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Discipline : Informatique

Soutenue publiquement le 23 juillet 2021 par

Laureline PINAULT

From automata to cyclic proofs:
equivalence algorithms and

descriptive complexity
Des automates aux preuves cycliques : algorithmes

d’équivalence et complexité descriptive
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Résumé

Les modèles de calcul permettent d’abstraire le fonctionnement des programmes
afin de raisonner sur ceux-ci. Selon le problème étudié il est important de choisir un
modèle approprié en terme d’expressivité mais aussi de propriétés. Cette thèse étudie
différents modèles de calcul afin de développer des outils pour la conception et l’analyse
de programmes.

Dans un premier temps nous nous intéressons au problème d’équivalence d’automates,
qui a de nombreuses applications notamment dans le domaine de la vérification de
programmes. Le point de départ est un algorithme coinductif exploitant les techniques
up-to développé par Bonchi et Pous pour comparer des automates finis. Nous redonnons
cet algorithme dans un cadre légèrement plus général afin de l’étendre aux automates de
Büchi. Nous donnons aussi une version linéaire d’une sous-routine de l’algorithme initial
et présentons un cadre de test utilisant de l’apprentissage d’automates pour comparer de
tels algorithmes d’équivalence.

Dans un deuxième temps nous explorons le contenu calculatoire d’un système de
preuves cycliques en le comparant à des modèles de calculs préexistants (automates à
plusieurs têtes de lecture et système T de Gödel). Ce système de preuve correspond à
un système de type cyclique pour des programmes fonctionnels. Nous montrons que si
l’on se restreint aux fonctions des mots dans les booléens on obtient les langages réguliers
pour le système affine et LogSpace en présence de la contraction. Sans cette restriction,
le système cöıncide avec système T sur les fonctions d’entiers naturels : les fonctions
primitives récursives dans le cas affine et les fonctions Peano définissables en présence de
la contraction.



Abstract

Computational models allow us to reason about programs by abstracting their operating
process. The choice of a suitable model for a given situation takes into account both its
expressivity and properties such as the complexity of the associated problems. This thesis
studies computational models in order to develop tools for conception and analysis of
programs.

First we consider the language equivalence problem for automata, which has various
applications especially in the formal verification field. Our starting point is a coinductive
algorithm HKC developed by Bonchi and Pous that exploits up-to techniques to compare
finite automata. We present a version of this algorithm that works in a slighty extended
setting, so we can adapt it to Büchi automata. We also give a linear version of a test used
as a subroutine in HKC and a framework based on automata learning to evaluate the
efficiency of equivalence algorithms.

Secondly we explore the expressivity of a cyclic proof system seen as a calculation device
by comparing it with existing computational models (multiheads automata and Gödel’s
System T). This proof system corresponds to a type system for functional programs.
If we restrict ourselves to functions from words to boolean, we get exactly the regular
languages in the affine subsystem, and Logspace if we add the contraction rule. Without
this restriction the system coincides with System T on natural functions: the primitive
recursive functions in the affine case et the Peano definable functions with the contraction.
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Introduction

We all rely on software and automated systems in various aspects of our everyday lives:
communications, online transactions, transportation, finance, etc. Ensuring their correct
behavior is crucial due to the potential human and monetary cost of an error. Moreover we
often want the programs to run either as fast as possible and without using much memory
(e.g., mobile phone applications) or within a fixed amount of time (e.g., in avionics).

These two concerns respectively correspond to computer science notions of correc-
tion and complexity. The correction of a program consists in making sure that it does
what it is meant to do. To ensure it, we might, for instance, run the program with
a variety of inputs. This might help identifying bugs but it cannot guarantee their
absence as there often exist infinitely many possible executions of a program. As for
complexity, it acts as a measure of a program’s efficiency, either in terms of the time it
takes to run, or in terms of the additional memory it requires. They are respectively
called time and space complexities. These notions are intertwined. For instance, any
memory used by the program requires at least the time it takes to write it during execution.

For the last fifty years, computer scientists have developed formal methods that can
be used at different stages of the programming process in order to write reliable code:
specification, development and verification. This thesis takes place in this context.

Two ingredients play an important role in the field of formal methods: models of
computation that provide a framework to describe how programs operate, and logics to
express the expected behaviors. We give a brief introduction to the theory of computational
models and present how it interacts with logics in model checking and typed programming.
Then we present the contributions of this thesis.

Models of Computation

In order to reason about programs we abstract their behavior via models of computation.
We discuss two important classes of models below: abstract state machines (also called
automata) and functional models.

Automata (on finite words)

In plain language, the word automaton refers to a small mechanism that can act by itself.
In theoretical computer science, an automaton is an abstract machine that represents the
inner operation of a process through states and transitions between them.
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Even before there were computers, in the 1930’s, Alan Turing developed an abstract
model to study what a computing device could do and what it could not: the Turing
machine. His model and conclusions still hold today. In the 1940’s and 1950’s, researchers
considered a simpler version of it, that we nowadays call finite automata. They were
originally intended to model brain functions but turned out to be extremely useful for a
variety of applications ranging from finding a pattern in a text to the lexical analysis of a
compiler or the design of circuits.

A finite automaton takes as input a word–a finite sequence of symbols from a given
fixed alphabet–and decides whether it is accepted or not. To do so it reads the word from
left to right, and navigates from states to states. The purpose of a state is to remember
the relevant pieces of information gathered from computations on the input read so far,
so that the automaton can decide to accept or reject the word when reaching its end.
The set of input words that are accepted by an automaton is called the language of this
automaton.

Example. A finite automaton is depicted in Figure 1. It takes a binary number as an input
and accepts it if and only if it is divisible by 3. When reading a number–for instance 1001
which is the binary representation of 9–it begins in the state labeled 0. This is the initial
state, which is depicted with an input arrow. Then, for each digit, reading from left to
right, it follows the corresponding transition. Thus, in the case of 1001 it goes from state
0 to state 1, from state 1 to state 2, then back to state 1 and finally to state 0.

State 0 is circled twice in the picture. This is used to indicate the final states (sometimes
they are also called accepting sates). So the automaton accepts the input 1001 which is
indeed a multiple of 3. If the input had been 1000–binary for 8–the automaton would
have ended up in state 2 and it would have been rejected.

State i, for i being 0, 1 or 2, remembers the rest of the euclidean division by 3 of
the number read so far. This piece of information is sufficient to determine where the
following transition should lead since reading a 0 corresponds to multiplying the number
by two, and reading a 1 to multiplying it by two and adding 1.

0 1 2

0
1 0

1 0

1

Figure 1: An automaton that recognizes the multiples of 3 given as binary numbers.

Rabin and Scott introduced non-deterministic automata: a generalization in which
several transitions with the same label can originate from a given state [75]. An input is
accepted if there exists a way to read it that ends up in a final state. In the case of finite
automata on finite words the non-deterministic case is equivalent to the deterministic one,
i.e. one can always find a deterministic automaton that accepts the same set of inputs as
a given non-deterministic automaton. Nevertheless this model allows for far more concise
representations. Indeed, for some non-deterministic automata, all their deterministic
counterparts are of exponential size. This is why non-deterministic automata are the
favored model in numerous applications.
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In this context, the question of whether two automata are equivalent, meaning that
they accept the same set of inputs, arises naturally. Figure 2 exhibits two non-deterministic
automata that accept an input if and only if it contains the pattern ab (on the alphabet
{a, b}). Note that both automata have 3 states, but they are not identical. For instance,
the one on the right-hand side is deterministic while the one on the left-hand side is not.
Checking that they nevertheless recognize the same set of words is not difficult here. The
general problem, namely language equivalence of finite automata, is a classical problem
in computer science with numerous applications such as compiler construction or model
checking. It is also used in some algorithms that perform automata learning.

0 1 2

a, b

a b

a, b

0 1 2

b

a

a

b

a, b

Figure 2: Two different automata that both recognize the words containing ab.

The model of finite automata has huge limitations due to the fact that it has no
memory apart from a finite and determined number of possible states. For example, this
makes it impossible to recognize the language of words for which there exists an integer
n so they are of the shape anbn (n a’s followed by n b’s). This would indeed require the
automaton to remember how many a’s it has seen in order to check that these are followed
by the same number of b’s. So finite automata are enough to model computing devices
that operate on a very limited set of resources such as hardware circuits. But, since we
sometimes need to describe more languages, we have to extend the model with additional
features.

For instance, we might use a stack as a way to store information. In this model, called
pushdown automaton, during a transition the machine can pop or push some elements to
or from an auxiliary memory. Such a device can recognize the language of words of the
shape anbn. To do so we build an automaton that pushes a a on top of the stack as long
as it reads an a on the input. Then, whenever it begins to read some b’s it will makes
sure that it reads the same number of b’s by popping an a from the stack for each b. If
at some point it either reads a a after reading some b or reads a b whereas the stack is
empty, the automaton rejects the word. When reaching the end of the input, the word is
accepted if and only if everything has been popped from the stack. The set of languages
that are recognized by pushdown automata is called the set of context-free languages ; it
is strictly larger than the set of languages recognized by finite automata, also called the
regular languages. Contrary to the finite automata, for this model non-determinism add
actual expressive power.

Another way to gain some expressivity is to use several heads that read the input at
different positions, in parallel. With this model, the multihead automata, it is also possible
to recognize the words of the shape anbn: one of the heads advances to the first b, and
then they check in parallel that while the first head reads an a, the second one reads a b.
These reading heads can also be allowed to read the word not only from the left to the
right, but also to make transitions where they go backward in the input word: this is the
two-way multihead automata. With this model it is possible to recognize for instance the
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palindromes (words that read the same forward and backward). More generally this model
recognizes exactly the LogSpace languages (i.e. the languages that can be recognized
by a Turing machine with logarithmic computing space). As for the previous model,
non-deterministic multihead automata are more expressive than deterministic ones.

The most complex automata model has one head that can read the input both ways
and additional memory in the form of a potentially infinite tape: it is the Turing machine.
It is said to be the most complex because despite being a rather simple model it can
simulate any algorithm. Other computational models, for instance a non-deterministic
Turing machine with multiple heads, a random access memory-based model closer to
actual computers, or some functional models that we will see in the next section, may
compute faster or use less memory, but they cannot compute a function that cannot be
computed by a Turing machine. This idea is called the Church-Turing thesis, after the
names of the mathematicians Alonzo Church and Alan Turing. It states that a function
on the natural numbers can be calculated by an effective method if and only if it is
computable by a Turing machine.

Nevertheless, some problems cannot be solved even by a Turing machine, which means
that there exists no algorithm that can compute a solution to the problem. The most
famous one is the halting problem: there is no general algorithm that takes as input
an arbitrary program and an entry for this program and decides whether the program
terminates on this entry or loops forever. We say that those problems are undecidable.

One may wonder why we bother with multiple computational models when there is one
that is expressive enough to simulate all others. In fact, simpler models are often easier to
study and a lot of problems on automata quickly become undecidable. For instance the
equivalence problem mentioned above is undecidable for pushdown automata and even
the emptiness problem (“is the language of an automaton empty?”) is undecidable for
multihead automata.

Let us finally mention that the automaton model has been further generalized in
several directions, e.g. probabilistic automata, weighted automata, automata on infinite
trees, transducers,. . . ). It is the subject of ongoing research to find appropriate notions of
automata, and analogues of regular languages, in various settings.

Functional models

Programs are often used in order to compute functions. Some programming languages
actually put a specific emphasis on functions: Caml, Haskell, Lisp, Erlang. . . are called
functional languages. However a simple cardinality argument shows that not all functions
can be represented by a program: as a program is a finite sequence of symbols, there is
a countable number of programs, yet there are uncountably many functions, even when
considering only functions on natural numbers.

A first attempt to capture the notion of effectively computable functions lies in the
primitive recursive functions. The idea is to have some basic functions and some way
to assemble them in order to create new functions. More formally, the set of primitive
recursive functions is the smallest set of functions from tuples of integers to integers (each
such function has a type Nd → N for some d) containing the constant functions (which
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associate to any argument a fixed number k), the projection functions (which return the
i-th component of a tuple of natural numbers), and the successor (which adds 1 to its
argument), and closed under the composition scheme (roughly speaking if f and g are
two primitive recursive functions, then f ◦ g is also one) and the recursion scheme (to
define a function on a natural number it suffices to express its base case and its recursive
case with primitive recursive functions). For instance we can define the addition of two
integers this way: the addition of m and n equals n when m is zero–so the base case is
the identity (a special case of projection)–and the successor of the addition of m− 1 and
n otherwise. So by the recursion scheme the addition is primitive recursive.

The initial functions are certainly computable and the two operations that allow to
create more primitive functions can also be encoded quite directly in any programming
language. Most functions that come to the mind are primitive recursive (addition,
multiplication, division, minimum, maximum, factorial, exponentiation, logarithm, . . . ).
However, the set of primitive recursive functions does not contain all possible computable
functions. A famous example of such a function which is computable but not primitive
recursive is Ackermann’s function, whose rather simple recursive definition is given below.

A(0, k) = k + 1

A(n, 0) = A(n− 1, 1)

A(n, k) = A(n− 1, A(n, k − 1))

In fact primitive recursive functions are exactly the functions that can be implemented
in a programming language that requires each loop to be a for loop: the number of
times a loop runs must be specified before it begins to run. The set of primitive recursive
functions can be expanded with a so-called minimization operator called µ and define
the new class of general recursive functions, or µ-recursive functions. Intuitively the
minimization operator searches for the smallest argument that causes a given function
to return 0. The general recursive functions are exactly the functions that are comput-
able by a Turing machines (this is one of the results that support the Church-Turing thesis).

Another equivalent class of functions are the functions definable via the λ-calculus
formalism. It was introduced by Alonzo Church in 1930 in his research towards the
foundation of mathematics, was studied by a number of his contemporaries including
Turing, Curry, and Kleene, and is still widely used nowadays, with a lot a variants that
have been developed. The main difference with the recursive functions presented above is
that λ-calculus is a higher-order model: every object is a function, and functions can take
other functions as arguments. Formally a term in λ-calculus is either a variable (noted x,
y, z,...), an abstraction λx.M (this term represents a function that takes x as input and
returns the term M), or an application M N (this term is the application of the function
M to the term N).

Example. We can define in λ-calculus various functions such as the identity and the first
projection presented below. We can then manipulate them as we want, we can for instance
apply one to the other.

id : λx.x proj 2
1 : λz.λt.z id proj 2

1 : (λx.x)(λz.λt.z)

5



A notion of computation appears naturally when we apply functions to their arguments:
if we apply a function λx.M to a term N we want it to return the term M where the
occurrences of x have been replaced by N . We say that (λx.M)N reduces to M [x := N ].
In the example above, the third term id proj2

1 reduces to x[x := proj2
1 ] = proj2

1 . However
it is possible to define terms whose reduction loops indefinitely. For instance consider the
λ-term Ω = (λx.xx)(λx.xx). It reduces to itself, yielding an infinite sequence of reduction.
Those terms correspond to non-halting Turing machines.

