
Coinduction based algorithm to decide Büchi automata
equivalence

Laureline Pinault
M2 internship supervised by Denis Kuperberg and Damien Pous

ENS de Lyon

February 2017 - June 2017

Contents

1 Introduction 2

2 Algorithms for equivalence of automata over finite words 3
2.1 Hopcroft and Karp’s algorithm for DFA . . . . . . . . . . . . . . . . . . . . 3
2.2 HKC algorithm for NFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 From Büchi automata to finite words automata 8
3.1 Ultimately Periodic Words of a Rational ω-Language . . . . . . . . . . . . . 9
3.2 A Finite Automaton Recognizing Ultimately Periodic Words of a Rational

ω-Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 HKC on Büchi automata 12
4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Compression of the states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Conclusion 18

1



1 Introduction

Automata are abstract machines which are rather simple compared to Turing machines. Yet
they are studied a lot in Computer Science. Indeed, not only are they able to model a lot of
programs, but some classes of automata enable also a simplification of a lot of indecidable
problems for Turing machines. In this internship, we were interested in Büchi automata.
These automata deal with infinite words. They can represent both reactive systems and
their specifications in LTL logic. Therefore, it is particularly useful to have an efficient way
to test equivalence or inclusion of such automata. [GO01]

The usual method to check whether a reactive system P follows a given LTL formula F
or not is to compute the Büchi automaton of P and the Büchi automaton of ¬F and checks
if the intersection of the two Büchi automata is empty [CVWY91]. However, an efficient
way to check if the Büchi automaton of P is included in the Büchi automaton of F could
give a better algorithm.

In this work we are interested in adapting algorithms running on finite words automata
to Büchi automata. Usually equivalence of finite words automata is checked either via
minimisation or through Hopcroft and Karp’s algorithm. The advantage of Hopcroft and
Karp’s algorithm is that it can be executed on the fly on an automaton whose transitions are
computed on demand. Moreover minimisation is not possible for Büchi automata (a unique
minimum Büchi automaton does not necessarily exists for rational languages of infinite
words). Thus we wanted to extend Hopcroft and Karp’s algorithm and more particularly an
improvement developped in [BP13].

However those algorithms run on a deterministic automaton or at least a determinisable
one and it is a well-known result that non-deterministic Büchi automata are strictly more
expressive than deterministic ones. One possibility is to the Safra construction to obtain
deterministic Müller automata, but this will mean dealing with rather complicated accept-
ing conditions of infinite runs. Besides, the article [CNP93] offers a construction that allows
to work with automata over finite words instead of Büchi automaton to solve problems of
equivalence or inclusion of languages. However the construction makes the number of states
grows exponentially. So the stake of this work is to take advantage of the particular structure
of the constructed automaton to develop optimisations in order to have an hopefully efficient
algorithm.

The rest of this report is organized as follow. First I will present Hopcroft and Karp’s
algorithm and its improvement for the case of non-determinitic automata: HKC. I will then
present the construction allowing to use the algorithms on finite words. And last but not
least, I will present the algorithm on Büchi automata along with two improvements: some
pre-processing and a way to represent the states more compactly.

2



2 Algorithms for equivalence of automata over finite

words

Hopcroft and Karp’s algorithm has first been designed to run on determinitic finite words
automata. However, as any non-determinitic finite words automaton can be transformed into
an equivalent deterministic one, the algorithm can be run on it. Besides, the determinized
automaton have a specific shape, [BP13] takes advantage of it and improve Hopcroft and
Karp’s algorithm for this case. In this section I will first present the algorithm for determin-
istic finite automata (DFA) and then explain the improvement for non-deterministic finite
automata (NFA).

2.1 Hopcroft and Karp’s algorithm for DFA

Deterministic finite automata. The deterministic finite automata are finite state ma-
chines that take as input a finite string and accept or reject it accordingly to a uniquely
determined computation.

Formally, a deterministic finite automaton (DFA) over the alphabet Σ is a triple (X, t, o)
where X is a finite set of states, t : X → XΣ is the transition function which returns for
each state x and each letter a the next state x′ = ta(x) and o : X → {0, 1} is the output
function which determines whether a state x is final (o(x) = 1) or not (o(x) = 0).

In this work we deal with a slightly more general notion of automaton: we allow the
output function to take value in any semi-lattice (V,+, 0) instead of only the boolean one1. A
semi-lattice (V,+, 0) consists of a set V , a binary operation + : V 2 → V which is associative,
commutative, idempotent and has 0 as a neutral element. For instance the set of booleans
({0, 1}, or, 0) and the set of languages (2Σ∗ ,∪,∅) are semi-lattices. More generally for any
set X its power set (P(X),∪,∅) is a semi-lattice. The set of possible output value is required
to be a semi-lattice so that the construction used to determinized automata works.

Language equivalence. A word is accepted by an automaton with outputs in {0, 1} if
the reading of the word in the automaton end up in a state whose value is 1. The set of
words accepting by the automaton when starting from a given state is called the language
of this state. A language that can be recognized by a finite automaton is called rational.

More generally we can define the language of a state for the more general automaton we
defined above. For (X, t, o) a DFA with value in V , we define a function J·K : X → V Σ∗ that
maps states to V -valued languages. For any x in X, it is defined as follow:{

JxK(ε) = o(x)

JxK(a · u) = Jta(x)K(u) for a ∈ Σ and u ∈ Σ∗

When V = {0, 1}, the function JxK(·) can be assimilated with a subset of Σ∗ and is often
noted L(x).

