
APPD TD2 - PRAM1
Julien Braine Laureline Pinault

03/10/2019

1 Selection in a list

Question 1

a) Let L be a list containing n objects colored either in blue or red. Design an efficient EREW algorithm that
separates the blue elements from the red elements (i.e. that builds a new list containing only the blue elements).

2 Mystery Procedure
We define the following two operators for a table A = [a0, a1, . . . , an−1] of n integers:

• Prescan(A) returns the table: [0, a0, a0 + a1, a0 + a1 + a2, . . . , a0 + a1 + . . . + an−2]

• Scan(A) returns the table: [a0, a0 + a1, a0 + a1 + a2, . . . , a0 + a1 + . . . + an−1]

These two operators can be computed in O(log n) time on P-RAM EREW.
Given a table Flags we define the following Split procedure:

Algorithm 1: Mystery Procedure 1
def Split(A, F lags):

Iup← n−Reverse(Scan(Reverse(Flags)));
Idown← Prescan(1− Flags);
for i = 1 to n do in parallel

if Flags(i) then
Index[i]← Iup[i]

else
Index[i]← Idown[i]

Result← Permute(A, Index);
return Result

The names of the different functions are relatively intuitive. In particular, Reverse reverse the table, and
Permute(A,Index) reorders table A according the permutation Index (the element A[i] goes to the Index[i]th posi-
tion).

Question 2

a) Apply the procedure on this input:

A = [5 7 3 1 4 2 7 2]
Flags = [1 1 1 1 0 0 1 0] .

b) What is the purpose of the Split procedure?

c) What is the computational time of the Split procedure?

1

PRAM1 2019-2020

Algorithm 2: Mystery Procedure 2
def Mystery(A, Number_Of_Bits):

for i = 0 to Number_Of_bits− 1 do
bit(i)← table containing the ith bit of the elements of A;
A← Split(A, bit(i));

Question 3

a) We consider the following Mystery procedure:

(a) Run the procedure on A = [5, 7, 3, 1, 4, 2, 7, 2] with Number_Of_Bits = 3.
(b) What is the purpose of procedure Mystery 2?
(c) Given entries of size O(log n) bits, what is the complexity with n processors? With p processors?

3 Connected components
We would like to design a CREW algorithm to compute the connected components of a graph G = (V, E) with vertices
numbered from to 1 to n. In particular, we are looking for an algorithm that returns a table C of size n, such that
C(i) = C(j) = k if and only if i and j are in the connected component and k is the smallest index among the vertices
from this component.

Definition 1 For all iteration of the algorithm, we call the pseudo-vertex labeled by i the set of vertices j, k, l, · · · ∈ V
such that C(j) = C(k) = C(l) = · · · = i. In other words, we consider the pseudo-vertex labeled by i to be the same as
the vertex labeled by i.

One of the invariants of the algorithm is that the smallest index of the vertices from the pseudo-vertex labeled by i
is i and the vertices belonging to a pseudo-vertex are in the same connected component. This assertion is true if we
initialize C by: for all i ∈ V = J1, nK : C(i) = i. This means that at the beginning, each processor considers itself as
the pseudo-vertex of its connected component. The goal of the algorithm is to change this egocentric point of view.

Definition 2 A k-cyclic tree (k > 0) is a weakly connected oriented graph such that:

• Each vertex has an out-degree of 1

• There is exactly one circuit of length k + 1.

We call a star a 0-cyclic tree.

Therefore, the previous invariant is that the oriented graph (V, {(i, C(i)) | i ∈ V }) consists of stars only. We can
identify pseudo-vertex and stars, the center of the star being the index of the pseudo-vertex. Computing the connected
components is done by running the following procedures several times:

Question 4

a) We consider the following graph:

1
2

3
4

5

6

7

8
9

Apply the function Gather on this graph, then the function Jump, and the Gather function again, etc.

- 2-

PRAM1 2019-2020

Algorithm 3: Procedures to compute the connected components.
def Gather():

for i ∈ V do in parallel

T (i)←
{

min {C(j) | {i, j} ∈ E, C(j) 6= C(i)} if the set is nonempty
C(i) otherwise

for i ∈ V do in parallel

T (i)←
{

min {T (j) | C(j) = i, T (j) 6= i} if the set is nonempty
C(i) otherwise

def Jump():
for i ∈ V do in parallel

B(i)← T (i)
for j = 1 to log n do

for i ∈ V do in parallel
T (i)← T (T (i))

for i ∈ V do in parallel
C(i)← min {B(T (i)), T (i)}

b) Show that after using the Gather function, connected components containing several pseudo-vertices induce
1-cyclic trees in the oriented graph (V, {(i, T (i)) | i ∈ V }). Note that the smallest pseudo-vertex of a 1-cyclic
tree belongs to the cycle.

c) Show that the function Jump transforms a 1-cyclic tree into a 1-cyclic star (or pseudo-vertex).

d) Show that after dlog ne iterations, the connected components of the graph are represented by pseudo-vertices
induced by C.

e) What is the overall complexity of the algorithm? (account for the computation of minima)

- 3-

	Selection in a list
	Mystery Procedure
	Connected components