The integers can be encoded in λ-calculus by representing n as the function that
iterates n times a given function over some variable. Then all recursive functions can be
defined. It is also possible to encode the booleans thanks to the projections and then to
have a function that encodes the standard if...then ...else ... statement. We can
also add to this simple calculus some features such as types, recursors, . . . . This flexibility
explains the success of λ-calculus in theoretical computer science.

Summary

Figure 3 sums up the different computational models we have seen so far and exhibits
their relative expressiveness.

Figure 3: Relative expressiveness between some computational models.

Formal verification and model checking

Formal verification is a collection of methods and techniques to prove that certain programs
behave as expected. In contrast with tests or simulations, one often uses static analyses
that do not need to execute the program. Model checking is one of these methods. Given
a suitable model of the program it checks that the latter meets some requirement. This
process can be completely automated, which makes it appealing. Moreover usual model
checking algorithms exhibit a wrong behavior when the program does not respect the
specification.
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Reactive systems and Büchi automata

When we think about programs, we think about computations. Computational programs
run over an input in order to produce a final result, upon termination. For instance, the
program which takes an integer n as input and returns n! or the program which takes a
graph as input and returns a minimum spanning tree of the graph, are computational
programs. These programs can be modeled as functions, as seen above.

A contrario, reactive programs maintain an ongoing interaction with their environment.
Those programs, whose main aim is to interact rather than to compute a value, are
omnipresent: operating systems, drivers, CPUs, car controllers. . . To model these programs,
we may consider that they operate on infinite inputs, which represent the infinite sequences
of interactions with the environment.

Example. Figure 4 represents a simple model for a dispenser of tea and coffee. The inner
states of the machine are represented as circles, and the actions the user can perform
(like pressing a button, inserting a coin or taking the cup) label the edges. In state 1
the dispenser waits for the user to order either coffee or tea, and goes to state 2, or 3
accordingly. In state 2 and 3, the machine expects that some money is inserted and then
moves on to either state 4 or 5 and starts pouring coffee or tea. When the cup is taken
the dispenser goes back to state 1: it is ready to take another order. Whenever in state 1,
2 or 3 (not when pouring!), the user can press the off button and the machine shuts down.
This is represented by state 0.

0

124 3 5

on off

coffee button tea buttonmoney money

cup taken cup taken

off off

Figure 4: A simple coffee/tea dispenser model.

Examining the finite traces of these systems is often not enough as we want to be
able to check properties of the shape “there will be this action at some point”. Thus, to
model those systems we must adapt the automata concept to work on infinite words. The
study of automata on infinite inputs was first developed by Büchi in relation with certain
decision problems arising in logic. Later a strong connection has been discovered between
those automata and temporal logics and nowadays they play a fundamental role in the
field of formal verification.

A Büchi automaton has the same formalism and functioning as a finite automata except
that it operates on infinite sequences. An input is accepted if and only if when reading it
the automaton goes infinitely many often through an accepting state (represented double
circled). Figure 5 shows two examples of such automata. The first one visits an accepting
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state when the letter a is read, so its input is accepted if and only if it contains infinitely
many a’s. The second one can go to an accepting state only if there are no b’s left in
the input so it accepts it if and only if the input contains finitely many b’s. While the
first automaton is deterministic, the second one is not and there exists no deterministic
Büchi automaton that recognizes the same set of inputs. The fact that non-determinism
adds expressivity to the model makes the usual constructions like complementation more
intricate and the study of this class of automata more involved.

0 1

a b
b

a 0 1

a, b a

a

Figure 5: Two Büchi automata. On the left a deterministic one that accepts the infinite
words with infinitely many a’s. On the right a non-deterministic one that accepts the
infinite words with finitely may b’s.

As for the finite sequences case, the problem of deciding the equivalence of two given
automata is a natural question. One could hope to reuse the existing algorithms for
automata on finite inputs but Figures 6 and 7 exhibit two counter-examples. On Figure 6
there are two automata that are equivalent if seen as automata with finite inputs–they
both recognize the words of the shape an for some n ≥ 1, but the one on the left accepts no
infinite sequence while the one on the right accepts the word aaaa . . . where a is repeated
ad infinitum. A contrario on Figure 7 there are two automata that are equivalent if seen
as automata with infinite inputs–they both accept only the word aaaa . . . , but the one on
the left accepts the finite sequences with an even number of a’s while the one on the right
accepts words with an odd number of a’s.

0 1

a

a
0 1

a

a

Figure 6: Two automata that are equivalent on finite inputs but not on infinite ones.

0 1

a

a

0 1

a

a

Figure 7: Two automata that are equivalent on infinite inputs but not on finite ones.

The set of languages that can be recognized by a (non-deterministic) Büchi automaton is
called the set of ω-regular languages. As deterministic Büchi automata cannot recognize all
ω-regular languages, other models of automata whose deterministic and non-deterministic
counterparts both recognize the ω-regular languages have been developed by strengthening
the acceptance criterion: Muller, Streett, Rabin and parity automata. In this thesis we
shall focus on non-deterministic Büchi automata.
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Specification checking

A specification describes the expected behavior of a system. For instance when studying
the modelization of a crossroad one may require that the traffic lights cannot be green at
the same time, or that there is no traffic light that eventually always stays red. Then an
infinite execution may or may not respect the property. The typical properties we want to
express are request-response (some action from the environment prompts some response
from the system), safety (a “bad” behavior never happens), liveness (a “good” behavior
eventually happens) and fairness (an event occurs repeatedly).

In order to allow for a rigorous verification, the properties need to be enunciated
precisely and unambiguously through a specification language. Temporal logics have
been designed to express these kind of properties: they make it possible to describe
sequences of events. Besides the standard logical connectives (not, and, or), these logics
have temporal connectives such as next (©), eventually (♦), always (�) and until (

⋃
).

The next operator expresses the fact that something happens in the next temporal step;
the eventually operator that something will happen in the future; the always operator
that some property will always hold from now on, and the until operator that some
property holds until a moment in the future where another property will hold.

For instance for the above example of a coffee/tea dispenser it is possible with this
kind of logic to express that if the money is inserted at some point then there will be be a
cup to take in the future by saying that always the action money implies that eventually
there will be the action cup taken: �(money → ♦cup taken).

Now that we have seen how to model a program with an automaton and how to
express the property we want to check thanks to temporal logic, we need a way to check
that the model satisfies the property, i.e. to make sure that all the possible executions
of the program respect the property. It turns out that there is an effective procedure
transforming temporal logic formulae into Büchi automata that recognize exactly the
words that respect the property. Figure 8 shows such an automaton for the formula above.

0 1

¬money
money

¬cup taken

cup taken

Figure 8: A Büchi automaton accepting the words that respect the property
�(money → ♦cup taken). The symbol ¬a stands for ‘anything but a”.

Then the specification checking problem reduces to the language containment between
the two automata–the one for the model and the one for the formula. This inclusion can
be checked by computing the intersection between one automaton and the complement of
the other. It is also closely related to the equivalence problem mentioned before, since on
one hand the double inclusion ensures the equivalence (A ≡ B if and only if A ⊆ B and
B ⊆ A) and on the other hand the equivalence between the union of the two automata
and the supposedly larger automaton holds if and only if the inclusion between the two
automata holds (A ∪B ≡ B if and only if A ⊆ B).

9



Remark. It is not possible to write all the desired properties with the method exposed
above. For instance, one cannot express that at any point of the execution of the tea/coffee
dispenser it is possible to shutdown the machine (i.e. take the off action). This requires
to look at all possible executions at once. For this, we represent the possible executions as
an infinite tree (the unfolding of the automaton) and have a logic that takes into account
the various paths: CTL which stands for Computation Tree Logic. As the objects we
consider are different, the checking algorithms are also different. Moreover those logics
are not comparable in term of expressivity. We already saw that some properties are not
expressible in the (linear) temporal logic described previously, and the converse is also
true. For instance properties of the form “eventually always something” which express a
form of stability cannot be expressed in CTL.

Correction a priori: Typed programming and Curry-

Howard isomorphism

When we develop the program independently of its specification and verify the latter
afterwards, there is a high chance that the program does not operate as it ought to. Then
the verification and debugging phase can be long, navigating back and forth between the
programmer and the verification module. Another approach to this problem consists in
trying to directly develop it in such a way that it must behave according to its specification.

A deep connection between proof systems found in the field of formal logic and typed
calculi developed in computational theory, namely the Curry-Howard correspondence, has
been the theoretical ground for progress in this direction. Tools coming from this theory
are currently implemented into software.

(Functional) Typed programming

If one uses a typed language, the syntax itself prevents the programmer to write code
that would result in a type error in the execution. A similar untyped program could be
proved to share the same property, but it has to be done individually for each program
while with a typed language it is certified for every code that could be written.

The notion of type can be added to the λ-calculus we have seen in previous sections.
A type is either a base type belonging to a fix set, or constructed from other types with
an arrow such as τ → σ where τ and σ represent arbitrary types. The type τ → σ is the
type of a function that takes an argument of type τ and returns an argument of type σ.

For example id = λx.x has the type τ → τ with τ representing an arbitrary type and
proj2

1 = λz.λt.z has the type τ → σ → τ (the same as τ → (σ → τ)) with τ and σ being
arbitrary types because if it takes an argument of type τ and then an argument of type σ
it returns the first one of type τ .
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id
Γ, x : τ ` x : τ

Γ, x : τ `M : σ
→-i

Γ ` λx.M : τ → σ

Γ `M : τ → σ Γ ` N : τ
→-e

Γ `MN : σ

Figure 9: Typing rules for simply typed λ-calculus.

In order to establish the type of more complex terms we use the inference rules that
are shown in Figure 9. They all have the following shape: a horizontal line separates the
conclusion (below the line) form the set of premises (above the line). Conclusions and
premises read the same way: to the left of ` there is the context, i.e. a list of typing
assignations that we assume to be known, and to the right the typing assignation we want
to assert. The first rule has no premise and means that from the context where a variable
has some type, we can assert that this variable has this type, it will be used as an axiom.
The second rule has one premise and means that if when assuming that a variable has
some type τ we can assert that a term has some type σ in some context, then the function
that takes this variable and returns this term has type τ → σ in this context. Lastly the
third rule has two premises and means that if in some context a term has some arrow
type τ → σ and another term has the type τ then we can apply the first to the second
one and the result has type σ in this context.

Then we can stack those rules and build what we call a typing derivation for a λ-term
in the form of a tree. Figure 10 shows how we can use it to derive for example the type of
id proj2

1 . We find that is it indeed the type of proj2
1 .

id
x : τ → σ → τ ` x : τ → σ → τ→-i

` λx.x : (τ → σ → τ)→ (τ → σ → τ)

id
z : τ, y : σ ` z : τ

→-i
z : τ ` λy.z : σ → τ

→-i
` λz.λy.z : τ → σ → τ

→-e
` (λx.x)(λz.λy.z) : τ → σ → τ

Figure 10: Typing derivation of the λ-term id proj2
1 .

This type system prevents from writing typable terms whose reduction would loop
indefinitely. For example the λ-term Ω = (λx.xx)(λx.xx) seen above cannot be typed.
This result is known as the strong normalization of the simply typed λ-calculus: any
evaluation of a typed λ-term is a finite sequence of reduction, meaning that the programs
they represent all terminate. The simply typed λ-calculus is thus a proper fragment of
the general λ-calculus.

The simply typed λ-calculus can be extended with new base types, such as an integer
type, or new ways of combining types, such as the product of two types. Those new types
come with new constructors for the λ-terms and new typing rules. For instance System
T is a formal system defined for simply typed λ-calculus by adding a type for natural
numbers and a recursion constructor over it.
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Formal systems in logic and Curry-Howard isomorphism

Logic is the science that studies the correctness of arguments, i.e. the relations that
lead to the acceptance of a proposition (the conclusion) on the basis of hypotheses (the
premises). In everyday life we often use words as hence, so, therefore and so on to point
out the steps of our reasoning. In mathematics and computer science there is a need to
be more formal to assess the soundness of an argument, and this is where we use the
notions of formal logics and proof systems. One may think that there exists only one
“true” logic. However, not only there exist many formalisms for one reasoning system, but
there also exist different reasoning systems. First there exist no formal systems that would
encompass all possible human reasoning on everything because it would be too dense to be
studied. Then different logics can be developed to talk about different things. For instance
we have seen in the previous sections the temporal logics that are useful to describe facts
about infinite sequences. Secondly the classical logic principles, even if easily acceptable
by our intuition and suited for most everyday life and mathematics deductive patterns,
are not the only possible principles and it can be argued that for some contexts, especially
in computer science, they are not well-suited. For instance the principle saying that for
any proposition P , P or not P holds (known as the excluded middle principle) raises some
issues. It allows for example to prove the fact that there exists two irrational numbers x

and y such that xy is rational: either
√

2
√

2
is rational and we can take x = y =

√
2 or it is

not and we can take x =
√

2
√

2
and y =

√
2. However the problem with this proof is that

we do not know which of the two numbers is rational: it is a non-constructive proof. Logic
that reject this principle are often called intuitionistic or constructive and have immedi-
ate links with computation as we will see below. Another interesting example is linear
logic. Linear logic is obtained by forbidding structural rules (contraction and weakening):
meaning that to prove a result one has to use each of its hypotheses exactly once. As
intuitionistic logic, it is constructive. It can be seen as a logic manipulating resources that
cannot be duplicated or thrown away at will and as such it has numerous applications
in fields such as programming languages, game semantics, quantum physics and linguistics.

Formal logics are defined by a language to write the propositions and a proof system
to deduce the validity of the propositions. The language is usually given by a set of
constructors. For instance the classical and intuitionistic logics both use the connectives
or (∨), and (∧), not (¬) and implication (→). A proof system is a collection of inference
rules, that describe atomic steps of reasoning, and a way to combine them. For instance
the rules in Figure 11 are inference rules. Their formalism is close to the one of the typing
rules from previous section: the horizontal line separates the conclusion (below the line)
from the premises (above the line); conclusion and premises contain on the left of the `
symbol a set of propositions that are assumed to be true (the context), and on its right,
the proposition to prove. The first rule has no premise and means that when we assume
some proposition P to hold, we can prove that P holds. The second rule has one premiss
and means that if when assuming P to be true we can prove Q to be true as well, then
we can prove that P implies Q. Lastly the third rule has two premises and means that if
in some context in some context we can prove that P holds and that P implies Q, then
in this context we can prove Q. In general for each logical connective there are one or
several introduction rules and one or several elimination rules. The second and third rules
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of Figure 11 are respectively the introduction and elimination rules for the implication.
The system can also include some structural rules. As for typing systems those rules can
be stacked to form a proof tree as shown in Figure 12.

ax
Γ, P ` P

Γ, P ` Q
→-i

Γ ` P → Q

Γ ` P → Q Γ ` P
→-e

Γ ` Q

Figure 11: Some inference rules of a proof system.