1This definition of automata is linked to Moore and Mealy machines.

3



Definition 1. We say that two states x and y are language equivalent and write x ∼ y when
JxK = JyK.

Without loss of generality, we consider that the states we want to decide the equivalence
of belongs to the same automaton. Indeed, if we have two automaton we can assume we
only have one by doing the union. Besides if we have two disjoint it might be useful to
first merge them partially thanks to similarity before launching the algorithm to test the
language equivalence.

In order to be able to determine the language equivalence relation, we will introduce a
function operating over relations. Let b be a function over the set of relations over X defined
as b : R 7→ {(x, y) | o(x) = o(y)∧∀a ∈ Σ, ta(x) R ta(y)}. Language equivalence coincide with
the greatest fixpoint of b, which means that any post-fixpoint of b is included in the language
equivalence relation. It will found the principle of the Hopcroft and Karp’s algorithm: the
algorithm tries to construct a relation R that is a post-fixpoint of b and contains the pair
given as input. With the coinduction vocabulary, we say that the algorithm tries to construct
a b-bisimulation. For some details on those notion, we will refer the lector to [BP13]. In fact
we will present here a more direct way that does not need the introduction of other notions.

Proposition 1. x ∼ y if and only if there exists R such that xRy and R ⊆ b(R).

Proof. ⇒: ∼ suits.

⇐: We show by induction on |u| that ∀u ∈ Σ∗, ∀Y ′, Z ′, Y ′RZ ′ ⇒ JY ′K(u) = JZ ′K(u).

Hopcroft and Karp’s algorithm. Hopcroft and Karp’s algorithm (see algorithm 1) takes
as input two states x and y of a given automaton (X, t, o) and decide whether they are
language equivalent or not. It works by assuming that the two states are language equivalent
and exploring the automaton to see whether it is consistent or not.

The algorithm keeps track of a list of pairs it has to check. At each step it inspect one
of them. If the outputs are not equal then it means that we can read two words that have
not the same value, thus the algorithm reject. If it sees again a pair it already checked, the
algorithm goes on and if it is the first time it sees it, it adds its voisins to be list of pairs to
be checked.

As the language equivalence is a reflexive, transitive and symmetric relation, the algo-
rithm assume that the one it constructs will also be, then instead of testing if a given pair
is in the set of pairs it already checked, it tests if it is on its equivalence closure noted e(·).
It allows to potentially not exploring the whole automaton.

4



Algorithm 1: HK(x, y)

1 R := ∅;
2 Todo := {(x, y)};
3 while Todo 6= ∅ do
4 Extract (x′, y′) from Todo;
5 if (x′, y′) ∈ e(R ∪ Todo) then skip;
6 if o(x′) 6= o(y′) then return False;
7 forall a ∈ Σ do
8 Insert (ta(x

′), ta(y
′)) in Todo

9 Insert (x′, y′) in R;

10 Return True;

Theorem 1. The algorithm HK is correct: it terminates and x ∼ y if and only if HK(x, y).

Proof. • It terminates because each pair can be inserted only once in Todo and we extract
one of them at each iteration.

• If the algorithm returns True on (x, y), then x ∼ y because the algorithm build a
relation which is a post-fixpoint of the function b previously defined, namely the relation
e(R). Indeed one can easily checked that we have the following loop invariant: (x, y) ∈
(R ∪ Todo) ∧ R ⊆ b(e(R ∪ Todo)). Since Todo is empty at the end of the loop we
eventually have (x, y) ∈ R ∧ R ⊆ b(e(R)). By applying e which is monotone2 and
contains the identity (i.e. for any R, R ⊆ e(R)) we obtain that (x, y) ∈ e(R) ∧ e(R) ⊆
e(b(e(R))). Moreover e has a very interesting property3 with respect to b: e(b(·)) ≤
b(e(·)) that can easily be proved. Thus we obtain: e(R) ⊆ b(e(e(R))) = b(e(R)). Then
by proposition 1, x ∼ y.

• If the algorithm returns False on (x, y), then x 6∼ y. Indeed, for all (x′, y′) inserted in
Todo during the algorithm, there exists u ∈ Σ∗ such that x

u−→ x′ and y
u−→ y′, meaning

that by reading u we can go from x to x′ and from y to y′. Since the algorithm returns
False, there exists (x′, y′) such that o(x′) 6= o(y′) i.e. Jx′K(ε) 6= Jy′K(ε). Thus it exists
u ∈ Σ∗ such that JxK(u) 6= JyK(u) so x 6∼ y.

2.2 HKC algorithm for NFA

Non deterministic finite automata Non deterministic finite automata are defined al-
most as deterministic one but several transitions outgoing from a single state are allowed.

Formally, a non deterministic finite automaton (NFA) over the input alphabet Σ is a
triple (X, t, o) where X is a finite set of states, t : X → P(X)Σ is the transition function

2Here monotone means non decreasing.
3In coinduction theory, the function e is said to be compatible and we say we do a b-bisimulation up-to e.

5



and o : X− > V is the output function which assigns to each state a value in a semi-lattice
(V,+, 0).

