TD 13 - Approximations-2 (corrigé)

(SubsetSum) Exercice 1. Subset Sum

Dans un TD précédent, on s'est intéressé au problème de décision SUBSET-SUM consistant à savoir s'il existe un sous-ensemble d'entiers de S dont la somme vaut exactement t. Le problème d'optimisation qui lui est associé prend aussi en entrée un ensemble d'entiers strictement positifs S et un entier t, il consiste à trouver un sous-ensemble de S dont la somme est la plus grande possible sans dépasser t (cette somme qui doit donc approcher le plus possible t sera appelée t somme optimale).

On suppose que $S = \{x_1, x_2, ..., x_n\}$ et que les ensembles sont manipulés sous forme de listes triées par ordre croissant. Pour une liste d'entiers L et un entier x, on note L + x la liste d'entiers obtenue en ajoutant x à chaque entier de L. Pour les listes L et L', on note **Fusion**(L, L') la liste contenant l'union des éléments des deux listes.

Premier algorithme

Algorithm 1: Somme(S, t)

```
début
\begin{array}{c|c}
n \leftarrow |S|; \\
L_0 \leftarrow \{0\}; \\
\textbf{pour } i \textbf{ de 1 à } n \textbf{ faire} \\
L_i \leftarrow \textbf{Fusion}(L_{i-1}, L_{i-1} + x_i); \\
\text{Supprimer de } L_i \textbf{ tout élément supérieur à } t; \\
\textbf{retourner } le plus grand élément de L_n; \end{array}
```

1. Quelle est la distance entre la valeur retournée par cet algorithme et la somme optimale?

On a un ensemble $S = \{x_1, \dots, x_n\}$ d'entiers strictement positifs ainsi qu'un entier t. On cherche une somme partielle d'éléments de S maximale et inférieure à t. On appellera somme optimale ce nombre.

Dans le premier algorithme, L_i représente l'ensemble des sommes partielles des éléments de $\{x_1,\ldots,x_i\}$ inférieures à t. L_n représente donc l'ensemble des sommes partielles de S inférieures à t. Par conséquent, $\max(L_n)$ renvoie exactement la somme optimale de S. De plus, cet algorithme a testé toutes les sommes partielles inférieures à t.

La différence entre le résultat trouvé et la somme optimale est 0.

- 2. Quelle est la complexité de cet algorithme dans le cas général? Et si pour un entier $k \ge 1$ fixé, on ne considère que les entrées telles que $t = \mathcal{O}(|S|^k)$, quelle est la complexité de cet algorithme?
 - Dans le pire des cas, on teste toutes les sommes partielles de S soit une complexité en $O(2^n)$: il existe des entrées telles que $|L_i|=2^i$, prendre par exemple $S=\{1,2,2^2,\ldots,2^i,\ldots,2^{n-1}\}$ et t grand $(\geq 2^n)$. Or comme la fusion à chaque étape est en $O(|L_{i-1}|)$, la complexité totale est exponentielle en n.
 - Si $t = O(|S|^k) = O(n^k)$ pour k un entier fixé, alors $|L_i| = O(|S|^k)$. Au pas i de la boucle, la fusion et la suppression se font en $O(|L_i|)$. Comme il y a n pas dans la boucle, la complexité totale est $O(|S|^{k+1})$.

Deuxième algorithme Cet algorithme prend en entrée un paramètre ϵ en plus, où ϵ est un réel vérifiant $0 < \epsilon < 1$.

Algorithm 2: Somme-avec-seuillage(S, t, ϵ)

```
début

n \leftarrow |S|;
L_0 \leftarrow \{0\};
pour i de 1 à n faire

L_i \leftarrow Fusion(L_{i-1}, L_{i-1} + x_i);
L_i \leftarrow Seuiller(L_i, \epsilon/2n);
Supprimer de L_i tout élément supérieur à t;
retourner le plus grand élément de L_n;
```

L'opération **Seuiller** décrite ci-dessous réduit une liste $L = \langle y_0, y_1, \dots, y_m \rangle$ (supposée triée par ordre croissant) avec le seuil δ :

Algorithm 3: Seuiller(L, δ)

3. Évaluer le nombre d'éléments dans L_i à la fin de la boucle. En déduire la complexité totale de l'algorithme. Pour donner la qualité de l'approximation fournie par cet algorithme, borner le ratio valeur retournée/somme optimale.

```
Considérons une liste I=\{y_0,\ldots,y_m\} d'entiers triés par ordre croissant et \delta>0. L'opération de seuillage va consister à dire : soit y' le dernier élément gardé de I (on garde y_0 au départ) si y_i>y'*(1+\delta) alors on va garder y_i. En gros, on enlève les éléments qui sont trop proches d'autres éléments.
```