The similarity between proofs systems and type systems extends beyond a mere
coincidence. In fact, if we take the typing derivation for id proj2

1 (Figure 10), “forget”
about the λ-terms and keep only the types we get exactly a proof of the proposition
P → Q→ P , as pictured in the left of Figure 12 (the types τ and σ have respectively been
renamed P and Q). Despite being valid, this proof is not the simplest one. The detours
in such a proof come from the fact that some introduction rules are directly followed
by the corresponding elimination rule. We can rewrite the proof by eliminating them:
this is called proof normalization. When applying this method on the proof tree on the
left of Figure 12, we obtain the proof tree on the right. This is an alternative proof of
P → Q → P and it corresponds exactly to the typing derivation of proj2

1 that has the
same type as id proj2

1 .

id
P → Q→ P ` P → Q→ P

→-i
` (P → Q→ P )→ (P → Q→ P )

id
P,Q ` P

→-i
P ` Q→ P

→-i
` P → Q→ P

→-e
` P → Q→ P

ax
P,Q ` P

→-i
P ` Q→ P

→-i
` P → Q→ P

Figure 12: Two different proofs of P → Q→ P .

The Curry-Howard isomorphism, also known as the ”propositions-as-types” paradigm,
formalizes this link. It comes from the observation that an implication A→ B corresponds
to a type of function from A to B because on one hand applying a given function to
an element of A to get an element of B resembles to applying an assumption A → B
with the hypothesis A to prove B and on the other hand an application from A to B
can be viewed as a procedure that transform proofs of A into proofs of B. Similarly, the
conjunction corresponds to the Cartesian product, the disjunction to the union and the
negation to the complement. Thus formulae correspond to types and proofs correspond to
programs. Yet this correspondence is not simply a bijection between proofs and programs
but a real isomorphism because the computational notions existing on both sides (proof
normalization and program reduction) correspond as well.

This correspondence comes from an observation of Curry in 1934 and has been
formalized by Howard in 1969 in the context of intuitionistic natural deduction and
simply typed λ-calculus. Since, it has been extended to other frameworks. Virtually all
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proof-related concepts can be interpreted in terms of computations and vice versa. For
example different proofs formalisms (Hilbert style, natural deduction, sequent calculi)
are mirrored by different computational models (combinatory logic, λ-calculus, explicit
substitution calculi). Moreover, by enriching the logic we enrich as well the type system.
For instance first order logic with quantification corresponds to dependent types, second
order logic corresponds to polymorphic types, and proofs by contradiction in classical
logic to control operators such as exceptions.

Over the years, the Curry-Howard isomorphism evolved from a theoretical tool to
analyze proofs and programs to a practical way of developing software systems supporting
program verification and computer-assisted reasoning. For instance, the Coq proof assistant
builds on this correspondence.

Fixed point logics and cyclic proof systems

A fixed point of a function f is an element x such that f(x) = x. A function can have
zero, one, or several fixed points. In the context of a (partially) order set, the notion of
least fixed point (a fixed point that is lower than any other fixed point) and greatest fixed
point (a fixed point that is greater than any other fixed point) may prove useful. If they
exist they are unique.

In particular, when f is a monotone function over a complete lattice–an partially
ordered set in which all subsets have a supremum (and an infimum), then f admits a
least and a greatest fixed point (this result is part of Knaster-Tarski’s theorem).

Least and greatest fixed points can be used to model respectively inductive and
coinductive datatypes.

For instance if we want to define a list of elements from a given set A we will say that
it is either an empty list (represented as a constant, usually named Nil) or a list built
from an element from A (the head) and another list (the tail). To define this list type in
an OCaml-like syntax we could write:

type l i s t= Ni l | Cons of A ∗ l i s t

Let us consider the operator f that maps a set X to {Nil} ∪ {Cons(a, l) | a ∈ A, l ∈ X}.
Then the set of lists that we aim to define is a fixed point of this operator. More precisely it
is the least fixed point of this operator. In terms of type we will note list = µx.(1+A ·x).
Here 1 represent is a type of a singleton, that represent the constant Nil, + represents
disjoint union, · Cartesian product and x is a type variable. The operator µ is the least
fixed point operator: µx.(1 + A · x) designates the least fixed point of x 7→ 1 + A · x.

Dually we can define coinductive datatypes with greatest fixed points. For instance,
the set of streams over the set A (i.e. the set of infinite sequences of elements of A)
corresponds to the greatest fixed point νx.A · x.

Those inductive and coinductive datatypes could also be given as primitive types of
the language. For instance a lot of programming languages and computational models,
such as Gödel’s system T mentioned mentioned, consider the type of natural numbers as
a primitive type although it could be defined with a least fixed point (a natural number is
either 0 or the successor of a natural number). In such a setting, the language will then
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be restricted to those inductive and coinductive datatypes that are predefined. On the
other hand, considering the possibility to define new types with fixed points the same way
we can define new types with union or Cartesian products offers more flexibility.

Moreover it allows to naturally define recursive functions over those datatypes. For
instance to define the append function that concatenates two lists, we can proceed as
follow: either the first list is empty and we return the second list, or it contains a least
one element (the head) and we build the result from this element and the list returned by
a recursive call of append on the tail and the second list. In Ocaml-like syntax it could
be written as:

l et rec append l i s t 1 l i s t 2 = match l i s t 1 with
| Ni l −> l i s t 2
| Cons x t a i l −> Cons x ( append t a i l l i s t 2 )

As discussed in the previous section, everything that can be defined on types can also
be defined in logic. In particular we can consider logics enriched with fixed points.

For instance, if we look back at the temporal logic LTL defined previously in this
introduction, we can notice that we can express some of the connectors in terms of fixed
points. For the “eventually” operator ♦, we can say that a property is eventually true if
either it is true at this moment or it is eventually true at the next step. We can express
this with a least a fixed point: ♦A = µX.(A∨©X). Dually, a property is always true if it
is true at this moment and will still be always true in the next step: �A = νX.(A∧©X).

As with types and programming, logics with fixed points allow for more expressivity
than their counterparts with predefined connectors. For instance modal µ-calculus is an
extension of propositional logic with modalities and fixed points, and it encompasses many
temporal logics including linear temporal logic (LTL) and computational tree logic (CTL).
Fixed points have also been investigated in the context of linear logic, giving rise to µMALL.

Now the issue is to design inference rules to handle such constructors in proofs. The
first systems designed to reason about formulae with fixed points were finite proof systems.
The inference rules for least of greatest fixed points were respectively reflecting the
induction and coinduction principles. The drawback is that, with those principles, to
eliminate a least fixed point or introduce a greatest fixed point we need to provide an
explicit invariant, much in the same way we need an invariant to prove the correctness
of a recursive function. This invariant is a formula that has to be expressed in the same
language (which is not always possible) but can be syntactically unrelated to the formula
we want to prove. This breaks the subformula property: this property ensures that if
there is a proof of a result then there exists a proof of this result such that every formula
in a conclusion or a premiss of an inference rule is a subformula of the result. Such a
property is usually sought in the design of a proof system because it is a key point to
automatize proof search.

Remark. The fact that such systems do not respect the subformula property is closely
linked with the fact that the induction and coinduction rules hide a cut rule that cannot
be eliminated.

For these reasons, infinite proofs have been introduced to study formulae with fixed
points. The inference rules for least and greatest fixed points are basically an unfolding of
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the fixed point, and they can be stacked an infinite number of times, giving rise to an
infinite proof tree. These proofs have two problems.

The first problem is that infinite proofs are, infinite objects. In order to have a way
to represent them and handle them algorithmically we have to restrict the system to a
fragment of infinite proofs that can be finitely represented: regular (or cyclic, or circular)
proofs. The regular proofs are the proof trees that contain only finitely many distinct
subtrees. They can be represented as graphs with backpointers rather than trees, hence
the name of cyclic or circular proofs.

The second problem is that not every infinite proof tree built from the rules is a valid
proof. Intuitively it is possible to just add rules that ”do nothing” ad infinitum and derive
false conclusions. To fix this problem, those systems introduce a validity criterion: a
proof is an infinite tree of inference rules that respect some property. In general, this
property requires that for each infinite branch of the tree, there exists a formula that
goes through an infinite number of unfoldings. Such criteria are non-local, yet they are
syntactic and decidable for regular proofs (there is an algorithm that can decide whether
a regular infinite proof tree is a valid proof or not).

An example of such a cyclic proof is depicted in Figure 13. The formula A∗ corresponds
to the type of the lists over A: A∗ = µX.1 + A · X where 1 is the type of the empty
list. The rule labeled with ∗-l is the unfolding of this fixed point: a list is either empty,
or composed of an element from A and another list. The rule ∗-r:: corresponds to a
constructor for this type: if we have an element and a list we can construct a list from
them. Lastly, the cut rule corresponds to the composition of functions.

On this example, there is only one infinite branch in the tree we obtain by unfolding the
finite representation of the proof: the branch that always takes the backpointer. On this
branch, the A∗ formula that goes infinitely many often through an unfolding is depicted
with a purple highlight.

∗-rε ` A∗

...

A∗, A∗ ` A∗

id
A ` A

id
A∗ ` A∗∗-r::

A,A∗ ` A∗
cut

A,A∗, A∗ ` A∗
∗-l

A∗, A∗ ` A∗
•

E ` A F ` A∗
∗-r::

E,F ` A∗

E ` f A,A∗, E ` f
∗-l

A∗, E ` f
E ` f f, F ` g

cut
E,F ` g

Figure 13: Example of a cyclic proof.

The formalism of this proof has many similarities with the formalism for the definition
of the list type in a functional language. In fact, if we see this proof as a computing device
in a Curry-Howard manner, we can remark that it corresponds exactly to the append

function defined above. The Figure 14 highlights the corresponding parts between the
proof and the code of the function.
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Figure 14: Correspondence between the cyclic proof of Figure 13 and the code of the
append function. The mirrored element are highlighted in the same color in order to
visualize the relationship between them.

These links between cyclic proofs and recursive functions will be studied in Chapter 4,
as a first step towards extending the Curry-Howard framework to cyclic proof systems.
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• For the model checking techniques, “Principles of Model Checking” by Baier and
Katoen [9].
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words : automata, semigroups, logic and games” by Perrin and Pin [72], “Automata
on Infinite Objects” by Thomas [86], and “Automata: From Logics to Algorithms”
by Vardi and Wilke [90].
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“Lectures on the Curry-Howard Isomorphism” by Sorensen and Urzyczyn [80], “Proofs
and Types” by Girard [44], and “Type Theory and Functional Programming” by
Thompson [87].
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Contributions and outline

In the first chapter (Chapter 1), we recall the coinductive algorithm defined by Bonchi
and Pous to check equivalence of finite automata on finite words [14], and we propose a
linear algorithm for the congruence check required by this algorithm. We also propose a
technique to test such equivalence algorithms using the automata learning framework of
Angluin [6].

In the second chapter (Chapter 2), we show how to adapt the aforementioned algorithm
to non-deterministic Büchi automata, i.e., automata on infinite words. This is a non-trivial
task and we build on a construction due to Calbrix Nivat and Podelski [21] making it
possible to reduce the problem to the case of finite word automata. This work was
presented at DLT’19 [60].

Then we move to cyclic proofs. The starting point is a proof system inspired from
linear logic (IMALL) [28], that makes it possible to reason about Kleene star in a cyclic
way rather than by induction (Kleene star is an iteration operation closely related to while
loops in programming languages and reflexive transitive closure in mathematics, which is
by essence inductive). In this thesis, we study the computational content of such systems.

We first study a specific fragment making it possible to represent formal languages
(Chapter 3). This fragment is cut-free: the cut rule intuitively corresponding to modus
ponens is absent. In the general case, we show that we obtain exactly the DLogSpace
languages, by establishing an equivalence with a model of jumping multihead automata:
automata with several reading heads and the ability to relocate heads. If we further remove
the contraction rule from the system (a rule making it possible to reuse hypotheses),
we show that we obtain exactly the regular languages. This work was presented at
FSTTCS’19 [61].

We finally consider the whole system (Chapter 4). We establish a correspondence
with Gödel’s System T [46] (a simply-typed lambda-calculus with an iterator for natural
numbers or lists). In the affine case, i.e., without contraction, we obtain precisely the
primitive recursive functions. In the general case we obtain precisely the first-order
functions of system T. In order to obtain prove those theorems, we use tools from reverse
mathematics. This work was presented at PoPL’21 [62].

Notation

We write N for the set {0, 1, 2, . . . } of natural numbers. If i ≤ j are natural numbers, we
write [i; j] for the set {i, i+ 1, . . . , j} and [i; j[ for the set [i; j − 1].

We denote sets by capital letters X, Y, S, T . . . and functions by lower case letters
f, g, . . . Given sets X and Y , X × Y is their Cartesian product, X ] Y is the disjoint
union, XY is the set of functions f : Y → X. The collection of subsets of S is denoted by
P (S). We note 〈x, y, z〉 for tuples, and Im(f) for the image of a function f . We write 1
for the singleton set {〈〉}.

We write B for the set {0, 1} (Booleans). The truth values 1 and 0 will also be
sometimes noted tt and ff for true and false respectively.

The collection of relations on S is denoted by Rel(S) = P (S2). Given a relation
R ∈ Rel(X), we write x R y for 〈x, y〉 ∈ R.
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Given a finite alphabet A, we write A∗ for the set of all finite words over A; ε for the
empty word; w1w2 for the concatenation of words w1, w2 ∈ A∗; |w| for the length of a
word w, and wi for its ith letter (when i < |w|). We write A+ for the set of non-empty
words over A and Aω for the set of infinite words over A. We usually let a, b range over
the letters of such an alphabet A.

We also use the notation X∗ for sequences over an arbitrary, possibly infinite, set X.
In this case, if l is such a sequence, we sometimes write l(i) for its ith element. We use
commas to denote concatenation of both sequences and tuples, ε to denote the empty
sequence, and x :: q to denote the addition of an element x in front of a sequence q.
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Chapter 1

Equivalence algorithms for finite
automata

1.1 Introduction

Checking language inclusion or language equivalence of finite automata is a classical
problem in computer science with numerous applications such as compiler construction or
model checking.

For deterministic automata this problem can be solved either for all pairs of states of
the automata at once via minimization [52] or for a given pair of state with Hopcroft and
Karp’s algorithm [53]. In this chapter and the following we focus on the second problem.
Indeed non-deterministic (Chapter 1) and Büchi (Chapter 2) automata have no canonical
notion of minimal automata, so the first approach is not available..