As said previously, non deterministic finite automata can be transformed into equivalent
deterministic one. As the idea is to follow transition from set of states to set of states it is
called the powerset construction:

The powerset construction of a NFA (X, t, o) is the equivalent deterministic finite au-
tomaton (DFA) (P(X), o], t]) where t] : P(X) → P(X)Σ and o] : P(X) → (V,+, 0) are
defined for all Y ⊆ X and a ∈ Σ as follows:

t]a(Y ) =


ta(y) if Y = {y} with y ∈ X
0 if Y = 0

t]a(Y1) + t]a(Y2) if Y = Y1 ∪ Y2

o](Y ) =


o(y) if Y = {y} with y ∈ X
0 if Y = 0

o](Y1) + o](Y2) if Y = Y1 ∪ Y2

Note that for all a ∈ Σ, t]a and o] are semi-lattices homorphisms from (P(X),∪,∅) to
(V,+, 0). These properties are fundamental for the improvement of Hopcroft and Karp’s
algorithm we are going to present.

The more convenient way to define the languages of a NFA is to do it through the
powerset construction: the language of x ∈ X in (X, t, o) is defined as the language of {x}
in (P(X), t], o]), namely J{x}K. Thus we focus on language equivalence of sets of states.

Then to determine if Y ∼ Z for Y, Z ⊆ X, we can simply launch Hopcroft and Karp’s
algorithm on the powerset construction. However we can use the fact that the states on the
powerset are set of states to improve the algorithm, as described in [BP13].

HKC Intuitively, if we know that all the parts of the sets are in relation, then we know
that the sets are in relation. Formally we define a function u over the set of relation of P(X)
as u : R 7→ {(Y1 ∪ Y2, Z1 ∪Z2)|Y1RZ1 ∧ Y2RZ2}, and we add the closure with respect to u to
the equivalence one. The closure we obtain is called the congruence closure and is noted c.

HKC (see algorithm 2) takes as input two sets of states Y and Z of a given NFA (X, t, o)
and decide whether they are language equivalent or not. It is the same algorithm as Hopcroft
and Karp’s one but it works specifically on a powerset construction and use c instead of e.

6



Algorithm 2: HKC(Y, Z)

1 R := ∅;
2 Todo := {(Y, Z)};
3 while Todo 6= ∅ do
4 Extract (Y ′, Z ′) from Todo;
5 if (Y ′, Z ′) ∈ c(R ∪ Todo) then skip;
6 if o](Y ′) 6= o](Z ′) then return False;
7 forall a ∈ Σ do
8 Insert (t]a(Y

′), t]a(Z
′)) in Todo

9 Insert (Y ′, Z ′) in R;

10 Return True;

Theorem 2. The algorithm HKC is correct: it terminates and Y ∼ Z if and only if HKC(Y, Z).

Proof. As c has the same properties as e (namely it is monotone, it contains the identity
and c(b(·)) ≤ b(c(·))), the same proof works.

Example 1. The Figure 1 shows an example (taken from [BP13]) of execution of the algo-
rithms on a NFA. The relation R constructed with Hopcroft and Karp’s algorithm consists
of the edges 1,2,3 and 4 while the one constructed with HKC consists only of the edges 1 and
2, meaning that the algorithm does not explore the whole automaton. Indeed: {x}R{u} ⇒
{x, y}c(R){u, y} ⇒ {x, y}c(R){y, y, z} ⇒ {x, y}c(R){y, z} ⇒ {x, y}c(R){u}.

x y z

a

a

a

a

u a

{x} {y, z} {x, y} {x, y, z}

{u}

a

1 2 3 4

a a a

a

Figure 1: Example of the running of Hopcroft and Karp’s and HKC algorithms on a NFA.

7



Computation of the congruence closure. For the HKC algorithm to be effective, we
need a way to check whether a pair belongs to the congruence closure of a given relation,
which as shown by the example 1 is not trivial.

The idea is that instead of working with the states of the automaton we manipulate their
normal form in a rewriting system. For a relation R, we define R as the smallest irreflexive
relation satisfying the following rules:

Y R Z
Y  R Y ∪ Z

Y R Z
Z  R Y ∪ Z

Z  R Z
′

Y ∪ Z  R Y ∪ Z ′

Proposition 2. For all relations R, the relation  R is convergent.

Proof.  R is terminating. If Z  R Z ′ then |Z| < |Z ′| (by induction on the derivation
tree) and |Z ′| is bounded by |X|w.

 R is confluent. By induction on the derivation tree,  R is locally confluent. Since  R

is terminating and locally confluent, Newman’s lemma shows that  R is confluent.

We denote by Y ↓R the normal form of a set Y w.r.t  R. Intuitively, the normal form of
a set is the largest set of its equivalence class.

Theorem 3. For all relations R, and for all Y, Z ∈ P(X), we have Y ↓R= Z ↓R iff (Y, Z) ∈
c(R).

Proof. ⇒ Let’s assume that Y ↓R= Z ↓R. We show by induction that for all Z,Z ′ ∈ X, if
Z  R Z

′ then Z c(R) Z ′. Thus, Y c(R) Y ↓R and Z c(R) Z ↓R, so Y c(R) Z.

⇐ By induction on the derivation of Y c(R) Z.