L'algorithme proposé va fonctionner de la même façon que le précédent sauf qu'il va seuiller à chaque pas de la boucle L_i par rapport à $\epsilon/2n$. On a alors $L_n=\{y_0,\ldots,y_m\}$. On va essayer de majorer m. On sait que : $t\geq y_m\geq (1+\epsilon/2n)^{m-1}*y_0\geq (1+\epsilon/2n)^{m-1}$

```
D'où : m \leq \ln t / \ln(1 + \epsilon/2n) + 1 \leq \frac{2n \log(t)}{\epsilon \log(2)} + 1, car (m-1)\log(1 + \epsilon/2n) \leq \log(t) et donc (m-1)\epsilon/2n\log(2) \leq \log(t) (car on a l'inégalité x\log(2) \leq \log(1+x) quand 0 \leq x \leq 1).
```

m est donc polynomial en $\ln t$, en $1/\epsilon$ et en n, donc polynomial en la taille des données. L'algorithme est en O(mn), donc polynomial en la taille des données. Complexité totale : $O(n \times \left(\frac{2n\log(t)}{\epsilon\log(2)} + 1\right)) = O(\frac{n^2\log(t)}{\epsilon})$.

Il faut maintenant vérifier qu'on a bien trouvé une $(1+\epsilon)$ Approximation en montrant que : $max\{L_n\} \geq (1+\epsilon)*Opt$ (somme optimale) On note P_i l'ensemble des sommes partielles de $\{x_1,\ldots,x_t\}$ inférieures à t.

```
Invariant : \forall x \in P_i, \exists y \in L_i, x/(1+\delta)^i \leq y \leq x Par récurrence : \qquad i=0 : OK \qquad \qquad 0 ns suppose que c'est vrai pour (i-1) et on le montre pour i : Soit x \in P_i P_i = P_{i-1} \cup (P_{i-1} + x_i) \qquad x = x' + e avec x' \in P_{i-1}, e = 0 ou e = x_i \qquad x' \in P_{i-1} donc \exists y', x'/(1+\delta)^i \leq y' \leq x' Si y' + e est conservé par le seuillage : (x'+e)/(1+\delta)^i \leq x'/(1+\delta)^{i-1} + e \leq y' + e \leq x' + e = x Si y' + e n'est pas conservé par le seuillage : \exists y'' \in L_i, y'' \leq y' + x_i \leq y'' * (1+\delta) (y'+e)/(1+\delta) \leq y'' \leq y' + e \leq x' + e \leq x (x'/(1+\delta)^{i-1} + e)/(1+\delta) \leq y'' + e \leq x' + e \leq x (x'/(1+\delta)^{i-1} + e)/(1+\delta) \leq y'' (x'+e)/(1+\delta)^i \leq y'' C'est l'encadrement recherché. Grâce à l'invariant, on obtient : Algo > Opt/(1+\epsilon/2n)^n > Opt(1+\epsilon)
```

(KCentre2) Exercice 2. K-Centre

On a donc une $(1+\epsilon)$ approximation de Subset-sum polynomiale en la taille des données et polynomiale en $1/\epsilon$.

On rappelle quelques définitions :

- Dans un graphe G = (V, E), un *ensemble indépendant* est un sous-ensemble de sommets V' non reliés par des arêtes (si $u \in V'$ et $v \in V'$, alors $(u, v) \notin E$).
- Dans un graphe G = (V, E), un *ensemble dominant* est un sous-ensemble de sommets V' tel que tout sommet de $V \setminus V'$ est adjacent à un sommet de V'. On note dom(G) le cardinal minimal d'un ensemble dominant.

On supposera dans la suite qu'on sait que ces deux problèmes sont NP-Complets.

Soit G = (V, E) un graphe non-orienté, complet, dont les arêtes sont pondérées par une fonction de poids w qui vérifie l'inégalité triangulaire : $w(u, v) \le w(u, w) + w(w, v)$ pour tout triplet de sommets (u, v, w). Soit aussi un entier $k \ge 1$.

Pour tout $S \subset V$ et tout $v \in V \setminus S$, on définit connect(v,S) comme le poids minimal d'une arête reliant v à un sommet de S: $connect(v,S) = \min_{s \in S} \{w(v,s)\}$. Le problème est de trouver un k-centre, c'est à dire un sous-ensemble S de cardinal k et tel que $center(S) = \max_{v \in V \setminus S} \{connect(v,S)\}$ soit minimal.

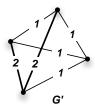
- 1. À quoi peut bien servir de déterminer un k-centre (donner un exemple d'application)?
 - Prenons un ensemble de villes, avec les distances entre ces villes connues. On veut choisir un sous-ensemble de k villes pour implanter des entrepôts, de façon à minimiser la distance maximum entre une ville et l'entrepôt le plus proche.

