
Parallel and Distributed Algorithms and Programs
TP n°5 - Parallel Matrix-Matrix Multiplication

using Cannon’s Algorithm
Julien Braine Laureline Pinault

13 november 2019

In this session, we will be dealing with the implementation of the parallel matrix-matrix multiplication of two
matrices using Cannon’s algorithm. The advantage of Cannon’s algorithm over SUMMA is that it incurs significantly
less communication, and is very well suited for 2D communication networks. For simplicity, in this exercise, we will
only be multiplying N ×N matrices A and B to obtain another N ×N matrix C. We will use P = p× p processors,
and assume for simplicity that p divides N . In Cannon’s algorithm, the matrices A, B, and C are split into p × p
submatrices each of size (N/p)× (N/p). For instance, for p = 2, A is split into submatrices A11, A12, A21, and A22 of
size N/2×N/2 each. In general, each process with index (i, j) (or pij) holds the corresponding submatrices Aij , Bij ,
and Cij initially. The goal of pij is to compute the final result for the submatrix Cij .
The Cannon’s method for matrix multiplication is given in Algorithm 1. The algorithm uses the procedure

Shift(matrix, shiftSize, shiftDirection)

that shifts the matrix by shiftSize-many processors in the given shiftDirection (which is ’up’ or ’left’). For
instance, if the statement Shift(A, 2, ’left’) is called at each process, then each process pij would receive the
local matrix A from the process pi,(j+2 mod p), and send its matrix to the process pi,(j−2 mod p). Figure 1 represents
the shift operations (including the initial shift) involved in the Cannon’s algorithm.

Algorithm 1 Cannon’s parallel matrix-matrix multiplication algorithm
Input: A, B, C: Matrices of size N ×N

P = p× p: The number of processes available
Output: C = AB is computed.

1: Distribute matrices so that the process pij owns the matrices Aij , Bij , and Cij .
2: At each process pij , Shift(A, i, ’left’)
3: At each process pij , Shift(B, j, ’up’)
4: At each process pij , initialize A← Aij and B ← Bij .
5: for k = 1 . . . p do I Do at each process pij

6: Cij = Cij + AB.
7: Shift(A, 1, ’left’)
8: Shift(B, 1, ’up’)

As usual, we provide two codes cannon-skeleton.c and cannon-solution.c for this exercise. You are supposed
to provide your implementations in the given function skeletons in cannon-solution.c.

Question 1

a) Similar to the previous TP, at each process create the local matrices Aloc, Bloc, and Cloc of size N/p. Make
sure to initialize Aloc and Bloc randomly, and Cloc with zeros. Compute also the row index and the column
index of each process.

b) Implement the given Shift operator that shifts the matrices among processes in the given direction by the given
amount. Make sure you use MPI_Isend for sends, and MPI_Recv for receives to prevent deadlocks.

c) Using the Shift function, implement the Cannon’s algorithm. Make sure to test it using different number of
processors, and different matrix sizes. Use the provided function

multiplyMatrix(double *a, double *b, double *c, int m, int k, int n)

for local matrix-matrix multiplies.

1



TP n°5 - Parallel Matrix-Matrix Multiplication
using Cannon’s Algorithm 2019-2020

Figure 1: Shift operation in the Cannon’s algorithm. “Skewing” corresponds to the initial shift where the row/column
j is shifted by j units.

d) Measure the performance of your implementation using SMPI for N = 1024 and P up to 64 (using a 8 × 8
processor grid). How well does your algorithm scale? Compare the performance to the SUMMA implementation
that we did in the previous TP. Try to change the network bandwidth, and see when the algorithm starts to lose
scalability.

Make sure to backup all your implementations as they might be useful later on!

- 2-