Thus, in order to check if (Y, Z) ∈ c(R∪ todo), we only have to compute the normal form
of Y and Z with respect to  R∪todo. Since each pair of R ∪ todo may be used only once as
a rewriting rule, the time for checking whether (Y, Z) ∈ c(R ∪ todo) is bounded by r2n with
r = |R ∪ todo| and n = |X|. This algorithm is used for its simplicity and because it behaves
well in practice.

3 From Büchi automata to finite words automata

A Büchi automaton over the alphabet Σ has the same formal definition as a finite automaton,
i.e. a triple (X, t, o) where X is a finite set of states, t is the transition function going from
X to either XΣ if the automaton is deterministic or P(X)Σ if it is not, o : X → {0, 1} is the
outpout function which determines whether a state x is final (o(x) = 1) or not (o(x) = 0).
However, a Büchi automaton will read infinite words. Then an infinite word will be accepted

8



by the automaton if and only if we see infinitly often a final state. More formally, given
u = u1u2... an infinite word over Σ, we say that χ = x1x2... is a calculus of (X, t, o) on u
if for all i ∈ N, xi+1 ∈ tui(xi) and u is accepted by the state x if there exists a calculus
χ = xx2... such that {i ∈ N|o(xi) = 1} is infinite. We note Lω(x) the set of all infinite words
that are accepted by x.

The set of languages that can be recognized by a Büchi automaton are called the rational
ω-laguages.

The subject of this section is to explain the results of [CNP93]. Namely that a set
of infinite words recognizing by a Büchi automaton is entirely characterized by its subset
of ultimately periodic words (the words of the form u · vω). Moreover thoses sets can be
represented by rational languages of finite words. This fact allows to manipulate DFAs
instead of Büchi automata.

In this section we first define the set of ultimately periodic words of a Rational ω-Language
and then show that it is represented by a rational language by constructing an automaton
recognizing it.

3.1 Ultimately Periodic Words of a Rational ω-Language

Ultimately periodic words are infinite words of the form u · vω with (u, v) ∈ Σ∗ × Σ+. The
set of ultimately periodic words of an ω-language L is composed of all ultimately periodic
words of L. More formally, UP (Σω) = {u · vω|(u, v) ∈ Σ∗ × Σ+} is the set of all ultimately
periodic words and for L an ω-language over Σ we note UP (L) = L ∩ UP (Σω) its subset of
ultimately periodic words.

Proposition 3. Let L1 and L2 be two ω-rational languages such that UP (L1) = UP (L2),
then L1 = L2.

Proof. (L1∪L2)\(L1∩L2) is an ω-rational language containing no ultimately periodic word.
Yet any non-empty rational ω-language contains at least one ultimately periodic word, so
(L1 ∪ L2)\(L1 ∩ L2) is empty and L1 = L2.

The set of ultimately periodic words of a rational ω-language is thus characteristic of this
language. To compare two rational ω-languages it suffices to compare their set of ultimately
periodic words. The ultimately periodic word u · vω ∈ Σω can be represented by the finite
word u · $ · v ∈ (Σ ∪ $)∗. Then we can have a language of finite words characterizing a
rational ω-language L, namely L$ = {u · $ · v|u · vω ∈ UP (L)}. We will show in the following
subsection that this language of finite words happens to be rational, which allows to work
easily with it.

9



3.2 A Finite Automaton Recognizing Ultimately Periodic Words
of a Rational ω-Language

There are many ways to prove the rationality of the language L$. Here we will present
the direct construction of a finite automaton recognizing it which is presented in [CNP93],
because we will use this automaton to decide equivalence of Büchi automata. For this we
divide the language between prefixes and periods of ultimately periodic words.

Let L be a rational ω-language and (X, t, o) a non-deterministic Büchi automaton recog-
nizing L. For x, y ∈ X we define Mx,y = {u ∈ Σ∗|x u−→ y} and Ny = {v ∈ Σ+|vω ∈ Lω(y)}.
Then (Lω(x))$ =

⋃
y∈XMx,y · $ · Ny. Indeed:

w ∈ (Lω(x))$ ⇔ ∃u, v ∈ Σ∗ × Σ+ such that w = u · $ · v ∧ u · vω ∈ Lω(x)

⇔ ∃u, v ∈ Σ∗ × Σ+, ∃y ∈ X such that w = u · $ · v ∧ x u−→ y ∧ vω ∈ Lω(y)

⇔ ∃u, v ∈ Σ∗ × Σ+, ∃y ∈ X such that w = u · $ · v ∧ u ∈Mx,y ∧ v ∈ Ny
⇔ w ∈

⋃
y∈X

Mx,y · $ · Ny

The languages Mx,y are rational beacause they are recognized by the finite automata
(X, t, {y}) with initial state x. We want to construct automata recognizing the languages
Ny. The problem is that for vω to be in Lω(y) there needs to be a cycling run of the word
vk going through a final state for some k ∈ N but not necessarly for v itself. For instance,
on the automaton of the Figure 3.2, we need to read (ab)3 before finding an accepting cycle.
Moreover it could happen that even if the cycle has a small period, you have to read vk

′
as

a prefix before acceding it. The idea of the construction is then to simulate the automaton
on each state. We obtain a vector state showing all the calculi of v on the automaton and
then we can compute the run of the vk until we loop and check whether the loop contains a
final state or not.

1

2

3

4

5

b a

b

a

a

b

Figure 2: A Büchi automaton with final state 1.