Autres exemples : arrêts de bus, serveur de pages Web, et bien sûr machines à café...

- **2.** Montrer que trouver un *k*-centre est NP-difficile.
 - Nous allons réaliser la réduction à partir d'un ensemble dominant telle que si Ensemble Dominant répond "oui" alors k-centre aura pour solution 1, et sinon (si Ensemble Dominant répond "non") alors on aura 2 pour solution.

Soit une instance du problème Ensemble Dominant (G=(V,E),k), on construit une nouvelle instance pour k-centre de la façon suivante. À partir de G on construit un graphe complet G'=(V,E') avec pour fonction de poids pour $e\in E'$ w(e)=1 si $e\in E$, et w(e)=2 sinon. Puisque toutes les distances dans G' valent 1 ou 2, on a nécessairement que la valeur du k-centre est soit 1 soit 2. Si on a un certificat D pour Ensemble Dominant, de taille k, alors il nous suffit de placer un "centre" sur chacun des sommets de D pour avoir que chaque $v\in V\setminus D$ est à une distance 1 de D dans G', et la solution pour le k-centre est alors 1.

Inversement, si k-centre retourne 1 comme valeur, alors on a un ensemble $S \subseteq V$ tel que tout sommet $v \in V \setminus S$ soit à une distance 1 de S. Par construction, tous ces sommets doivent avoir une arête $e \in E$ vers un sommet de S, et donc S est un ensemble dominant de taille k.



On va chercher une 2-approximation, i.e. un S de cardinal k tel que $center(S) \le 2 \cdot OPT$, où $OPT = \min_{S \subset V, |S| = k} \{center(S)\}$.

On ordonne les arêtes de E par poids croissant : $w(e_1) \le w(e_2) \le ... \le w(e_m)$, où m = |E|. On pose $G_i = (V, E_i)$ où $E_i = \{e_1, e_2, ..., e_i\}$ est l'ensemble des i premières arêtes.

- 3. Montrer que résoudre le problème du k-centre revient à trouver le plus petit indice i tel que G_i a un ensemble dominant de cardinal au plus k.
 - On veut minimiser center(S).

On veut montrer qu'avoir S un ensemble dominant de G_i est équivalent à $center(S) \leq w(e_i)$.

```
Soit S un ensemble dominant de G_i \iff \forall v \in V \backslash S, \exists s \in S | (v,s) \in E_i \\ \Leftrightarrow \forall v \in V \backslash S, \exists s \in S | w(v,s) \leq w(e_i) \\ \Leftrightarrow \forall v \in V \backslash S, connect(v,S) \leq w(e_i) \\ \Leftrightarrow center(S) = \max_{v \in V \backslash S} \{connect(v,S)\} \leq w(e_i)
```

Donc minimiser center(S) avec $|S| \le k$ revient à trouver le plus petit $w(e_i)$ (c'est à dire l'indice i minimum, car les $w(e_i)$ sont triés par ordre croissant), tel que G_i a un ensemble dominant S de cardinal k.

Une dernière définition : le carré d'un graphe G=(V,E), noté $G^{(2)}=(V,E^{(2)})$, contient les chemins de longueur au plus deux : $(u,v)\in E^{(2)}$ si $(u,v)\in E$ ou s'il existe $w\in V$ tel que $(u,w)\in E$ et $(w,v)\in E$.

- **4.** Étant donné un graphe H, soit I un ensemble indépendant du graphe carré $H^{(2)}$. Montrer que $|I| \leq dom(H)$.
 - On veut montrer que si I est un ensemble indépendant de $H^{(2)}$ (c'est-à-dire $\forall x,y \in I, (x,y) \not\in E_H^{(2)}$), alors $|I| \leq dom(H)$.

Soit ${\cal D}$ un ensemble dominant de ${\cal H}$, alors

- d'une part, tout sommet de I est "dominé par" (c'est-à-dire relié ou égal à) au moins un sommet de D dans H (car D ensemble dominant de H).
- d'autre part, tout sommet de D "domine" (est relié ou égal à) au plus un sommet de I dans H (sinon, soient $x,y \in I$ dominés par un même sommet dans H, alors x et y sont à une distance 1 ou 2 dans H, autrement dit (x,y) est une arête de $H^{(2)}$, d'où une contradiction avec I ensemble indépendant de $H^{(2)}$).

Donc $|I| \leq dom(H)$.

5.

