APPD TD2 - PRAM1

Julien Braine Laureline Pinault

03/10/2019

1 Selection in a list

Question 1

a) Let L be a list containing n objects colored either in blue or red. Design an efficient EREW algorithm that separates the blue elements from the red elements (i.e. that builds a new list containing only the blue elements).

2 Mystery Procedure

We define the following two operators for a table $A=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]$ of n integers:

- $\operatorname{Prescan}(A)$ returns the table: $\left[0, a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots, a_{0}+a_{1}+\ldots+a_{n-2}\right]$
- $\operatorname{ScAN}(A)$ returns the table: $\left[a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots, a_{0}+a_{1}+\ldots+a_{n-1}\right]$

These two operators can be computed in $O(\log n)$ time on P-RAM EREW.
Given a table Flags we define the following Split procedure:

```
Algorithm 1: Mystery Procedure 1
    def Split(A, Flags):
        Iup \(\leftarrow n-\operatorname{Reverse}(\operatorname{Scan}(\operatorname{Reverse}(\) Flags \())\) );
        Idown \(\leftarrow \operatorname{Prescan}(1-\) Flags \()\);
        for \(i=1\) to \(n\) do in parallel
            if Flags \((i)\) then
            Index \([i] \leftarrow \operatorname{Iup}[i]\)
            else
            Index \([i] \leftarrow\) Idown \([i]\)
        Result \(\leftarrow \operatorname{Permute}(A\), Index);
        return Result
```

The names of the different functions are relatively intuitive. In particular, Reverse reverse the table, and Permute (A,Index) reorders table A according the permutation Index (the element $A[i]$ goes to the Index[i]th position).

Question 2

a) Apply the procedure on this input:

$$
\begin{aligned}
A & =\left[\begin{array}{lllllllll}
5 & 7 & 3 & 1 & 4 & 2 & 7 & 2 &] \\
\text { Flags } & =\left[\begin{array}{lllllll}
& \\
1 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right) & 0
\end{array}\right] .
\end{aligned}
$$

b) What is the purpose of the Split procedure?
c) What is the computational time of the Split procedure?

```
Algorithm 2: Mystery Procedure 2
    def Mystery (A, Number_Of_Bits):
        for \(i=0\) to Number_Of_bits -1 do
        \(b i t(i) \leftarrow\) table containing the \(i^{\text {th }}\) bit of the elements of \(A\);
        \(A \leftarrow \operatorname{Split}(A, b i t(i)) ;\)
```


Question 3

a) We consider the following Mystery procedure:
(a) Run the procedure on $A=[5,7,3,1,4,2,7,2]$ with Number_Of_Bits $=3$.
(b) What is the purpose of procedure Mystery 2?
(c) Given entries of size $O(\log n)$ bits, what is the complexity with n processors? With p processors?

3 Connected components

We would like to design a CREW algorithm to compute the connected components of a graph $G=(V, E)$ with vertices numbered from to 1 to n. In particular, we are looking for an algorithm that returns a table C of size n, such that $C(i)=C(j)=k$ if and only if i and j are in the connected component and k is the smallest index among the vertices from this component.

Definition 1 For all iteration of the algorithm, we call the pseudo-vertex labeled by i the set of vertices $j, k, l, \cdots \in V$ such that $C(j)=C(k)=C(l)=\cdots=i$. In other words, we consider the pseudo-vertex labeled by i to be the same as the vertex labeled by i.

One of the invariants of the algorithm is that the smallest index of the vertices from the pseudo-vertex labeled by i is i and the vertices belonging to a pseudo-vertex are in the same connected component. This assertion is true if we initialize C by: for all $i \in V=\llbracket 1, n \rrbracket: C(i)=i$. This means that at the beginning, each processor considers itself as the pseudo-vertex of its connected component. The goal of the algorithm is to change this egocentric point of view.

Definition 2 A k-cyclic tree $(k \geqslant 0)$ is a weakly connected oriented graph such that:

- Each vertex has an out-degree of 1
- There is exactly one circuit of length $k+1$.

We call a star a 0-cyclic tree.
Therefore, the previous invariant is that the oriented graph ($V,\{(i, C(i)) \mid i \in V\})$ consists of stars only. We can identify pseudo-vertex and stars, the center of the star being the index of the pseudo-vertex. Computing the connected components is done by running the following procedures several times:

Question 4

a) We consider the following graph:

Apply the function Gather on this graph, then the function Jump, and the Gather function again, etc.

```
Algorithm 3: Procedures to compute the connected components.
    def Gather():
        for \(i \in V\) do in parallel
            \(T(i) \leftarrow\left\{\begin{array}{lr}\min \{C(j) \mid\{i, j\} \in E, C(j) \neq C(i)\} & \text { if the set is nonempty } \\ C(i) & \text { otherwise }\end{array}\right.\)
        for \(i \in V\) do in parallel
            \(T(i) \leftarrow\left\{\begin{array}{lr}\min \{T(j) \mid C(j)=i, T(j) \neq i\} & \text { if the set is nonempty } \\ C(i) & \text { otherwise }\end{array}\right.\)
    def Jump():
        for \(i \in V\) do in parallel
            \(B(i) \leftarrow T(i)\)
        for \(j=1\) to \(\log n\) do
            for \(i \in V\) do in parallel
                \(T(i) \leftarrow T(T(i))\)
        for \(i \in V\) do in parallel
            \(C(i) \leftarrow \min \{B(T(i)), T(i)\}\)
```

b) Show that after using the Gather function, connected components containing several pseudo-vertices induce 1-cyclic trees in the oriented graph $(V,\{(i, T(i)) \mid i \in V\})$. Note that the smallest pseudo-vertex of a 1-cyclic tree belongs to the cycle.
c) Show that the function Jump transforms a 1 -cyclic tree into a 1 -cyclic star (or pseudo-vertex).
d) Show that after $\lceil\log n\rceil$ iterations, the connected components of the graph are represented by pseudo-vertices induced by C.
e) What is the overall complexity of the algorithm? (account for the computation of minima)