10



Example 2. (taken in [CNP93]) Below are the first states of the automaton recognizing Ny
for the automaton of the Figure ??.

1, 0
2, 0
3, 0
4, 0
5, 0

 a−→


2, 0
⊥

1, 1
5, 0
⊥

 b−→


3, 0
⊥

4, 1
1, 1
⊥


From this calculus, we can build the following calculi of the automaton on the word ab,
starting from state 1:

1
ab
 3 , 3

ab
 4 , 4

ab
 1

which allow us to find a loop containing a repeated final state showing that ab belongs to N1,
N3, and N4.

Formally let (X, t, o) be a Büchi automaton such that X = {x1, x2, ..., xm} and let y ∈
X. Without loss of generality we suppose that the automaton is complete. We construct
ANy = (Q, τ, ωy) the finite automaton recognizing Ny. The states are vectors of length m
containing on each line an element of X and a boolean telling whether we saw a final state
during the calculus or not: Q = (X × {0, 1})m. The transition and output functions τ and
ωy are defined as follow:

• There is a transition labelled by a letter a between q = ((y1, b1), ..., (ym, bm)) and
q′ = ((y′1, b

′
1), ..., (y′m, b

′
m)) if and only if ∀i ∈ [|1,m|], y′i ∈ ta(yi) ∧ b′i = max(bi, o(y

′
i)).

It means that the transition function of the Büchi automaton is independently applied
on each line and the knowledge of whether or not a final state has been seen has been
propagated.

• A state q = ((y1, b1), ..., (ym, bm)) is final if, from the y-th line, a loop containing a
boolean at 1 can be found. Formally, let σ mapping the lines to the index of state on
this line, i.e. σ(k) is the i such that yk = xi and let (jk)k≥0 be the infinite sequence
defined recursively by j0 = y and jk+1 = σ(jk). This sequence ranges only over a finite
set of values. Let thus s be the smallest integer satisfying js ∈ {jk|0 ≤ k < s} and s′

the only integer such that s′ < s and js′ = js. Then the state q is final if and only if
1 ∈ {bjk |s′ ≤ k < s}.

Proposition 4. Let q0 = ((x1, 0), ...(xm, 0)), then L(q0) = Nx.

The proof can be found in [CNP93].

Then we can obtain a finite automaton recognizing L$ as the disjoint union of the automa-
ton (X, t,∅) and the automata ANy for each y to which we’re adding the edges (y, $, q0,y)
where q0,y is the initial state of ANy . We call the obtained automaton A$.

11



The automata ANx have all the same structure, only the acceptance conditions change.
So to recognize NY =

⋃
y∈Y Ny for Y ⊆ X, an acceptance condition wich is the union

of all acceptance conditions is defined: ΩY = maxx∈Y ωx. Then the automaton (Q, τ,ΩY )
recognizes NY .

4 HKC on Büchi automata

At the end of the previous section, a NFA was built of from a Büchi automaton such that
checking language equivalence on this NFA is equivalent to checking the language equiva-
lence on the Büchi automaton. Then the algorithm HKC described in section 2 can be directly
applied to the constructed NFA to resolve the language equivalence problem of Büchi au-
tomata.

A feature that differs from the finite words case is that if we have two disjoint automata
A and B, we do not want to join them before doing the construction described in the section
??. We’d rather do the union afterhand and launch HKC on A$ ∪ B$.

Due to the specific structure of the constructed NFA, there is room for improvements of
the algorithm. Those improvements are dealt with in this section.

We begin by exposing separatly the two steps of the algoritm which intuitively correspond
repectively to checking equivalence of the prefixes and periods of ultimately periodic words.

In the previous section we transformed a language of infinite words L ∈ 2Σω
into a

language of finite words L$ ∈ 2Σ∗×$×Σ+
= 2Σ∗×Σ+

= (2Σ+
)Σ∗ . As (2Σ+

,∪,∅) is a semi lattice
we can view the NFA that recognize L$ as a NFA with value in (2Σ+

,∪,∅): when reading a
word inMx,y from the state x it will outuput the language Ny (the languagesMx,y and Ny
have been defined in section 3.2).

Formally let (X, t, o) be a non deterministic Büchi automaton and Y, Z ⊆ X. Lω(Y ) =
Lω(Z) in the Büchi automaton if and only if L(Y ) = L(Z) in the NFA (X, t, o′) where

o′ :

{
X → (2Σ+

,∪,∅)

x 7→ Nx
.

As the language Nx is entirely determined by x, we can also express o′ as

o′ :

{
X → (P(X)/≡,∪,∅)

x 7→ {x}
with Y ≡ Z iff NY = NZ

So if we know a way to test if o′ ](Y ′) ≡ o′ ](Z ′) for any Y ′, Z ′ ⊆ X, we can apply HKC

on A′ to test if L(Y ) = L(Z)⇔ Lω(Y ) = Lω(Z).
As testing o′ ](Y ′) ≡ o′ ](Z ′) is testing an equality between languages, it seems natural

to then use again HKC to test it. In fact, we can construct the automata ANY ′
∪ ANZ′

and
run HKC on it.

We’d like to improve the efficiency of the test “NY ′ = NZ′” thanks to two remarks:

• As the structure of each ANY
is the same for any Y ⊆ X, it is redundant to lauch

HKC for every Y ′, Z ′ we encounter during the main algorithm. Instead we would like to

12



preprocess all the ordered pairs HKC would compare and then only check if the output
condition is respected for all the ordered pairs.