Two families of algorithms were discovered for non-deterministic automata on finite
words, which drastically improved over the pre-existing ones in practice: antichain-based
algorithms [92, 3, 36] and algorithms based on bisimulations up to congruence [14]. In
both cases, those algorithms explore the starting automata by resolving non-determinism
on the fly through the powerset construction, and they exploit subsumption techniques to
avoid the need to explore all reachable states (which can be exponentially many). The
algorithms based on bisimulations up to congruence improve over those based on antichains
by strengthening the coinduction principle used implicitly by antichain algorithms with
the older technique for deterministic automata, due to Hopcroft and Karp. They however
require a membership test in the congruence closure of a relation at each step. This test
is performed in quadratic time in the size of the relation in [14].

Note that both families of algorithms require exponential space (and time) in worst-case
complexity, for a problem which is only PSpace. However the theoretical comparison
of the complexity of the algorithm is not very informative and in practice both families
perform better than existing PSpace algorithms, because the latter require exponential
time even for best cases.

We first recall the algorithms from [14] for checking equivalence of automata on finite
words (Section 1.2). We extend the presentation of the algorithms to Moore machines
that generalize automata with non-boolean outputs in order to prepare the ground for
chapter 2. Then we present a variant of Dowling and Gallier’s algorithm that carries
out the congruence test in linear time in the size of the relation (Section 1.3). We also
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give some leads to improve further this test. Lastly we present a framework based on
automata learning in order to evaluate and compare the efficiency of the algorithms that
check language equivalence of finite automata (Section 1.4).

1.2 Coinductive algorithms for finite automata

We will work with Moore machines, which generalize finite automata by allowing output
values in an arbitrary set rather than Booleans: they recognize weighted languages. We
keep the standard automata terminology for the sake of readability.

A deterministic finite automaton (DFA) over the alphabet A and with outputs in O is
a triple 〈S, o, t〉, where S is a finite set of states, o : S → O is the output function, and
t : A× S → S is the transition function which returns, for each letter a ∈ A and for each
state x, the next state ta(x). Note that we do not specify an initial state in the definition
of DFA: rather than comparing two DFAs, we shall compare two states in a single DFA
(obtained as disjoint union if necessary).

Every DFA A = 〈S, o, t〉 induces a function [·]A : S → OA∗ , mapping each state to a
weighted language with weights in O. This function is defined by [x]A(ε) = o(x) for the
empty word, and [x]A(aw) = [ta(x)]A(w) otherwise. We shall omit the subscript A when
it is clear from the context. For a state x of a DFA, [x] is called the language accepted by
x. The languages accepted by some state in a DFA with Boolean outputs are the rational
languages.

1.2.1 Deterministic automata: Hopcroft and Karp’s algorithm

We fix a DFA 〈S, o, t〉. Coinductive algorithms for checking language equivalence proceed
by trying to find a bisimulation relating the given starting states.

Definition 1.1 (Bisimulation). Let g : Rel(S) → Rel(S) be the function on relations
defined as

g(R) = {〈x, y〉 | o(x) = o(y) and ∀a ∈ A, ta(x) R ta(y)}

A bisimulation is a relation R such that R ⊆ g(R).

The above function g being monotone (i.e., it preserves the inclusion ordering), it admits
the union of all bisimulations as a greatest fixpoint, by Knaster-Tarski’s theorem [57, 85].
This greatest-fixpoint is actually language equivalence:

Theorem 1.1. For all x, y ∈ S, [x] = [y] iff there is a bisimulation R with x R y.

This theorem yields two families of algorithms: on the one hand, backward algorithms
like partition-refinement [52] make it possible to compute the largest bisimulation, and
thus to minimize DFAs; on the other hand, forward algorithms make it possible to compute
the smallest bisimulation containing a given pair of states (if any), and thus to check
language equivalence locally, between two states [53]. The latter problem is the one we
are interested in here. (Unlike with languages of finite words, there is no canonical notion
of minimal automaton for Büchi automata.) For deterministic automata on finite words
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input : A DFA A = 〈S, o, t〉 and two states x, y ∈ S
output : true if [x]A = [y]A; false otherwise

1 R := ∅; todo := {〈x, y〉};
2 while todo 6= ∅ do

// invariant: 〈x, y〉 ∈ R ∪ todo ∧R ⊆ g(f(R ∪ todo))
3 extract 〈x′, y′〉 from todo;
4 if o(x′) 6= o(y′) then return false;
5 if 〈x′, y′〉 ∈ f(R ∪ todo) then skip; // back to the beginning of the

loop

6 forall a ∈ A do
7 insert 〈ta(x′), ta(y′)〉 in todo;
8 insert 〈x′, y′〉 in R;

9 return true; // because: 〈x, y〉 ∈ R ⊆ g(f(R))

Figure 1.1: Coinductive algorithm for language equivalence in a DFA; the function
f on line 5 ranges over the identity for the naive algorithm (Naive(A, x, y)) or e
for Hopcroft & Karp’s algorithm (HK(A, x, y)).

this problem is slightly easier complexity-wise: when the starting automaton has size n,
minimization can be performed in time o(nln(n)) while language equivalence of two given
states can be tested in almost linear time [84].

A preliminary algorithm for checking language equivalence of two states x, y ∈ S is
obtained as follows: try to complete the relation {〈x, y〉} into a bisimulation, by adding
the successors along all letters and checking that o agrees on all inserted pairs. This
algorithm is described in Figure 1.1; it is quadratic in the worst case since a pair of states
is added to the relation R at each iteration. The standard and almost linear algorithm by
Hopcroft and Karp [53, 84], can be seen as an improvement of this naive algorithm where
one searches for bisimulations up to equivalence rather than plain bisimulations:

Definition 1.2. Let e : Rel(S) → Rel(S) be the function mapping a relation R to the
least equivalence relation containing R. A bisimulation up to equivalence is a relation R
such that R ⊆ g(e(R)).

This coarser notion makes it possible to take advantage of the fact that language
equivalence is indeed an equivalence relation, so that one can skip pairs of states whose
equivalence follows by transitivity from the previously visited pairs. The soundness of
this technique is established by the following Proposition:

Proposition 1.1 ([14, Thm. 1]). If R is a bisimulation up to equivalence, then e(R) is a
bisimulation.

Complexity-wise, when looking for bisimulations up to equivalence in a DFA with
n states, at most n pairs can be inserted in R in the algorithm in Figure 1.1: at the
beginning, e(R) corresponds to a discrete partition with n equivalence classes; at each
iteration, two classes of e(R) are merged.

Note that Hopcroft and Karp’s algorithm proceeds forward and computes the smallest
bisimulation up to equivalence containing the starting pair of states, if any. As mentioned
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above, this contrasts with partition-refinement algorithms [52], which proceed backward:
they start with a coarse partition (accepting v.s. non-accepting states), which they refine
by reading transitions backward.

1.2.2 Non-deterministic automata: HKC

Definition 1.3. A semilattice is a tuple 〈O,+, 0〉 where O is a set of elements, +: O2 → O
is an associative, commutative and idempotent binary operation, and 0 ∈ O is a neutral
element for +. For instance, 〈B,max, 0〉 is a semilattice. More generally 〈P (X) ,∪, ∅〉 is
a semi-lattice for every set X.

A non-deterministic finite automaton (NFA) over the alphabet A and with outputs in
O is a triple 〈S, o, t〉, where S is a finite set of states, o : S → O is the output function,
and t : A× S → P (S) is the transition function which returns, for each letter a ∈ A and
for each state x, a set ta(x) of potential successors. Like for DFA, we do not specify a set
of initial states in the definition of NFA.

We fix an NFA 〈S, o, t〉 in this section and we assume that the set O of outputs is a
semilattice. Under this assumption, an NFA A = 〈S, o, t〉 can be transformed into a DFA
A# = 〈P (S) , o#, t#〉 using the well-known powerset construction:

o#(X) =
∑
x∈X

o(x) t#a (X) =
⋃
x∈X

ta(x)

This construction makes it possible to extend the function [·] into a function from sets
of states of a given NFA to weighted languages. It also gives immediately algorithms
to decide language equivalence in NFA: just use algorithms for DFA on the resulting
automaton. Note that when doing so, it is not always necessary to compute the whole
determinized automaton beforehand. For instance, with coinductive algorithms like in
Figure 1.1, the determinized automaton can be explored on the fly. This is useful since
this DFA can have exponentially many states, even when restricting to reachable subsets.

Formally, when doing so, the function g is defined as in Section 1.2.1, but with respect
to the determinized DFA with state space P (S), so its type is Rel(P (S))→ Rel(P (S)):

g(R) =
{
〈X, Y 〉 | o#(X) = o#(Y ) and ∀a ∈ A, t#a (X) R t#a (Y )

}
The key idea behind the HKC algorithm [14] is that one can actually do better than
Hopcroft and Karp’s algorithm by exploiting the semilattice structure of the state-space of
automata determinized through the powerset construction. This is done using bisimulations
up to congruence.

Definition 1.4. Let R ∈ Rel(P (S)). We say that R is a congruence relation if it is
an equivalence relation such that XRY and X ′RY ′ entail (X ∪ X ′)R(Y ∪ Y ′) for all
X,X ′, Y, Y ′ ∈ P (S).

Definition 1.5. Let c : Rel(P (S))→ Rel(P (S)) be the function mapping a relation R to
the least congruence relation containing R. A bisimulation up to congruence is a relation
R such that R ⊆ g(c(R)).

Proposition 1.2 ([14, Thm. 2]). If R is a bisimulation up to congruence, then c(R) is a
bisimulation.
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input : A NFA A = 〈S, o, t〉 and two sets of states X, Y ⊆ S
output : a relation R such that [X] = [Y ] iff ∀〈X ′, Y ′〉 ∈ R, o#(X ′) = o#(Y ′)

1 R := ∅; todo := {〈X, Y 〉};
2 while todo 6= ∅ do

// invariant: 〈X, Y 〉 ∈ R ∪ todo ∧R ⊆ g′(c(R ∪ todo))
3 extract 〈X ′, Y ′〉 from todo;
4 if 〈X ′, Y ′〉 ∈ c(R ∪ todo) then skip; // back to the beginning of the

loop

5 forall a ∈ A do
6 insert 〈t#a (X ′), t#a (Y ′)〉 in todo;
7 insert 〈X ′, Y ′〉 in R;

8 return R;

Figure 1.2: HKC’(A, X, Y ): computing a pre-bisimulation up to congruence in a
NFA.

Checking whether a pair of sets belongs to the congruence closure of a finite relation
can be done algorithmically (see Section 1.3). The algorithm HKC [14] is obtained by
running the algorithm from Figure 1.1 on A#, replacing the function f on line 5 with the
congruence closure function c. We provide a variant of this algorithm in Figure 1.2, where
we prepare the ground for the algorithms we will propose for Büchi automata in Chapter 2.
There, we only explore the transitions of the determinized automaton, leaving aside the
verification that the output function agrees on all pairs (the test on line 4 in Figure 1.1
has been removed). This corresponds to using a function g′ instead of g, defined as

g′(R) =
{
〈X, Y 〉 | ∀a ∈ A, t#a (X) R t#a (Y )

}
Indeed, while this verification step is usually done on the fly in order to fail faster when a
counter-example is found (as in Figure 1.1, line 4), it will be useful later to perform this
step separately.

As mentioned in the Introduction, the advantage of HKC over HK is that in practice
it often makes it possible to skip reachable subsets from the determinized automaton,
even when the algorithm answers positively, thus achieving substantial gains in terms of
performance: there are families of examples where it answers positively in polynomial
time even though the underlying minimal DFA has exponential size. Actually it can also
improve exponentially over the more recent antichain-based algorithms [14, Section 4].
These latter gains can be explained by the fact that we focus on language equivalence
rather than language inclusion: while the two problems are inter-reducible (e.g., [X] ⊆ [Y ]
iff [X ∪ Y ] = [Y ]), working with equivalence relations makes it possible to strengthen the
coinductive argument used implicitly by both algorithms.

1.3 Computing the congruence closure

For the algorithm to be effective, we need a way to check whether some pairs belong to the
congruence closure of some relation over the set of states (line 4 in Figure 1.2). Generating
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the congruence closure explicitly is intractable. Even when the relation is empty its
congruence closure contains a pair for each possible set by reflexivity. Moreover it is not
necessary because during the execution of HKC we only need to know if some pairs belong
to the congruence closure. Thus, we are interested in the problem of membership within
the congruence closure of a given relation. In [14], the authors present a quadratic solution
based on a rewriting system. Below we present another solution based on the satisfiability
of a propositional formula that is linear in the size of the relation. Such a method was
used in [24], where the authors extend HKC to alternating automata. Their notion of
congruence is slightly different and results in a membership problem that is NP-complete.
We show below a variant of Dowling and Gallier’s algorithm [33, 77] that solves the prob-
lem in linear time. We also give some leads to improve the test at the end of this subsection.

1.3.1 Logical closure

Given a relation R ∈ Rel(P (S)), we define the following formula over |S| boolean variables
{xs | s ∈ S}

ϕR =
∧

〈X,Y 〉∈R

bXc ⇔ bY c where bXc =
∨
s∈X

xs.

Definition 1.6. We define the logical closure of a relation to be the following function
on Rel(P (S)):

cl(R) = {〈X0, Y0〉 | ϕR ⇒ (bX0c ⇔ bY0c) is valid}

Proposition 1.3. For all R ∈ Rel(P (S)), we have c(R) = cl(R).

Proof. For all R ∈ Rel(P (S)), cl(R) is a congruence relation that contains R, so that
c(R) ⊆ cl(R).

For the converse inclusion, we will first prove the following property:

∀R,X, Y if ϕR ⇒ (bXc ⇒ bY c) is valid, then (X ∪ Y, Y ) ∈ c(R).

This property is proved by induction on |S\Y |. If X ⊆ Y then X ∪ Y = Y and by
reflexivity (X ∪ Y, Y ) ∈ c(R).

If X 6⊆ Y we consider the valuation σ that assigns 0 to elements of Y , and 1 to every
other element. The formulae bXc and bY c evaluate respectively to 1 and 0 under σ
so there exists a clause of ϕR that is not satisfied by σ. In other terms, there exists
(A,B) ∈ R such that the evaluation of bAc and bBc under σ are differents. Without loss
of generality, consider that bAc evaluates to 1 – i.e. that A 6⊆ Y – and that bBc evaluates
to 1 – i.e. that B ⊆ Y .

Let Y ′ = Y ∪ A. We have the following:

1. |Y ′| > |Y |.

