes and chunks) to see if your implementation
satisfies the theoritical model.

Part 4
To recurse, or not to recurse, which one is the curse?

You managed to finish all the exercises and get this far? No-freaking-way! If you are procrastinating here not having
finished the other tasks, go back to where you were and do some productive sh.t! Otherwise, that is wonderful, and
here is your last exercise that serves as a marvelous closing scene to this TP session.
One simple idea to perform a broadcast on a ring of size P = 2k for some integer k > 1 goes as follows. First, the

process P0 sends the message to its “pair“ PP/2, and make it responsible for broadcasting the message to the second
half of the ring, i.e., to processes PP/2+1 . . .PP −1. Afterwards, we can recursively apply this same idea to the first
and the second halves of the ring (which are also rings of size P/2) to broadcast the data to the rest of the processes.

Question 4

a) Implement the described algorithm with the name pipelined_bintree_bcast. In the executable, use the option
-c [chunk_size] to fill in the varible chunk_size. Try to make it pipelined, as the name suggests, if you have
enough time.

b) Experiment with the algorithm and compare it to your previous implementations.

c) Find the cost of this algorithm using the α− β model as before.

d) Change the parameters of your ring topology (and number of processes and chunks) to see if your implementation
satisfies the theoritical model.

e) Which algorithm presented so far is the best ? With what chunk size ?

Part 5
Make sure to get a copy of your files as it might serve a good reference in the future!

- 3-


	Keep it simple, and stupid!
	(Don't) Use the ring!
	One bite at a time...
	To recurse, or not to recurse, which one is the curse?
	Make sure to get a copy of your files as it might serve a good reference in the future!