- L'algorithme d'approximation du k-centre est le suivant : Remarque : Complexité de l'algorithme (non demandée) : ligne 4 en $O(m \times n^3)$ (calcul de $G_i^{(2)}$ à partir de G_i en $O(n^3)$ avec produit de matrices d'adjacence), ligne 4 en $O(m \times n^2)$ (calcul avec un glouton qui pioche un sommet mis dans M_i , puis retire ce sommet et ses voisins dans $G_i^{(2)}$ et recommence sur le graphe restant, possible en $O(n^2)$, ou O(m+n) avec des listes d'adjacences), ligne 4 en O(m). On a donc un algorithme polynomial.
- (a) Montrer que $w(e_i) \leq OPT$.

On sait d'après la question 3 que $OPT = \min_i \{w(e_i) | dom(G_i) \le k\}$, or $\forall i < j, |M_i| > k$ (ligne 3 de l'algo)) $\Rightarrow dom(G_i) \ge |M_i| > k$ (d'après la question 4).

On peut donc écrire : $OPT = \min_{i \geq j} \{w(e_i) | dom(G_i) \leq k\} \geq w(e_j)$, car les $w(e_i)$ sont triés par ordre croissant.

début

Construire $G_1^{(2)}, G_2^{(2)}, \ldots, G_m^{(2)}$; Trouver de manière gloutonne un ensemble indépendant inextensible (auquel on ne peut pas rajouter des sommets) M_i dans chaque graphe $G_i^{(2)}$;

Trouver le plus petit indice i tel que $|M_i| \le k$, soit j cet indice; retourner M_i ;

(b) Montrer que l'algorithme est bien une 2-approximation.

Remarque : À ce stade, on n'a pas encore utilisé le fait que les M_i , et donc M_j , sont maximum pour l'inclusion, ni l'inégalité triangulaire sur les $w(e_i)$.

Montrons que $center(M_i) \leq 2 \cdot OPT$.

On a $center(M_i) = \max_{v \in V \setminus M_i} \{connect(v, M_i)\}$, soit $v \in V \setminus M_i$, $\exists s \in M_i$ tel que (v, s) arête de $G_i^{(2)}$ (en effet, sinon M_i ne serait pas un indépendant maximal pour l'inclusion de $G_i^{(2)}$, car on pourrait ajouter v à M_j).

Par conséquent :

soit (v,s) arête de G_j , donc $w(v,s) \leq w(e_j)$

— soit \exists sommet z tel que (v,z) arête de G_j et (z,s) arête de G_j

Donc $w(v,s) \leq w(v,z) + w(z,s) \leq 2 \cdot w(e_i)$.

Donc, de toute façon, $connect(v, M_i) \le 2 \cdot w(e_i)$, et au final $center(M_i) = \max\{connect(v, M_i)\} \le 2 \cdot w(e_i) \le 2 \cdot OPT$

6. Montrer que la borne 2 est stricte : donner un exemple de graphe où l'algorithme réalise effectivement une 2-approximation.

🕼 Un graphe atteignant la borne 2 est par exemple une roue de n+1 sommets : chaque arête incidente au point central de la roue a un poids de 1, et toutes les autres arêtes ont un poids de 2.

FIGURE 1 - Roue : les arêtes de poids 1 sont représentés en trait fin, et les arêtes de poids 2 en trait fort.

Pour k=1, la solution optimale est le centre de la roue, et OPT=1. L'algorithme va lui calculer l'indice j=n. G_n^2 est une clique, et si la solution renvoyée est un des sommets autres que le bord, alors le coût de la solution est 2.

7. Montrer que si $P \neq NP$, il n'existe pas de $(2 - \varepsilon)$ -approximation au problème du k-centre, pour tout $\varepsilon > 0$.

🕼 On va montrer que si un tel algorithme existait, alors il résoudrait le problème en temps polynomial. On va faire une réduction à partir du problème de décision de l'existence d'un ensemble dominant.

Soit G = (V, E), k une instance du problème d'ensemble dominant. On construit alors un graphe complet G' = (V, E'), avec pour poids des arêtes :

$$cost(u,v) = \begin{cases} 1, & if \ (u,v) \in E \\ 2 & sinon \end{cases}$$

 G^\prime satisfait bien l'inégalité triangulaire. La réduction satisfait bien les conditions :

si $dom(G) \le k$, alors G' a un k-centre de coût 1

— si dom(G) > k, alors le coût optimum d'un k-centre de G' est 2.

Dans ce cas, lorsqu'on utilise l'algorithme de $(2-\epsilon)$ -approximation sur le graphe G', il doit renvoyer une solution de coût 1, puisqu'il ne peut pas utiliser une arête de coût 2. On a donc avec cet algorithme un moyen de déterminer en temps polynomial s'il existe ou non un ensemble dominant. Donc si $P \neq NP$ ce n'est pas possible.

4