2. ϕR ⇒ (bXc ⇒ bY ′c) is valid because bY ′c is an extension of bY c.
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By induction we have that (X ∪ Y ′, Y ′) ∈ c(R). Moreover, as (A,B) ∈ R, we have
that (Y ∪A, Y ∪B) ∈ c(R) – i.e. (Y ′, Y ) ∈ c(R). So (X ∪ Y, Y ) ∈ c(R), which concludes
the proof of the property.

By applying two times the property we have proven that if ϕR ⇒ (bXc ⇔ bY c) is
valid then (X ∪ Y, Y ) ∈ c(R) and (X ∪ Y,X) ∈ c(R), so (X, Y ) ∈ c(R) by transitivity.

Thus the membership problem of a pair of sets of states in the congruence closure of a
given relation reduces to the problem of validity of a propositional formula. This problem
is in general coNP-complete but the shape of the formula, which is very close to a Horn
formula, makes it possible to use a variant of Dowling and Gallier’s algorithm [33, 77]
and solve the problem in linear time.

Definition 1.7. A literal is either a propositional variable (a positive literal) or the
negation of a propositional variable (a negative literal).

A Horn clause is a disjunction of literals that contains at most one positive literal.
Alternatively a Horn clause can be seen as an implication which left side is a (possibly
empty) conjunction of positive literals and which right side is empty or reduced to a single
positive literal. A Horn formula is a conjunction of Horn clauses.

We call factorized Horn clause a disjunction of negative literals and a (possibly empty)
conjunction of positive literals. It is a natural extension of Horn clauses in the sense that
it can be seen as an implication between (possibly empty) conjunctions of positive literals.
If we expand a factorized Horn clause according to the conjunction of positive literals we
get several Horn clauses, hence the name. A factorized Horn clause will be said proper if
it contains positive and negative literals. A factorized Horn formula is a conjunction of
factorized Horn clauses.

Example 1.1. ϕ = (x∨¬y ∨¬z)∧ (u∨¬y ∨¬z) is a Horn formula with two Horn clauses.
It is equivalent to the factorized Horn formula ϕ′ = (x∧u)∨¬y∨¬z composed of a unique
factorized Horn clause. ϕ and ϕ′ can also respectively be written (y∧ z ⇒ x)∧ (y∧ z ⇒ u)
and (y ∧ z)⇒ (x ∧ u).

Factorized Horn clauses that are not proper, i.e. that are reduced to a conjunction of
positive literal or a disjunction of negative literals can also be written with implications.
For instance x ∧ u and ¬y ∨ ¬z correspond respectively to > ⇒ (x ∧ u) and (y ∧ z)⇒ ⊥.

Proposition 1.4. The problem of membership in the congruence closure of a relation
reduces linearly to the satisfiability of two factorized Horn formulae and quadratically to
the satisfiability of two Horn formulae.

Proof. The size of the problem is the sum of the size of all the considered sets (the ones
in R and the ones we are testing).

Let us recall the meaning of bXc and introduce dXe its symmetrical notation:

bXc =
∨
s∈X

xs dXe =
∧
s∈X

xs

By Proposition 1.3 the problem to know whether some pair 〈X0, Y0〉 belongs to the
congruence closure of some relation R reduces to the validity of a formula

ϕ =
( ∧
〈X,Y 〉∈R

(bXc ⇔ bY c)
)
⇒ (bX0c ⇔ bY0c) .
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As bXc is a disjunction over the elements of X, the size of ϕ is exactly the size of the
problem. With a factor 4 we get as an equivalent problem the validity of the two formulae

ϕ′1 =
( ∧
〈X,Y 〉∈sym(R)

(bXc ⇒ bY c)
)
⇒ (bX0c ⇒ bY0c)

and ϕ′2 =
( ∧
〈X,Y 〉∈sym(R)

(bXc ⇒ bY c)
)
⇒ (bY0c ⇒ bX0c)

where sym(R) = R ∪ {〈Y,X〉 | 〈X, Y 〉 ∈ R} .

As the two formulae have exactly the same shape we will only treat ϕ′1 in what follow.
Such a formula is valid if and only if ¬ϕ′1 is not satisfiable, where:

¬ϕ′1 = ¬

( ∧
〈X,Y 〉∈sym(R)

(bXc ⇒ bY c)
)
⇒ (bX0c ⇒ bY0c)


=

∧
〈X,Y 〉∈sym(R)

(bXc ⇒ bY c) ∧ ¬ (bX0c ⇒ bY0c)

=
∧

〈X,Y 〉∈sym(R)

(¬bY c ⇒ ¬bXc) ∧ ¬bY0c ∧ bX0c.

Without changing the satisfiability problem we can invert all positive and negative literals
and we obtain a factorized Horn formula

ψ1 =
∧

〈X,Y 〉∈sym(R)

(dY e ⇒ dXe) ∧ dY0e ∧
∨
s∈X0

¬xs

=
∧

〈X,Y 〉∈sym(R)

(dY e ⇒ dXe) ∧ (> ⇒ dY0e) ∧ (dX0e ⇒ ⊥).

Then the pair 〈X0, Y0〉 belongs in the congruence closure of R if and only if the two
factorized Horn formulae ψ1 and ψ2 (obtained from ϕ′2 the same way), whose sizes are
linear in the size of the original problem, are both non-satisfiable.

By expanding ψ1 and ψ2 with respect to dXe =
∧
s∈X xs we obtain Horn formulae

whose sizes are quadratic in the original problem.

Example 1.2. Let us consider the relationR = {〈{x} , {u}〉, 〈{y, z} , {u}〉} over P ({x, y, z, u})
and the pair 〈{x, y} , {u}〉.

The formula that encodes the relation is ϕR = [x⇔ u] ∧ [(y ∨ z)⇔ u].
The pair 〈{x, y} , {u}〉 belongs to the congruence closure of the relation if and only if

the formulae

ψ1 = C1 ∧ C2 ∧ C3 ∧ C4 ∧ (> ⇒ x ∧ y) ∧ (u⇒ ⊥)

and ψ2 = C1 ∧ C2 ∧ C3 ∧ C4 ∧ (x ∧ y ⇒ ⊥) ∧ (> ⇒ u)

are both non-satisfiable, where C1, C2, C3 and C4 are four factorized Horn clauses coming
from the relation:

C1 : x⇒ u C2 : u⇒ x C3 : (y ∧ z)⇒ u C4 : u⇒ (y ∧ z).
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Note that the disjunction (y∨ z) in ϕR gave rise to conjunction (y∧ z) in ψ1 and ψ2. Note
also that only the clauses coming from the relation are proper factorized Horn clauses
whereas the clauses coming from the pair are degenerated.

The pair belongs to c(R). Indeed, by transitivity and reflexivity we respectively know
that 〈{x} , {y, z}〉 and 〈{y} , {y}〉 belongs to c(R), so by union 〈{x, y} , {y, z}〉 ∈ c(R) and
we can conclude by transitivity again that 〈{x, y} , {u}〉 ∈ c(R). ψ1 and ψ2 are indeed un-
satisfiable. To further reduce to Horn formula it suffices to expand C4 as (u⇒ y)∧(u⇒ z).

1.3.2 A variant of Dowling and Gallier’s algorithm

Dowling and Gallier presented two algorithms that solve the satisfiability problem of Horn
formulae in linear time [33]. The idea is that because the clauses contain at most one
positive literal, the constraints on the assignments of variables are stronger and can be
represented as a graph. The difference between the two algorithms lies in the strategy used
to resolve the data flow problem on the graph, either bottom-up or top-down. We present
below their first algorithm and explain how to adapt it in order to handle factorized Horn
formulae. The presentation differs slightly from the original paper [33] in order to prepare
the ground for the variant we propose.

The algorithm (called DG in what follows) is listed in Figure 1.3. The idea will be to
identify the variables that need to be assigned to true and propagate the information
looking to Horn clauses as propagation rules. To illustrate how the algorithm works let
us take the formula ψ1 from Ex.1.2. Initially the variables x and y are assigned to true
because of the clause > ⇒ x ∧ y. With the clause C1 : x⇒ u we deduce that u should
also be assigned to true which conflicts with the clause u⇒ ⊥.

DG starts with a preliminary assignment val where all variables evaluate to false (line
3). At any point of the algorithm, the current assignment is given by the array val. Then
the algorithm will identify the variables that have to be assigned to true and propagate
the information. The list todo contain the variables that have to be assigned to true
but which consequences have not been treated yet1. It is initialized with the variables
belonging to some clause without negative literal (line 5). Then whenever we have a Horn
clause

∧
xi ⇒ y whose negative literals x′is have already all be assigned to true, y is

added to todo (lines 14-15). Those consequences are derived from the clauses until there
is no more or it reaches a contradiction, that is a clause without positive literal such that
all its negative literals have been assigned to true (lines 12-13).

It remains to explain how the algorithm proceeds to achieve this in linear time in the
size of the formula. The cleverness of the algorithm lies in the pre-computation of the list
of clauses where the variable appears negatively (clauses, line 2) and the maintenance
of a counter nb neg. When a variable is assigned to true during the execution of the
algorithm, the array clauses points to the clauses whose nb neg has to be decreased. A
clause ‘activates’ when its nb neg goes down to zero and its positive literal is assigned to
true if there is one, the algorithm returns false otherwise.

Proposition 1.5. The algorithm DG runs in linear time in the size of the input formula,
i.e. in the total number of literals that appear in the input formula.

1In [33], clauses are added to this list, here we directly handle the positive variables of the clauses.
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input : A Horn formula F = C1 ∧ · · · ∧ Ck over the set of variables {x1, . . . , xn}
neg(Cj) is the set of negative variables of a clause

pos(Cj) is the positive variables of a clause if any, ⊥ otherwise

output : true if F is satisfiable; false otherwise

// pre-treatment

1 forall i ∈ J1;nK do
2 clauses[i] := {j | xi ∈ neg(Cj)};

// algorithm

3 forall i ∈ J1;nK do val[i] := false;
4 forall j ∈ J1; kK do nb neg[j] := |neg(Cj)|;
5 todo := {pos(Cj) | nb neg[j] = 0};
6 while todo 6= ∅ do

// invariant: Cj evaluates to false under val if and only if ∃i
s.t. xi = pos(Cj), val[i] = false and i ∈ todo.

7 extract i from todo;
8 if val[i] = true then skip;
9 val[i] := true;

10 forall j ∈ clauses[i] do
11 nb neg[j] := nb neg[j]− 1;
12 if nb neg[j] = 0 and pos(Cj) = ⊥ then
13 return false;
14 if nb neg[j] = 0 then
15 insert pos(Cj) in todo;

16 return true;

Figure 1.3: DG (F ): satisfiability of Horn formulae in linear time.

Proof. The pre-treatment is linear because it suffices to go through each clause and update
the arrays clauses, nb neg and pos accordingly.

A variable is inserted in todo only when nb neg[j] goes down to 0 for some clause Cj,
which can only happen once per clause in the algorithm, so the while loop is executed
at most k times, where k is the number of clauses. During the whole execution of the
algorithm, a given clause Cj can see its counter nb neg[j] decremented at most nj times
where nj is the number of negative literals of Cj. Indeed it can only happen when one of
its negative literals has its value set to true, which happens at most once for each variable
during the whole execution. In total the forall loop is executed at most

∑
j∈J1,kK |Cj| = |F |

times.

By Proposition 1.4 we can use the algorithm DG to solve the problem of membership
in the congruence closure in quadratic time. We explain below how to slightly modify
this algorithm in order to handle directly factorized Horn formulae, still in linear time.
The idea is that when all the negative literals xi of a factorized Horn clause

∧
xi ⇒

∧
yi

are true, then all its positive literals yi are assigned to true. The difference with DG lies in
the fact that we have only one clause with one counter where DG would have dealt with
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input : A factorized Horn formula F = C1 ∧ · · · ∧ Ck over the set of variables
{x1, . . . , xn}
neg(Cj) and pos(Cj) are the set of negative and positive variables of a clause

output : true if F is satisfiable; false otherwise

// pre-treatment

1 forall i ∈ J1, nK do
2 clauses[i] := {j | xi ∈ neg(Cj)};

// algorithm

3 forall i ∈ J1, nK do val[i] := false;
4 forall j ∈ J1, kK do nb neg[j] := |neg(Cj)|;
5 todo :=

⋃
{pos(Cj) | nb neg[j] = 0};

6 while todo 6= ∅ do
// invariant: Cj evaluates to false under val if and only if ∃i

s.t. xi ∈ pos(Cj), val[i] = false and i ∈ todo.
7 extract i from todo;
8 if val[i] = true then skip;
9 val[i] := true;

10 forall j ∈ clauses[i] do
11 nb neg[j] := nb neg[j]− 1;
12 if nb neg[j] = 0 and pos(Cj) = ∅ then
13 return false;
14 if nb neg[j] = 0 then
15 forall i′ ∈ pos(Cj) do insert i′ in todo;

16 return true;

Figure 1.4: DG’ (F ): satisfiability of factorized Horn formulae in linear time.

several Horn clauses (one for each yi), every one with its own counter.

To illustrate this, let us take the formula ψ2 from Ex.1.2. Initially the variable u is
assigned to true because of the clause > ⇒ u. With the clause C2 : u⇒ x we deduce that
x should also be assigned to true; with the clause C4 : u⇒ (y ∧ z) we deduce that both y
and z have to be assigned to true; this eventually conflicts with the clause (x ∧ y)⇒ ⊥.

The modified algorithm DG’ is listed in Figure 1.4. Its input is a factorized Horn
formula F consisting of a disjunction of factorized Horn clauses C1, . . . , Ck. The list todo
is initialized with the union of the sets of the positive variables of clauses that do not
contain negative literals (line 5). When the counter of a clause reaches 0, we insert in
todo all its positive variables that have not already be assigned to true (lines 14-15).

Proposition 1.6. The algorithm DG’ is correct and runs in linear time in the size of the
input formula.

Proof. If we expand the formula F to get a Horn formula we get for each factorized Horn
clause Cj and each xi positive literal of Cj a Horn clause Ci

j. For any j all the Ci
j share

the same negative literals so when we run DG on the expanded formula they are all inserted
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in todo at the same time, as does DG’ in line 17.
The same analysis as for DG in the proof of Proposition 1.5 shows that DG’ runs in

linear time in the size of the input formula.

We presented in this subsection an algorithm that carries out the membership test in
the congruence closure of a relation in linear time in the size of the relation. A lead to
improve the test is to add a union-find structure that takes care of the test of membership
in the equivalence closure of the relation in quasi-constant amortized time before moving
to the congruence test, if necessary. This structure could in addition help accelerate the
congruence test itself by adding to the rules used by the modified Dowling and Gallier
algorithm the ones corresponding to the equivalence closure of the relation. Yet this
structure has a counterpart in terms of complexity for the algorithm because it has to be
maintained, and increases the size of the input of DG’, so the gain is not obvious and may
depend on the cases.

