Parallel and Distributed Algorithms and Programs TD n°3

Julien Braine Laureline Pinault

9/10/2018

- Part 1		
1 410 1		
	Tree Root Finding	

Let \mathcal{F} be a forest of binary trees. Each node *i* of a tree is associated to a processor P(i) and has a pointer toward its father father(i).

 $Question \ 1$

a) Give a P-RAM CREW algorithm so that each node finds root(i). Show that your algorithm uses concurrent reads and gives its complexity.

– Part 2 –

Givens Rotations on a Ring of Processors

In order to triangularise a matrix A of order n, one can use Givens rotations. The basic operation ROT(i, j, k) consists in combining the two lines i et j, where each of them must start with k - 1 zeros, to cancel the element at position (j, k):

$$\begin{pmatrix} 0 & \dots & 0 & \mathbf{a}'_{\mathbf{i},\mathbf{k}} & a'_{i,k+1} & \dots & a'_{i,n-1} \\ 0 & \dots & 0 & \mathbf{a}'_{j,k+1} & \dots & a'_{j,n-1} \end{pmatrix} \leftarrow \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 0 & \dots & 0 & \mathbf{a}_{\mathbf{i},\mathbf{k}} & a_{i,k+1} & \dots & a_{i,n-1} \\ 0 & \dots & 0 & \mathbf{a}_{\mathbf{j},\mathbf{k}} & a_{j,k+1} & \dots & a_{j,n-1} \end{pmatrix}$$

Computation of θ is left to the astute reader. :-) The sequential algorithm can be written as follows:

Algorithm 1: Givens Rotation Procedure

We assume that a rotation ROT(i, j, k) can be executed in constant time, independently of k.

Question 2

- a) Adapt this algorithm to a linear network of n processors $\rightarrow P_1 \rightarrow P_2 \ldots \rightarrow P_n$.
- b) Same question with a bidirectional linear network of processors with only $\lfloor \frac{n}{2} \rfloor$ processors $\rightleftharpoons P_1 \rightleftharpoons P_2 \ldots \rightleftharpoons P_{n/2}$.

Part 3

Acceleration Factor

 $Question \ 3$

a) Consider a problem to solve, which necessitates a percentage f of inherently sequential operations. Show that the acceleration factor is limited by 1/f, regardless of the number of processors used. What lesson can be learned for the parallelization of a fixed size problem?

- b) We assume that to solve a problem of size $n \times n$:
 - the number of arithmetic operations to execute n^{α} , with α a constant;
 - the number of elements to store in memory is w_1n^2 , with w_1 constant;
 - the number of input/output operations (intrinsically sequentials) is w_2n^2 , with w_2 a constant.

How can we estimate the acceleration obtained with p processors on a problem of large size? (Hint: do not hesitate to introduce constants and assume that every process has memory M.) What lesson can be learned for the parallelization of a problem with variable size?

c) Practical/cultural question: do superlinear acceleration factors exist? (i.e. with an efficiency strictly greater than 1)