• As [CNP93] notices, the structure of the automaton ANx described in section 3 allows
for a more efficient determinization than the direct powerset construction described in
section 2.

4.1 Pre-processing

The idea is to do HKC in two steps: first the list of all ordered pairs which would be in R if
the acceptance condition were always met is established, then the fact that the acceptance
condition is indeed always met is checked.

The algorithm 3 describes the preprocessing of the list of ordered pairs. It is the same as
HKC but the acceptance condition is not checked.

Algorithm 3: Preprocessing

1 Pairs := ∅;
2 Todo := {(q0, q

′
0)};

3 while Todo 6= ∅ do
4 Extract (q1, q2) from Todo;
5 if (q1, q2) ∈ c(Pairs ∪ Todo) then skip;
6 forall a ∈ Σ do
7 Insert (τ ]a(q1), τ ]a(q2)) in Todo

8 Insert (q1, q2) in Pairs;

9 Return Pairs;

The algorithm 4 checks the acceptance condition for all the ordered pairs returned by
the preprocessing.

Algorithm 4: Verification(Y, Z)

1 forall (q1, q2) ∈ Pairs do

2 if Ω]
Y (q1) 6= Ω]

Z(q2) then return False;

3 Return True;

Theorem 4. Both algorithms terminate and Verification(Y, Z) returns True if and only
if NY = NZ.

Proof. • Preprocessing terminates for the same arguments as HK and Verification

terminates because the set of ordered pairs produced by Preprocessing is finite.

• Let Y, Z ⊆ X such that NY = NZ . HKC(q0, q
′
0) on the automaton ANY

∪ ANZ
returns

True. Then the list Pairs returned by Preprocessing is the same as the list R
computed by HKC(q0, q

′
0). Indeed the test in the 6th line of HKC(Y, Z) never returns

False and thus can be ignored, which is exactly the algorithm Preprocessing. Then

13



Verification(q0, q
′
0) run the test for all ordered pairs of Pairs, i.e. for all ordered

pairs of R, and this test never fails because HKC(q0, q
′
0) does not return False, so

Verification(q0, q
′
0) returns True.

• Let Y, Z ⊆ X such that NY 6= NZ . HKC(q0, q
′
0) on the automaton ANY

∪ ANZ
returns

False: it encounters (q1, q2) such that Ω]
Y (q1) 6= Ω]

Z(q2). Until this moment, the
test has always been successful and so HKC(q0, q

′
0) and Preprocessing had the same

behaviour, which means that Preprocessing will also encounter this ordered pair and
it will add it to Pairs. Then Verification(Y, Z) will test whether or not Ω]

Y (q1) =
Ω]
Z(q2) and will thus returns False.

Remark 1. In the case where we have non disjoint automata, we have to run Preprocessing

on ANy and a copy of itself (otherwise the algorithm stop at the first step when seeing the pair
(q0, q0) because of the reflexive closure). This come from the fact that even if the automata
have the same structure, they potentially have different output functions. But in this case
the execution of Preprocessing is degenerated and in this particular case we can express
more easily the congruence function as a problem of covering.

4.2 Compression of the states

As soon as the studied Büchi automaton is not deterministic, the automaton A$ is not
deterministic either: it contains the automaton itself and the ANx are not deterministic
either. However as it is a automaton over finite words, it can be determinized by the
powerset construction exposed in section 2. But then it yields a number of states equals to
two power the number of state of A$ which is m+m · (|Q|) = m · ((2m)m+1), where m is the
number of states of the Büchi automaton. Yet accessible states of the ANx automata have a
particular shape which allows for a compressed representation of the states and provides a
bound on their number.

Indeed as we simulate the Büchi automaton on each line of the vector states indepen-
dently, for a given transition and a given line the set of accessible states does not change
with the other lines. Therefore for a given line the value taken does not depend on the value
of the other lines. Thus a state in the determinized ANx can be described entirely described
by the possible sets for each line.

Formally, let ANx = (Q, τ, ωx) recognizing Nx as in section 3. In the DFA (P(Q), τ ], ω]x)
corresponding to the powerset construction described in section 2, if P is an accessible
state and if p = ((p1, b1), ..., (pm, bm)) and p′ = ((p′1, b

′
1), ...(p′m, b

′
m)) are in P then any p′′ =

((p′′1, f
′′
1 ), ...(p′′m, f

′′
m)) with (p′′k, f

′′
k ) ∈ {(pk, fk), (p′k, f ′k)} for all k ∈ J1,mK is also in P . The

state P is thus entirely defined by the sets Pk describing the possibilities for the k-th line of
P .

Then the number of state of the determinized automaton recognizingNx is (22m)m = 22m2
.

In total we obtain 2m + 2m · 22m2
= 2m + 22m2+m states for the whole determinization of A$.

14



In this subsection we first define the determinized automaton we obtain by representing
the states as described previously and then explain the problem this represention present for
computing the congruence and a way to solve it.

Intelligent determinized automaton recognizing Nx. Following the ideas previouly
described, we define (Q′, τ ′, ω′x) a DFA recognizing Nx with:

• The set of states is Q′ = (P(X × {0, 1}))m (instead of P(Q) = P ((X × {0, 1})m) ).