Moreover we can take advantage of the fact that this test is a subroutine of another
algorithm, HKC. During the execution of the whole algorithm this membership test is
carried out each time a new pair of set of states is encountered. The pairs are a priori
different each time but the relation itself changes very little between each step: either
the precedent pair has been skipped and it is identical, or it has not and it contains
one additional pair. A first optimization is to modify the pre-treatment part in order to
update the array clauses rather than re-computing it from scratch. Besides, with ideas
similar to incremental SAT solving [51, 91, 37], we can reuse information from the previous
solving steps to test membership of a pair in the relation. We can see the algorithm DG’

as taking a set of variables that have to be true and deriving the consequences according
to some rules until it reaches a contradiction according to a given set of variables that
have to be false or there are no more consequences to derive. The set of variables that
have to be true corresponds to factorized Horn clauses containing no negative literal;
the rules corresponds to the clauses containing positive and negative literals (proper
clauses); the set of variables that have to be false corresponds to factorized Horn clauses
containing no positive literal. The factorized Horn formulae obtained from a pair and
a relation always have the same structure: each pair of the relation corresponds to two
rules – i.e. two clauses with positive and negative literals; the sets of the pair correspond
to the sets of variables that have to be true or false. Each time the algorithm tests a
new pair it derives a new rule: the set of variable that are assigned to true at the end
of the algorithm is a consequence derived from the set of variables initially assigned to
true. This rule can be added so part of future work might be skipped. However this
increases the number of clauses of the formula to look at, making each step possibly longer.

1.4 Evaluating the efficiency of equivalence algorithms

via automata learning

In this section we explore a way to assess the efficiency of algorithms that compare
automata. As this problem is PSpace-complete the worst case complexity is well known
but might not be representative of the most frequent cases. It is also complicated to
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analyze and compare the average-case theoretical complexity because there is no natural
notion of random distribution over automata nor pairs of automata. Nevertheless we
can try to evaluate the efficiency of the algorithms through executions on collections of
automata. As collections of real automata – obtained for instance from model checking
problems – are quite rare, those benchmarks are usually reinforced by tests on randomly
generated automata. However, even if there exist some good models to generate a random
automaton with a non-trivial language [81], two randomly generated NFAs have high
chances not to be equivalent and to be separated by a short counter-example. In this
context most equivalence algorithms stop quickly the exploration when finding the counter-
example and return it. The differences between algorithms can more often be observed on
pairs of equivalent automata or “close” ones. To circumvent this difficulty the authors
of [14] have generated automata without accepting states so that they all recognize the
empty language. Yet this solution is a bit artificial and not satisfactory. We can indeed
expect two automata that recognize the same language to have some hidden structural
links that some of the algorithms may be able to exploit, but with this solution the
automata are a priori completely independent. We present here another solution based
on algorithms that learn automata.

Automata learning has received much focus these last years. It consists in trying to
guess an automaton that would recognize an hidden and unknown regular language which
can only be accessed through some queries. In [6] Angluin develops L?, an algorithm that
learns the minimal DFA for a regular language by interacting with an oracle that can
answer membership and equivalence queries. Several extensions build upon this algorithm,
such as Bollig et al. that adapts it to learn a non-deterministic automaton [13]. Those
algorithms start with basic membership queries (are the empty word and the letters in
the language?) to construct a first simple hypothesis automaton; then they alternate
equivalence queries (is the current hypothesis correct?) with phases of membership queries.
When the oracle answers negatively to an equivalence query it also gives a counter example,
the algorithms use the counter example alongside some additional membership queries to
correct and update their current hypothesis. The membership and equivalence queries are
considered as blackboxes by the algorithms. If the membership queries can usually be
implemented easily, it is not the case for equivalence queries.

In the case where the target language is given as an automaton, any equivalence
algorithm can be used to answer to the equivalences queries. Then the given equivalence
algorithm is tested on a sequence of pairs of automata whose languages are intuitively
closer and closer, until being the same. It has the advantage of testing the algorithms on
a wide range of pairs of automata in term of closeness of recognized language. Moreover
one of the main applications of equivalence algorithms is model checking, and in this
context automata that are compared come from different modelings (one from the program
and one from the logical specification) so they may look very different, but they usually
recognize “close” languages when they are not equivalent because we search for non-trivial
bugs. Here by “close” we mean that witnesses of non-inclusion are difficult to build. So
this sequence of pairs of automata produced by the learning framework allows to test on
more realistic cases than totally random pairs.

However as the automata that are produced by the learning process are not arbitrary
but have some particular structure due to the way they are generated, this method can
also introduce some biases. We present below the learning framework for finite automata,
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either deterministic or non-deterministic and for each case we explain how it can interact
with equivalence algorithms.

1.4.1 Deterministic automata: L?

We fix L a regular language to learn, over alphabet Σ. A residual of L is a language that
can be written u\L = {v ∈ Σ∗ | uv ∈ L} for some u ∈ Σ∗. By the Myhill-Nerode theorem,
the number of residuals of L is finite and there is a natural bijection between the minimal
DFA that recognize L and its residuals.

The algorithm L? developed by Angluin in [6] aims at building this minimal automaton
by determining those residuals. It begins with the residual corresponding to the empty
word ε which will be the initial state of the automaton. It asks membership queries
about ε and the different letters so it can establish the acceptance status of this state
and the out-going transitions and then construct a first hypothesis automaton. When a
counter-example is given by the oracle in response to an equivalence query, the algorithm
distinguishes some residuals thanks to the prefixes of the counter-example. Then it fills up
the transition table of the updated automaton with additional membership queries. Note
that by construction, this algorithm builds the minimal automaton because the states
corresponds to the residuals of the target language. We present below an example, for the
more technical details we refer the reader to [6].

Example 1.3. Let us consider the language L = Σ∗aΣ over the alphabet Σ = {a, b}. At
the beginning of the algorithm, the hypothesis automaton contains only one state that
corresponds to the residual ε−1L. As ε is not in the language, this state is not accepting.
In order to define the outgoing transitions, the algorithm asks the membership status of
the words a and b which are both rejected. So the algorithm identifies the residuals ε\L,
a\L and b\L and submits the automaton depicted in Figure 1.5a.

The hypothesis automaton does not recognize the target language and the oracle
gives aa as a counter example: it should be accepted but it is not by the hypothesis
automaton. This counter-example distinguishes two residuals: a belongs to a\L but not to
ε\L. Then the algorithm launches an iterative process of multiple membership queries in
order to complete the table in Figure 1.5d; each time it finds a new residual that must be
distinguished from others, it determines outgoing transitions from the corresponding state.
At the end of this subroutine we obtain the table in Figure 1.5d and the equations in
Figure 1.5c where the equalities corresponds to an equality of the columns in Figure 1.5d.
From the table and the equations we deduce the second hypothesis automaton depicted
in Figure 1.5b: one column of the table corresponds to a state and the transitions follow
from the equations. On this example the algorithm stops here because the second guessed
automaton recognizes the target language.

If the target language would have been L′ = Σ∗aΣ + bbb for instance, all membership
queries would have been answered in the same way so the algorithm would have submitted
the same hypothesis automata but it would not have stopped after the second equivalence
query, and would have carried on processing the counter example bbb.

By taking a random NFA as a model for the target regular language, we can use
any equivalence algorithm to answer the equivalence queries. However this would always
test the algorithms in a very restricted case since one of the automata would always be
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(b) Second and final hypothesis auto-
maton.

b\L = ε\L
aaa\L = aa\L
aab\L = ab\L
aba\L = a\L
abb\L = ε\L

(c) Identification of
residuals.

ε\L b\L abb\L a\L aba\L aa\L aaa\L ab\L aab\L
ε no no no no no yes yes yes yes
a no no no yes yes yes yes no no
aa yes yes yes yes yes yes yes yes yes

(d) Membership in residual languages.

Figure 1.5: L? learning L = Σ∗aΣ

deterministic. This is why we investigate the variant proposed by Bollig et al. [13] in the
next subsection.

We can furthermore note that this usage of L? and an equivalence algorithm together
gives rise to a way to find the equivalent minimal DFA for a given NFA without going
through the powerset construction.

1.4.2 Non-deterministic automata: NL?

In [13] Bollig et al. adapt L? in order to learn non deterministic automata; they call their
algorithm NL?. The global process is the same but the hypothesis automata are NFAs.
In order to achieve this, the authors note that some states of the minimal DFA can be
seen as the union of other states. We illustrate this idea on the example of the previous
subsection.

Example 1.4. Let us consider again the language L = Σ∗aΣ from Example 1.3. If we look
at the table of Figure 1.5d we can note that the column aa\L is the union of the column
ε\L, a\L and ab\L. In this case NL? will not consider aa\L as a new state. In fact, to
construct an NFA, NL? will take as states the residuals that are prime i.e., that are not
union of others. Transitions can be recovered via column inclusion. For instance, the
columns ε\L and a\L are included in column aba\L so by reading a from the state ab we
go to the states ε and a. The NFA constructed from the table in Figure 1.5d is depicted
in Figure 1.6; it recognizes the target language.

With this variant we can test the algorithms on a pair of two non-deterministic
automata. However there is still a bias because NL? produces a particular automaton. In
fact the learned automaton is in a subclass of NFAs called Residual Finite State Automata
(RFSAs). An RFSA is a non deterministic finite automaton whose states accept residual
languages of the language of the automaton. This is due to the way the learning algorithm
processes. Even if NFAs in general have no notion of canonical minimal automaton, this
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Figure 1.6: Automaton guessed by NL? with target language L = Σ∗aΣ

subclass does admit canonical representatives, which is the one generated by NL?. There
exist some sequences of automata such that this minimal RFSA is exponentially smaller
than the minimal DFA, but there also exist sequences of NFAs such that the minimal
RFSA is of exponential size compared to the given NFA.

During the whole learning process, NL? generates only minimal RFSAs for languages
that eventually converge to the target language. Thus in this framework, the equivalence
algorithms are tested on pairs consisting of a random NFA and a minimal RFSA. Yet
it is not clear to us that it could have an impact on standards algorithms like HKC or
antichain-based ones.

1.5 Conclusion and future work

We reformulated the algorithms HK and HKC with Moore machines. We will use this
presentation to extend those algorithms to Büchi automata in Chapter 2.

This process led us to study more in depth the congruence problem: given a relation
over sets of states and a pair of sets of states, is the pair in the congruence closure of
the relation? This problem is solved repeatedly by a subroutine of HKC but it is done
suboptimally. We presented a reduction to the problem of satisfiability of a formula and a
variant of Dowling and Gallier’s algorithm for HornSat to solve the problem in linear
time in the size of the relation.

Lastly we presented a framework based on automata learning to evaluate in practice
the efficiency of equivalence algorithms.
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Chapter 2

Comparison algorithms for Büchi
automata

2.1 Introduction

Büchi automata are machines which make it possible to recognize sets of infinite words.
They form a natural counterpart to finite automata, which operate on finite words. They
play a crucial role in logic for their links with monadic second order logic (MSO) [18], and in
program verification. For instance, they are widely used in model-checking tools, in order
to check whether a given program satisfies a linear temporal logic (LTL) formula [89, 42].

A key algorithmic property of Büchi automata is that checking whether two automata
recognize the same language is decidable, and in fact PSpace-complete, like in the finite
case with non-deterministic finite automata. This is how one obtains model-checking
algorithms. Several algorithms have been proposed in the literature [18, 45, 1, 56] and
implemented in various tools [50, 88, 69].

The antichain-based algorithms could be adapted to Büchi automata by exploiting
constructions to compute the complement of a Büchi automaton, either Ramsey-based [38,
39] or rank-based [35, 36]. Unfortunately, those complementation operations do not make it
possible to adapt the algorithms based on bisimulations up to congruence: these algorithms
require a proper powerset construction for determinization, which is not available for Büchi
automata. Here we propose to circumvent this difficulty using a construction by Calbrix,
Nivat, and Podelski [21], which makes it possible to reduce the problem of checking Büchi
automata equivalence to that of checking equivalence of automata on finite words.

The first observation, which is used implicitly in the so-called Ramsey-based algorithms
from the literature [38, 39, 1], is that it suffices to consider ultimately periodic words: if
the languages of two Büchi automata differ, then they must differ on an ultimately periodic
word. The second observation is that the set of ultimately periodic words accepted by a
Büchi automaton can be faithfully represented as a rational language of finite words, for
which Calbrix et al. give an explicit non-deterministic finite automaton. This automaton
contains two layers: one for the prefixes of the ultimately periodic words, and one for
their periods. We show that algorithms like HKC [14] can readily be used to reason about
the prefix layer, without systematically determinizing it. The period layer requires more
work in order to avoid paying a doubly exponential price. We show how to analyze it to
compute discriminating sets that summarize the periodic behavior of the automaton, and
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suffice to check language equivalence.
We first revisit the construction of Calbrix et al. to make their use of the Büchi

transition monoid [73] explicit (Section 2.2). We define the new algorithm HKCω in
Section 2.3. We discuss more advanced refinements of the algorithm in Section 2.4. We
conclude with directions for future work in Section 2.5.

2.2 From Büchi automata to finite words automata

Let 3 be the set {0, 1, ?}. A (non-deterministic) Büchi automaton (NBW) over the
alphabet A is a tuple 〈S, T 〉 where S is a finite set of states, and T : A → 3S

2
is the

transition function. We work with Büchi automata with Büchi transitions rather than
Büchi states, hence the type of T (the two models are equivalent and the one we chose is
slightly more succinct). The 0 represents the absence of a transition, the 1 a non-Büchi
transition, and the ? a Büchi transition. We write Ta for T (a), x

a−→ x′ when Ta(x, x
′) 6= 0,

and x
a
=⇒ x′ when Ta(x, x

′) = ?; the latter denote Büchi transitions, that should be fired

infinitely often in order to accept an infinite word. Like for DFA and NFA, we do not
include a set of initial states in the definition.

Given a NBW A = 〈S, T 〉 and w ∈ Aω an infinite word, we say that a sequence of
states χ ∈ Sω accepts w if the sequence (Twi(χi, χi+1))i∈N contains infinitely many ? and
no 0. The ω-language [X]A of a set of states X ⊆ S is the set of infinite words accepted
by a sequence χ such that χ0 ∈ X. The ω-languages accepted by some set of states in a
NBW are the rational ω-languages [18].

Given a finite word u ∈ A∗ and a finite non-empty word v ∈ A+, write uvω for the
infinite word w ∈ Aω defined by wi = ui if i < |u| and wi = v(i−|u|)mod|v| otherwise.
Ultimately periodic words are (infinite) words of the form uvω for some u, v ∈ A∗ × A+.
Given an ω-language L ⊆ Aω, we set

UP (L) = {uvω | uvω ∈ L} L$ = {u$v | uvω ∈ L}

UP (L) is a ω-language over A while L$ is a language of finite words over the alphabet
A$ = A]{$}. The first key observation is that the ultimately periodic words of a rational
ω-language fully characterize it:

Proposition 2.1 ([21, Fact 1]). For all rational ω-languages L,L′, we have that UP (L) = UP (L′)
entails L = L′.

