Qualitative Alternating Parity Tree Automata

Laureline Pinault

Ecole Normale Superieure of Lyon

September 3, 2014

Outline

Introduction

Alternation

Is AIt = ND?

Outline

Introduction

Alternation

Is AIt = ND?

Computational vs Reactive Programs

Computational Programs:

Run in order to produce a final result on terminaison.

Specified in terms of Inputs/Outputs. Correctness: Hoare triples = $\{P\}C\{Q\}$

Reactive Programs:

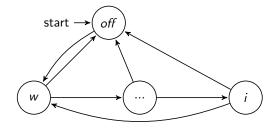
Maintain an ongoing interaction with their environment.



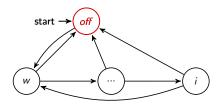
Specified in term of behavioural tree. Correctness: Behavioural specifications:

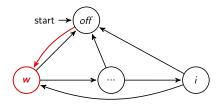
- MSO

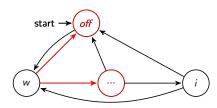
- Tree automata

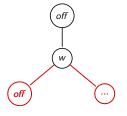


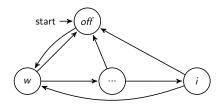
off

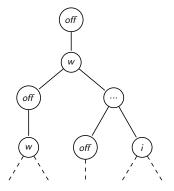


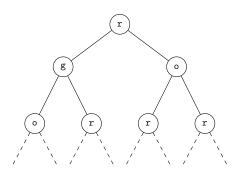






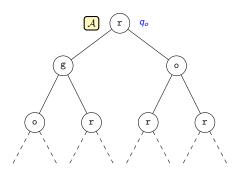






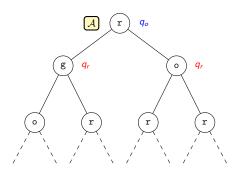
$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



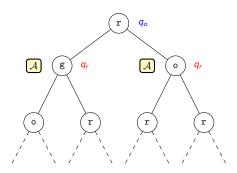
$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



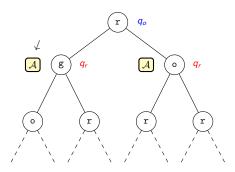
$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



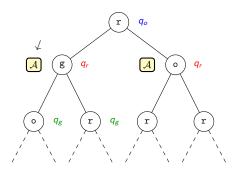
$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



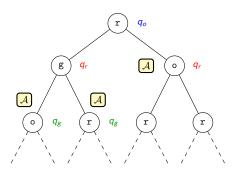
$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



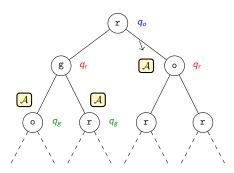
$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



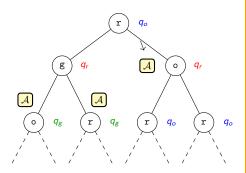
$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



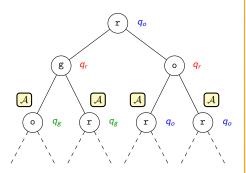
$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

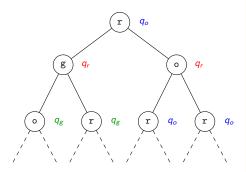
initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$



$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$

Specification: " $\exists^{\infty}r \Rightarrow \exists^{\infty}g$ "



$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

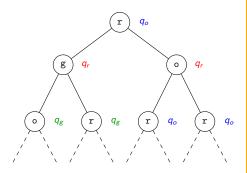
initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$

A branch is accepting if the smaller colour seen infinitely many often is even (Parity).

A run is accepting if <u>all its branches</u> are accepting (\forall) .

A tree is accepted if there exists an accepting run (\exists).

Specification: " $\exists^{\infty}r \Rightarrow \exists^{\infty}g$ "



 $\exists \rho \; \forall B, \; Parity(B)$

$$Q = \{q_r, q_g, q_o\} \qquad \qquad \mathcal{A}$$

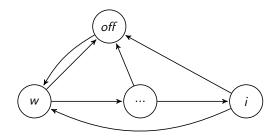
initial state: q_o
colours: $c(q_r) = 1$
 $c(q_g) = 0$
 $c(q_o) = 2$

A branch is accepting if the smaller colour seen infinitely many often is even (Parity).

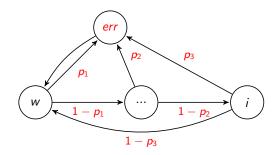
A run is accepting if <u>all its branches</u> are accepting (\forall) .

A tree is accepted if there exists an accepting run (\exists).

And if There Were Probabilities?

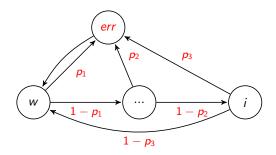


And if There Were Probabilities?



L.Pinault

And if There Were Probabilities?



 $\exists \rho \ \forall B, \ Parity(B) \longrightarrow \exists \rho \ \forall^{=1}B, \ Parity(B)$

Outline

Introduction

Alternation

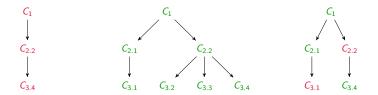
Is AIt = ND?

Principle of the Alternation

Non-determinism:

Universality:

Alternation:



Alternation in Tree Automata

 $Q = Q_{\exists} \uplus Q_{\forall}.$

To construct a run:

- In Q_{\exists} , Eve chooses the next transition. $ightarrow\sigma$
- In ${\it Q}_{orall}$, Adam chooses the next transition. ightarrow au

$$\exists \rho \ \forall B, \ Parity(B) \longrightarrow \exists \sigma \ \forall \tau \ \forall B, \ Parity(B)$$
$$\exists \rho \ \forall^{=1}B, \ Parity(B) \longrightarrow \exists \sigma \ \forall \tau \ \forall^{=1}B, \ Parity(B)$$

Outline

Introduction

Alternation

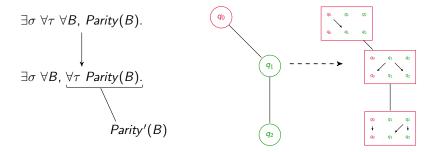
Is AIt = ND?

Classical Acceptance: the Simulation Theorem

Theorem (Simulation Theorem)

Let \mathcal{A} be an alternating parity tree automaton. Then one can effectively construct a non-deterministic parity tree automaton \mathcal{B} s.t. $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$.

Proof.



Qualitative Acceptance: the Simulation Theorem?

Qualitative Acceptance: the Simulation Theorem?

Conjuncture

Alternating qualitative parity tree automata are strictly more expressive than non-deterministic qualitative parity tree automata.

Other works

To show the conjuncture:

- Example of an interesting alternating language.
- Characterization of alternating languages: pumping lemmas.

Parallel work:

- Parity hierarchy.
- Non complementation.