• The transition function is the natural extension of the one described in section 3. There
is a transition labelled by a letter a between P = (P1, ...Pm) and P ′ = (P ′1, ...P

′
m) if

and only if ∀i ∈ [|1,m|], P ′i = {(y′, b′)|∃(y, b) ∈ Pi, y′ ∈ ta(y) ∧ b′ = max(b, o(y′))}.

• The output function is also the natural extension of the one described in section 3:
there must exists a vector included in the state that is final for x. The problem lays in
computing this output function without having to expand exponentially all the paths.
A solution is to see the state as a directed graph represented by its adjacency lists, the
edges being labelled either by 0 or 1. To know if the state is final for x, we have to
know if there exists a cycle containing a edge labelled by 1 accessible from x. Thus by
computing the strongly connected components we can compute all the output functions
(i.e. the ω′x for all x ∈ X). The full algorithm, taking as input a given state P , is the
following:

1. Computing all the strongly connected components, for instance with Tarjan’s
algorithm.

2. Keep the strongly connected components having a final edge.

3. Reverse the edges and compute the connected components of the final strongly
connected components. We get the set of all states x ∈ X such that P is final for
x.

Once again the automata have all the same structures, only the acceptance conditions
change. So to recognize NY =

⋃
y∈Y Ny for Y ⊆ X, we define an acceptance condi-

tion which is the union of all acceptance conditions: Ω′Y = maxx∈Y ω
′
x. Then the DFA

A′NY
= (Q′, τ ′,Ω′Y ) recognizes NY .

As for a classic powerset determinization, this construction can be done on the fly, when
exploring the automaton. So we can run HKC or the combinaison of Preprocessing and
Verification on it.

In fact τ ′ and ω′x behave as τ ] and ω]x but instead of being lattices homomorphisms from
(P(Q),⊆,∪) to (P(Q),⊆,∪) and ({0, 1},≤, or) they are from (Q′,≤, max) to (Q′,≤, max)
and ({0, 1},≤, or), where Q′ is seen as a set of graphs represented by their adjacency matrices
(matrices over {⊥, 0, 1}), ≤ and max being the pointwise operations on the matrices. Yet
they are homomorphisms only when we look at the states of the automaton (Q′, τ ′, ω′x),

15



meaning that if P is a state of Q′ such that it is the compression of a state S = S1 ∪S2 then
then τ ′(P ) = τ ′(P1) max τ ′(P2) and ω′x(P ) = ω′x(P1) or ω′x(P2) where P1 (resp. P2) is the
compression of S1 (resp. S2).

Indeed if we take P1 =

(
0 ⊥
1 ⊥

)
and P2 =

(
⊥ 1
⊥ 0

)
, we have P1 max P2 =

(
0 1
1 ⊥

)
= P

and ω′1(P ) = 1 6= ω′1(P1) or ω′1(P2) = 0 or 0 = 0. It comes from the fact that P does not
correspond to the compression of S1 ∪S2 where Si stands for the decompressed version of Pi
(in fact the state S1 ∪ S2 is not a state of the automaton).

This problem arises when computing the congruence closure as described in section 2.
In fact when applying the rewriting rules, the union of states that is performed may not
give a real state of the automaton. The typical case is when we run HKC on two disjoint
automata, then the rewriting rules unite states coming from different automata. If we take
the automata consisting of the only state Pi looping on itself, then P1RP2 because neither
of them are final, and as we previously said we can not unite them with max. Thus, in order
to compute the congruence with the rewriting system presented in section 2, we have to
decompressed the states and work with the lattice (P(Q),⊆,∪), which is costful.

In the next paragraph we explain how to adapt the rewriting system to allow to work
with the compressed states.

Adapting the rewriting system. Let R be a relation over Q′. Let Π be a ‘list’ of com-
pressed states. Let P, P ′ be two compressed states such that PRP ′. If P ≤ Π then we ‘add’
P ′ to Π, where ‘list’, ≤ and ‘add’ are to be defined. In the rewriting system presented in
section 2, the list corresponds to a single subset of X, the ≤ to the inclusion and the ‘add’
to the union.

The natural way to define ‘add’ is by the list contructor. ≤ is then defined as: P ≤ Π
if and only if for any vector v ∈ P there exists P ′′ ∈ Π such that v ∈ P ′′. Two questions
arise: is there no way to have a more efficient way to ‘add’ an compressed state to a list of
compressed state and how to test ≤.

A possibility to improve the constructor is to try to compress the new state with other
when possible, the idea being that if we can compress then we can do it step by step. The
algorithm becomes: to insert P ′ in Π, we browse Π until we find P ′′ such that P ′ and P ′′

only differ on one line, which means we merge them and then insert P ′ max P ′′ in Π. If we
can not find any P ′′ satisfying this requirement then we simply add P ′ to Π.

At first we thought that this operation might allow for a simple test of ≤: we hoped that
to check wether P ≤ Π we only had to check wether there existed P ′′ ∈ Π such that P ≤ P ′′.
But we found an example where the contructor does not even allow to reach a normal form: if

we take Π =

{(
2
3

)
,

(
1
4

)}
and try to insert

(
1
3

)
we can either obtain Π =

{(
1, 2
3

)
,

(
1
4

)}
or Π =

{(
1

3, 4

)
,

(
2
3

)}
. And in the first case if we try to know whether P =

(
1

3, 4

)
∈ Π

16



or not, we have to decompressed P , which could lead to exponential complexity.