Proof. Consequence of the closure of rational ω-languages under Boolean operations [18],
and the fact that every non-empty rational ω-language contains at least one ultimately
periodic word.

As a consequence, to compare the ω-languages of two sets of states in a NBW, it
suffices to compare the ω-languages of ultimately periodic words they accept. Calbrix et
al. show that these ω-languages can be faithfully represented as rational languages (of
finite words):

Proposition 2.2 ([21, Proposition 4]). If L ⊆ Aω is ω-regular, then L$ is regular.
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To prove it, Calbrix et al. construct a NFA for L$ from a NBW A for L. The
constructed NFA has two layers. The first layer recognizes the prefixes (the u in uvω).
This is a copy of the NBW for L (without accepting states, and where the Büchi status of
the transitions is ignored). This layer guesses non-deterministically when to read the $
symbol and then jumps into the second layer, whose role is to recognize the period (the v
in uvω). We depart from [21] here, by using the notion of (Büchi) transition monoid [73],
which makes the presentation easier and eventually makes it possible to propose our
algorithm.

Consider the set 3 as an idempotent semiring, using the following operations:

+ 0 1 ?
0 0 1 ?
1 1 1 ?
? ? ? ?

· 0 1 ?
0 0 0 0
1 0 1 ?
? 0 ? ?

Let A = 〈S, T 〉 be an NBW and write M = 3S
2

for the set of square matrices over 3
indexed by S; it forms a Kleene algebra [22, 59] and in particular a semiring. Let I denote
the identity matrix of M . The transition function of A has type A→M ; we extend it
to finite words by setting Tε = I and Tu1...un = Tu1 · · · · · Tun . We have that Tu(x, x

′) is
? if there is a path along u from x to x′ visiting an accepting transition, 0 if there is no
path from x to x′ along u, and 1 otherwise. We extend the notations x

u−→ x′ and x
u
=⇒ x′

to words accordingly.
The Kleene star M∗ of a matrix M ∈M is defined by M∗ :=

∑
i∈N M

i, where the
sum is defined componentwise with respect to the + operation defined above on 3. As
before, the coefficient M∗(x, x′) represents the type of the “best” available path of any
length from x to x′: it is ? if there is a path containing a Büchi transition, 1 if there
is a path but not one with a Büchi transition, and 0 if there is no path at all. Using a
pumping argument, we can remark that it is enough to consider paths with at most 2|S|
transitions, so M∗ =

∑
0≤i≤2|S|M

i.
A periodic word vω is accepted from a state x in A if and only if there is a lasso for v

starting from x: a state y and two natural numbers n,m such that x
vn−→ y

vm
==⇒ y. This

information can be computed from the matrix Tv: given a matrix M , compute1 its Kleene
star M∗, and set:

ω(M) = {x ∈ S | ∃y ∈ S, M∗(x, y) 6= 0 ∧M∗(y, y) = ?} . (†)

At this point, one can notice that with the previously defined operations, matrices and
subsets form the Wilke algebra associated to the NBW A, as in [73].

Lemma 1. For all words v, vω is accepted from a state x iff x ∈ ω(Tv).

We can now formally define the desired NFA: setA$ = 〈S$, o$, T $〉, where S$ = S ]S×M
is the disjoint union of S and |S| copies of M , and{

T $
a (x) = {x′ | Ta(x, x′) 6= 0}
T $
a (〈x,M〉) = {〈x,M · Ta〉}

{
T $

$ (x) = {〈x, I〉}
T $

$ (〈x,M〉) = ∅

{
o$(x) = 0

o$(〈x,M〉) = x ∈ ω(M)

1To compute M∗, one can use the fact that M∗ = (I +M)2n with n = |S|, and use iterated squaring.
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Figure 2.1: A NBW A (left) and the reachable part of its associated NFA A$ (right).

The set M can be replaced here by its accessible part M ′ = {Tu | u ∈ A∗}. The main
difference with the construction from [21] is that we use deterministic automata in the
second layer, which enable a streamlined presentation in terms of matrices—which are
not mentioned explicitly in [21]. The construction of A$ preserves the semantics of all
sets of states, up to L 7→ L$:

Theorem 2.1. For all sets X of states from A, we have [X]A$ = ([X]A)$.

Example 2.1. To illustrate this construction, consider the NBW depicted on the left in
Figure 2.1, where double lines represent Büchi transitions. The state 0 accepts the words
with a finite but non-zero number of b’s; the state 1 only accepts the word aω. Accordingly,
we have [0]$A = (a+ b)∗ba∗$a+ and [1]$A = a∗$a+.

The corresponding NFA A$ is depicted on the right. Its states 0 and 1 form the first
layer; they respectively recognize the two previous rational languages. The second layer is
reached from those states when reading the letter $. We only depicted the reachable part
of the second layer: those states consisting of matrices of the form Tu for some word u.
There are only three such matrices in this example since Ta · Tb = Tb · Ta = Tb · Tb = Tb
and Ta · Ta = Ta.

By definition, the second layer consists of several blocks (here, two) whose transitions
are identical, and which differ only by the accepting status of their states. Given that
the first block has no accepting state in this example, it might seem interesting to prune
A$ so that all states may reach an accepting state. We restrain ourselves from doing so
because we want to exploit the fact that all blocks share the same structure.

Note that since the second layer of A$ is already deterministic, one can determinize
A$ into a DFA with at most 2n + 2n3n

2
states, where n is the number of states of A. This

is slightly better than the 2n + 22n2+n bound obtained in [21].
We summarize the operations defined so far on languages and automata in Figure 2.2;

we define the operations in the right-most column in the following section.

2.3 HKC for Büchi automata

By Proposition 2.1 and Theorem 2.1, given two sets of states X, Y of a NBW A, we have
[X]A = [Y ]A iff [X]A$ = [Y ]A$ . One can thus use any algorithm for language equivalence
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ω-regular

L : Aω → 2
L1 = L2

ultimately periodic

L : Aω → 2
UP (L1) = UP (L2)

rational

L$ : (A$)∗ → 2
L$

1 = L$
2

weigthed

L£ : A∗ → P (A+)
L£

1 = L£
2

NBW
A

[X]A = [Y ]A

NFA
A$

[X]A$ = [Y ]A$

weighted NFA
A£

[X]A£ = [Y ]A£

Ramsey/ranked based HKC HKCω

⇔ ⇔ ⇔

⇔ ⇔

Figure 2.2: Summary of the operations and algorithms on languages and automata.

on NFA to solve language equivalence on NBW. Given the structure (and size) of A$, this
would however be inefficient: each time the letter $ is read, the algorithm would explore
one of the blocks of the second layer, without ever realizing that the transition structure
of those sub-automata is always the same, only the accepting status of their states differ.
We show in this section that we can do better, by using a weighted automaton.

Given an ω-language L, the language L$ can be seen as a weighted language L£ : A∗ → P (A+)
with weights in the semilattice 〈P (A+) ,∪, ∅〉:

L£ : u 7→
{
v ∈ A+ | uvω ∈ L

}
Given a NBW A = 〈S, T 〉, one can immediately construct a NFA A£ = 〈S£, T£, o£〉 such
that for every set of states X, [X]£A = [X]A£ . This is just the first layer from the previous
construction: set S£ = S and

T£
a (x) = {x′ | Ta(x, x′) 6= 0} o£(x) =

{
v ∈ A+ | vω ∈ [x]A

}
Let A£# be the powerset automaton of A£. To use algorithms such as HKC on A£,

it suffices to be able to compare the outputs of any two states of A£#, i.e., compare the
languages o£#(X) and o£#(Y ) for any two sets X, Y ⊆ S. Since those languages are
rational (using the second layer of the previous construction), it might be tempting to
use algorithms such as HK or HKC to perform this task. We proceed differently in order to
exploit the shared structure of those languages.

Lemma 2. For all states x ∈ S and sets X ⊆ S, we have

o£(x) =
{
v ∈ A+ | x ∈ ω(Tv)

}
o£#(X) =

{
v ∈ A+ | X ∩ ω(Tv) 6= ∅

}
Proof. Immediate consequence of Lemma 1 and the definitions of o£ and o£#.

Note that allowing empty v would not change the statement since ω(Tε) = ω(I) = ∅.

Proposition 2.3. For all sets X, Y ⊆ S,

o£#(X) = o£#(Y ) iff for all v ∈ A+, X ∩ ω(Tv) = ∅ ⇔ Y ∩ ω(Tv) = ∅.

40



input : A NBW A = 〈S, T 〉
output : The set of discriminating sets D = {ω(Tv) | v ∈ A∗}

1 D := ∅; M := ∅; todo := {I};
2 while todo 6= ∅ do
3 extract M from todo;
4 if M ∈M then skip;
5 forall a ∈ A do
6 insert M · Ta in todo;
7 insert M in M; insert ω(M) in D;

8 return D;

Figure 2.3: Discr(A): exploring the transition monoid of a NBW A to compute
discriminating sets.

input : A NBW A = 〈S, T 〉 and two sets X, Y ⊆ S
output : true if [X]A = [Y ]A; false otherwise

1 R := HKC′(A£, X, Y ) || D := Discr(A);
2 forall 〈X ′, Y ′〉 ∈ R, D ∈ D do
3 if X ′ ∩D = ∅ 6⇔ Y ′ ∩D = ∅ then return false;
4 return true;

Figure 2.4: HKCω(A, X, Y ): checking language equivalence in a NBW using bisimu-
lations up to congruence.

This result shows that an explicit computation of o£# is not necessary, as the knowledge
of {ω(Tv), v ∈ A+} is enough to assess whether X and Y have same output. Let
D = {ω(Tv) | v ∈ A+}. We call the sets in D discriminating sets. Again, allowing empty
v here would make no difference: the discriminating set ∅ is useless to distinguish two
sets X, Y ⊆ S. As subsets of S, there are at most 2|S| discriminating sets. Those can be
enumerated since the Tv range over finitely many matrices (at most 3|S|

2
). This is what is

done in the algorithm from Figure 2.3.
We finally obtain the algorithm in Figure 2.4 for language equivalence in a NBW: we

compute the discriminating sets (D) and a relation (R) which is almost a bisimulation up
to congruence: the outputs of its pairs must be checked against the discriminating sets,
which we achieve with a simple loop (lines 2-4).

Example 2.2. We execute HKCω on the NBW on the left of Figure 2.5, starting with states
{0} and {1}.

The transition monoid has 13 elements, which are listed with their discriminating sets
in Figure 2.6. In fact the exploration of the monoid by the algorithm Discr stops because
of the following equations:

Taaa = Taa Tbba = Tba Taaba = Taba Tabaa = Taa Tbaba = Tba

Tabb = Taab Tbbb = Tbb Taabb = Taab Tbaaa = Tbaa Tbabb = Tbaab
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0 1

2

b

a

b

a
b

ab

b

A :

R = HKC′(A£, {0} , {1}) = {〈{0} , {1}〉, 〈{1} , {1, 2}〉}
D = Discr(A) = {∅, {0, 1} , {0, 1, 2}}

Figure 2.5: An example run of HKCω

u ε a b aa ab ba bb

Tu

1 0 0
0 1 0
0 0 1

 0 ? 0
0 ? 1
0 0 0

 1 0 1
1 0 0
1 0 1

 0 ? ?
0 ? ?
0 0 0

 ? 0 0
? 0 1
0 0 0

 0 ? 0
0 ? 0
0 ? 0

 1 0 1
1 0 1
1 0 1


T ∗u

1 0 0
0 1 0
0 0 1

 1 ? ?
0 ? ?
0 0 1

 1 0 1
1 1 1
1 0 1

 1 ? ?
0 ? ?
0 0 1

 ? 0 0
? 1 1
0 0 1

 1 ? 0
0 ? 0
0 ? 1

 1 0 1
1 1 1
1 0 1


ω(Tu) ∅ {0, 1} ∅ {0, 1} {0, 1} {0, 1, 2} ∅

u aab aba baa bab abab baab

Tu

? 0 ?
? 0 ?
0 0 0

 0 ? 0
0 ? 0
0 0 0

 0 ? ?
0 ? ?
0 ? ?

 ? 0 0
? 0 0
? 0 0

 ? 0 0
? 0 0
0 0 0

 ? 0 ?
? 0 ?
? 0 ?


T ∗u

? 0 ?
? 1 ?
0 0 1

 1 ? 0
0 ? 0
0 0 1

 1 ? ?
0 ? ?
0 ? ?

 ? 0 0
? 1 0
? 0 1

 ? 0 0
? 1 0
0 0 1

 ? 0 ?
? 1 ?
? 0 ?


ω(Tu) {0, 1} {0, 1} {0, 1, 2} {0, 1, 2} {0, 1} {0, 1, 2}

Figure 2.6: Reachable part of the transition monoid of Example 2.2. The discriminating
sets are calculated using the formula (†) on page 38.

It then returns three different discriminating sets: ∅, {0, 1}, and {0, 1, 2}, which arise for
instance from the matrices Tb, Ta and Tba.

On the other hand HKC’ returns the relation R = {〈{0} , {1}〉, 〈{1} , {1, 2}〉}, which
contains only two pairs. The pairs 〈{0, 2} , {0}〉, 〈{1, 2} , {1, 2}〉, and 〈{0} , {0, 2}〉, which
are reachable from 〈{0} , {1}〉 by reading the words b, aa, and ab, are skipped thanks to the
up to congruence technique. For instance the pair 〈{0, 2} , {0}〉 belongs to the congruence
closure of R thanks to the following argument: starting from 〈{0} , {1}〉 and 〈{1} , {1, 2}〉
we can obtain 〈{0} , {1, 2}〉 by transitivity, from which we deduce 〈{0, 2} , {1, 2}〉 by union
with 〈{2} , {2}〉; we finally obtain 〈{0, 2} , {0}〉 by transitivity and symmetry.

The two pairs of R cannot be told apart using the three discriminating sets and
HKCω returns true. States 0 and 1 are indeed equivalent: they accept the words with
infinitely many a’s. If instead we start HKCω from sets {0} and {2}, it returns false: the
discriminating set {0, 1} distinguishes {0} and {2}. Indeed, the state 2 recognizes the
words starting with b and with infinitely many a’s.

Note that HKCω can be instrumented to return a counterexample in case of failure: it
suffices to record the finite word u leading to each pair in R as well as the finite word
v leading to each discriminating set in D: if the check on line 3 fails, the corresponding
word uvω is a counter-example to language equivalence.