After not succeeding in finding a polynomial algorithm to solve the problem of decid-
ing wether a compressed state is lesser or equal than, we tried to look up its theoritical
complexity. In fact we showed that this problem is CoNP-Complete.

Theorem 5. Let Π = P1 :: P2 :: ... :: Pk be a list of compressed states and P be a compressed
state. Then the problem of deciding wether or not P ≤ Π is CoNP-Complete.

Proof. • The problem is in CoNP. In fact to show that P 6≤ Π we can take as witness v
a vector of P which does not belong to any of the Pi.

• To show that the problem is CoNP-Hard we will show that its complementary problem
is NP-Hard via a reduction from 3-SAT. Let I = C1 ∧ ...Ck be an instance of 3-SAT.
We note x1, ..., xn the boolean variables of I. We construct an instance of our problem
as P = ({1, 2}, ..., {1, 2}) of length n and Π = P1 :: ...Pk where Pi is a vector of
length n such that the j-th line contains {1} if not(xj) ∈ Ci, {2} if (xj) ∈ Ci, and
{1, 2} if neither xj nor not(xj) ∈ Ci. Let’s now show that I is satisfiable if and only
if P 6≤ Π.

⇒ If I is not satisfiable then for all instantiation φ, there exists Ci such that φ does
not satisfy Ci. Moreover the set of vectors of P is in bijection with the set of all
instanciation via the function f : φ 7→ vφ such that its j-th line is set to 1 if φ
assigns xj to true and to 2 otherwise. Then vφ ≤ Pi if and only if φ does not
satisfy Ci. Thus:

I is not satisfiable ⇒ ∀φ, ∃Ci such that φ does not satisfy Ci

⇒ ∀v ∈ P , ∃Pi such that v ≤ Pi

⇒ P ≤ Π

We can conclude that if P � Π then I is satifiable.

⇐ If P ≤ Π, for all φ there is a natural number i such that vφ ∈ Pi, meaning that
φ does not satisfy Ci. So I can not be satisfied. We can conclude that if I is
satifiable then P � Π.

The problem is indeed CoNP-Complete.

As the problem is CoNP-Complete, we wanted to transform it into a SAT-problem so
that we can use a SAT-solver to solve it. Indeed SAT-solver are often efficient in practice to
solve problems that are in NP and considered a difficult.

Let Π = P1 :: P2 :: ... :: Pk be a list of compressed states and P be a compressed state. We
take as variables x1, ..., xn a set of bounded natural numbers (it can be encoded in binary).

17



The SAT formula equivalent to P ≤ Π is then:x1
...
xn

 ∈ P ∧
 n∧
i=1

x1
...
xn

 /∈ Pi



Where:

x1
...
xn

 ∈ Pi =
n∧
j=1

xj ∈ (Pi)j =
n∧
j=1

∨
y∈(Pi)j

(xj = y)

We can then solve the SAT-formula using a SAT-solver.

Remark 2. In the case of non-disjoint automata from the start, the covering problem for the
non-optimized determinization of the automaton become exactly an instance of the problem
of deciding if P ≤ Π for Π a list of compressed states and P a compressed state. Thus we
can also solve it using a SAT-solver.

5 Conclusion

To conclude, we showed during this internship that the algorithm HKC [BP13] can be adapted
to run on the structure constructed in [CNP93] to study Büchi automata with finite words
automata. Moreover we provide solid theoritical foundations towards optimisations. Even
if a lot of other improvements can be thought of (see the following paragraph), we can hope
that the algorithm presented in this report run well in practice.

This works is intended to be continued during a phd starting in september 2017. It will
explore the following possibilities:

• Implementation: As the goal of the algorithm is rather to be efficient in practice than
to provide theoritical bounds, it is necessary to implement and test it. A priori the
implementation will be based on the pre-existing one for HKC. It is the next step of the
project.

• Formalize: Try to formalize all the content of this report as coinduction up-to tech-
niques, if possible.

• Improvement of the congruence: On the same idea that the congruence takes advantage
of the structure of the states in the powerset construction, the specific structure of the
vector states in ANx could be exploited.

• Other way to compute the congruence: In the case of finite words automata, the
congruence can also be computed by other ways. Perhaps one of them could be more
easily adapted than the rewriting system. In particular, one way is to express the
congruence as a logic formula. If we can adapt it we could directly launch a SAT-
solver on it.

18



• LTL: As it seems to be one of the most frequent application, it could be interesting if
there is something particular in the Büchi automaton generated by the LTL formula
that we could exploit.

• Other automata: We could try to extend this algorithm to even more classes of au-
tomata. The first automata to look at would be the parity automata, because the
Büchi automata are a particular case of parity automata.

References

[BP13] Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations
up to congruence. In Principle of Programming Languages (POPL), pages 457–
468, Roma, Italy, January 2013. ACM. 16p.

[CNP93] Hugues Calbrix, Maurice Nivat, and Andreas Podelski. Ultimately periodic
words of rational ω-languages. In International Conference on Mathematical
Foundations of Programming Semantics, pages 554–566. Springer, 1993.

[CVWY91] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties, pages 233–242. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1991.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi Automata Translation, pages
53–65. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

19