Also note that HKCω is intrinsically parallel: the computations of D and R can be done
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in parallel, and the checks in lines 2-4 can be performed using a producer-consumer pattern
where they are triggered whenever new values are inserted in D or R. Alternatively, those
checks can be delegated to a SAT solver. Indeed, given a discriminating set D, define the
following formula with 2|D| variables {xd | d ∈ D} ∪ {yd | d ∈ D}:

ϕD =
∨
d∈D

xd ⇔
∨
d∈D

yd

For all sets X, Y ⊆ S, we have X ∩D = ∅ ⇔ Y ∩D = ∅ iff ϕD evaluates to true under
the assignment xd 7→ d ∈ X and yd 7→ d ∈ Y . Given the set of discriminating sets D, it
thus suffices to build the formula ϕD =

∧
D∈D ϕD with 2|S| variables, and to evaluate it

on all pairs from the relation R returned by HKC’. The main advantage of proceeding this
way is that the SAT solver might be able to represent ϕD in a compact and efficient way.
If we moreover use an incremental SAT solver, this formula can be built incrementally,
thus avoiding the need to store explicitly the set D.

One can also use a (incremental) SAT solver in a symmetrical way: Given a pair of
sets 〈X, Y 〉 ∈ S2, define the following formula with |S| variables {xs | s ∈ S}:

ψ〈X,Y 〉 =
∨
s∈X

xs ⇔
∨
s∈Y

xs

For all sets D, we have X ∩D = ∅ ⇔ Y ∩D = ∅ iff ψ〈X,Y 〉 evaluates to true under the
assignment xs 7→ s ∈ D. Like previously, one can thus construct incrementally the formula
ψR =

∧
p∈R ψp before evaluating it on all discriminating sets.

2.4 Further refinements

A weakness of the algorithm HKCω is that it must fully explore the transition monoid of
the starting NBW, which may contain up to 3n

2
elements when starting with a NBW

with n states. Since the goal of this exploration is to obtain discriminating sets, we would
like to isolate parts of the transition monoid that can safely be skipped: for instance
because they will lead to discriminating sets which have already been encountered, or
which are subsumed by previously encountered ones. This leads us to optimizations which
are similar in spirit to those brought by HKC for the analysis of the prefix automaton.

To make this idea precise, given a set of sets of states E , define the following equivalence
relation on sets of states:

X ∼E Y if ∀D ∈ E , X ∩D = ∅ ⇔ Y ∩D = ∅

By Proposition 2.3, we can replace the sub-algorithm Discr (Figure 2.3) by any algorithm
returning a subset D′ of D such that ∼D′ = ∼D.

This sub-algorithm basically computes the least solution to an equation (the least set
of matrices containing the identity and closed under multiplication on the right by the
transition matrices of the starting NBW), and computes a set of discriminating sets out
of this solution. We can improve it by weakening the equation to be satisfied, in the very
same way HKC improves over HK by allowing to look for bisimulations up to congruence
rather than bisimulations up to equivalence. We shall use the following abstract lemma
about partial orders to prove the correctness of such improvements: This lemma is inspired
by the theory of coinduction up-to [74], where the compatibility condition f ◦ r ≤ r ◦ f
plays a central role. We explain how we will instantiate this lemma below.
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Lemma 3. Let X ,Y be two partial orders. Let r, f : X → X and s : X → Y be three
monotone functions such that f ◦ r ≤ r ◦ f ; id ≤ f ; f ◦ f ≤ f ; and s ◦ f ≤ s. Fix x0 ∈ X ,
suppose that x is a least element of X such that x0 ≤ x ≤ r(x), and assume that x′ is an
element such that x0 ≤ x′ ≤ r(f(x′)) and x′ ≤ x. Then we have s(x) = s(x′).

Proof. Since f◦r ≤ r◦f and f◦f ≤ f , we have f(x′) ≤ f(r(f(x′))) ≤ r(f(f(x′))) ≤ r(f(x′)).
Since id ≤ f , we also have x0 ≤ x′ ≤ f(x′), so that x ≤ f(x′) by minimality of x. We
deduce s(x′) ≤ s(x) ≤ s(f(x′)) ≤ s(x′) by monotonicity of s and s ◦ f ≤ s.

Given a set M of matrices, set d(M) = {ω(M) |M ∈M}. We can apply the above
lemma by choosing X = 〈P (M ) ,⊆〉, Y = 〈Rel(P (S)),⊇〉, x0 = {I}, and

r(M) = {M | ∀a ∈ A,M · Ta ∈M} s(M) = ∼d(M)

We have M ⊆ r(M) if and only if M is closed under multiplication on the right by
the (Ta)a∈A. Accordingly, the x from the statement of the lemma is the set of matrices
M = {Tu | u ∈ A∗} obtained at the end of the execution of Discr. It follows that d(x) is
the returned set D of discriminating sets, and s(x) is the equivalence relation ∼D.

We will show how to instantiate the function f from the lemma in the following
sections. Intuitively, a function f satisfying the other requirements of the lemma can be
used as an up-to technique, in order to skip elements from the transition monoid. Indeed,
we can obtain an algorithm Discrf by replacing line 4 from Discr (Figure 2.3) with

4’ | if M ∈ f(M∪ todo) then skip;

This algorithm terminates with a subset M′ ⊆ M of matrices corresponding to the x′

from the statement of the lemma, and returns a set D′ of discriminating sets for which
the lemma guarantees that we have ∼D′ = ∼D, as required.

Such techniques can drastically improve performances: when an element is skipped
thanks to the up-to technique, all elements which were reachable only through this element
virtually disappear. We give two examples of such techniques in the sequel.

2.4.1 Working up to unions

A first property which we can exploit in order to cut-down the exploration of the transition
monoid is the following: if two discriminating sets D,D′ have been discovered, then
their union D ∪D′ is not useful as a discriminating set. Formally, for all D ⊆ P (S), if
D,D′ ∈ D then ∼{D∪D′}∪D = ∼D.

One could think that this should allow us to skip matrices from the transition monoid
when they can be written as sums of already visited matrices. This is however wrong,
because the discriminating set of a sum is in general not the union of the underlying
discriminating sets. For instance, we have:

ω

(
0 ?
1 0

)
= {0, 1} 6= ∅ ∪ ∅ = ω

(
0 ?
0 0

)
∪ ω
(

0 0
1 0

)
In order to find an operation on matrices which corresponds to unions when taking
discriminating sets, we need to slightly generalize the notion of matrix.
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Say that a matrix is a vector if it contains at most one non-zero coefficient per line.
Let V denote the set of vectors. The three matrices above are vectors. A generalized
matrix is a set of vectors. We write M ′ for the set of generalized matrices. We order
vectors and matrices pointwise using the order 0 < 1 < ? . Given a matrix M , we write
M for the generalized matrix {V ∈ V | V ≤M}. While the map M 7→ M is injective,
it is not surjective: there are generalized matrices which cannot be represented using a
single matrix. We equip M ′ with a sum ⊕, a mixed product •, and an operation ω as
follows (M,N range over generalized matrices, N ranges over matrices, V ranges vectors):

M⊕N = M ∪N M •N =
⋃
V ∈M

V ·N ω(M) =
⋃
V ∈M

ω(V )

By definition, the mixed product is distributive on the left, and the function ω is a
homomorphism of semilattices:

Lemma 4. For all generalized matrices M,N ∈M ′ and matrix O ∈M , we have

(i) (M⊕N) •O = (M •O)⊕ (N •O) (ii) ω(M⊕N) = ω(M) ∪ ω(N)

The counter-example above shows that in general, M ⊕N 6= M +N . However, we do
have:

Lemma 5. For all matrices M,N ∈M , we have:

(i) M •N = M ·N (ii) ω(M) = ω(M)

Proof. (i) We have

M •N =
⋃
V≤M

V ·N M ·N = {U ∈ V | U ≤M ·N}

The direct inclusion comes from monotonicity of matrix multiplication: if U ≤ V ·N
for some vector V ≤ M , then V · N ≤ M · N , whence U ≤ M · N . For the other
inclusion, assume a vector U ≤ M · N . The non-empty elements of U can be
described by a function δ associating to each row i the column δ(i) of the non-
empty coefficient of that row (or an arbitrary one if the row is all zeros). For all
row i, we have Ui,δ(i) ≤ ΣkMi,kNk,δ(i), and we can find an index δ′(i) such that
ΣkMi,kNk,δ(i) = Mi,δ′(i)Nδ′(i),δ(i). δ

′ determines a vector V ≤M such that U ≤ V ·N ,
as required.

(ii) The fact that x ∈ ω(M) is witnessed by an accepting lasso in M , and such a lasso
can be assumed to be simple (i.e., every state is visited at most once, except the last
visited state which is visited twice). Such a simple lasso yields x ∈ ω(V ) for a vector
V ≤M (just select in M those transitions that are required by the simple lasso).

Now lift the functions r, d, s we defined after Lemma 3 to sets of generalized matrices
P (M ′):

r(E) = {M | ∀a ∈ A, M • Ta ∈ E} d(E) = {ω(M) |M ∈ E} s(E) = ∼d(E)
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Finally define the up-to technique as the following function u : P (M ′)→ P (M ′):

u(E) = {M1 ⊕ · · · ⊕Mn | n ∈ N, ∀i ≤ n, Mi ∈ E}

Intuitively, this function allows us to cut-down the exploration on the transition monoid
whenever we encounter a matrix which can be written as a union (in the sense of ⊕) of
already encountered matrices.

Proposition 2.4. The functions r, u and s satisfy the requirements of Lemma 3 (taking
u for f).

Proof. For compatibility of u w.r.t. r (u◦r ≤ r◦u), let M1⊕· · ·⊕Mn with ∀a, i ≤ n, Mi•Ta ∈ E
be an element of u(r(E)) for some E. We have to show that this sum belongs to r(u(e)),
i.e., ∀a, (M1 ⊕ · · · ⊕Mn) • Ta ∈ u(E). This follows directly from distributivity of • over
⊕ (Lemma 4(i)).

The function u is obviously extensive (id ≤ u) and idempotent (u ◦ u = u).
The last requirement (s ◦ u ≤ s) follows from Lemma 4(ii) and the observation at the

beginning of Section 2.4.1.

Generalized matrices are not convenient to use in practice: many matrices expand
into generalized matrices of exponential size. However, we use them only to establish the
correctness of the optimization: thanks to Lemma 5, the version of the algorithm Discr

where we use the function u to cut down the search-space only manipulates generalized
matrices of the form M , which can thus be represented as plain matrices.

It remains to check that we can implement the refined check on line 4’. The following
lemma shows that this is relatively expensive (at least theoretically, since state-of-the art
SAT solvers tend to be efficient in practice).

Proposition 2.5. Given a setM of matrices and a matrix N , the problem of deciding if
N ∈ u({M |M ∈M}) is coNP-complete.

Proof. Let’s first detail what it means for N to be in u({M |M ∈M}:

N ∈ u({M |M ∈M})⇔ N ∈ ∪{M∈M|M≤N}M
⇔ ∀V ∈ N , V ∈ ∪{M∈M|M≤N}M
⇔ ∀V ∈ N , ∃M ∈M, M ≤ N and ∃V ′ ∈M s.t. V ≤ V ′

⇔ ∀V ∈ N , ∃M ∈M, M ≤ N and V ∈M

The existential subformula can be checked in polynomial time, hence the membership
in coNP.

To show that the problem is coNP-Hard we will show that its complementary problem
is NP-Hard via a reduction from 3-SAT. Let I = C1 ∧ · · · ∧ Ck be an instance of 3-SAT.
We note x1, . . . , xn the Boolean variables of I. We construct an instance of our problem
as:

N =

1 1 0 · · · 0
...

...
...

...
1 1 0 · · · 0

 M =

Mi :

y
i
1 0 · · · 0
...

...
...

yin 0 · · · 0




1≤i≤k

yij =


1 0 if xj ∈ Ci
0 1 if xj ∈ Ci
1 1 if xj, xj 6∈ Ci

We can do some observations on this instance:
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1. For all Mi ∈M, Mi ≤ N .

2. There is a bijection between the set of truth value distribution of x1, . . . , xn and N
via the function:

f :

{
2n → N

δ 7→ Vδ
(Vδ)j =

{
1 0 0 · · · 0 iff δ(xj) = >
0 1 0 · · · 0 iff δ(xj) = ⊥

3. For any Mi ∈M, Vδ ∈Mi if and only if δ does not satisfy the clause Ci.

Then:

I is not satisfiable ⇔ ∀δ ∈ 2n, ∃Ci s.t. δ does not satisfy Ci

⇔ ∀Vδ ∈ f(2n), ∃Mi ∈M s.t. Vδ ∈Mi

⇔ ∀V ∈ N , ∃Mi ∈M s.t. V ∈Mi

⇔ N ∈ u({M |M ∈M})

We have shown than I is satisfiable if and only if N 6∈ u({M |M ∈M}).
The initial problem is thus coNP-hard.

Example 2.3. When running this refined version of HKCω on the NBW on the top right
in Figure 2.7, the up-to-union technique makes it possible to explore only 11 matrices
of the monoid, although it contains 17 elements. Indeed, 4 matrices are skipped, being
recognized as sums of previously encountered matrices, and 2 matrices are not even
computed because they are reachable only through the 4 previous matrices.

The explored part of the transition monoid of the NBW is detailed in Figure 2.7,
together with the discriminating sets associated to its elements and the justification for
the elements skipped thanks to the up-to-union technique. Note that Tca = Tbc + Tccc but
Tca 6= Tbc ⊕ Tccc.

2.4.2 Working up to equivalence

There is also room for improvement when we start with a disjoint union of NBWs: the
starting NBWs most probably contain loops, and the transition monoid of the disjoint
union will need to unfold those loops until they ‘synchronize’. Take for instance the
two NBWs A1 and A2 over a single letter a, defined by the two matrices on the left in
Figure 2.8, whose disjoint A union can be represented by the diagonal block matrix on
the right.

We have T1(aa)a = T1a: the transition monoid of A1 has size 3 (including I); we have
T2(aaa)a = T2a: the transition monoid of A2 has size 4; and we have T(aaaaaa)a = Ta: the
transition monoid of A has size 7. Generalizing 2 and 3 into n and m in the example, the
transition monoid of the disjoint union contains lcm(n,m) + 1 matrices. By designing an
up-to-equivalence technique reminiscent of the one used in Hopcroft and Karp’s algorithm,
we will obtain an algorithm that explores at most the first n+m+ 1 matrices. (On this
specific example all matrices but I give rise to the same discriminating set, so that we
could stop even earlier; but there is no generic argument behind this observation.)
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Kept matrices
u Tu ω(Tu)

ε

(
1 0
0 1

)
∅

a

(
1 1
0 ?

)
{0, 1}

b

(
1 0
? 1

)
∅

c

(
0 1
? 0

)
{0, 1}

aa

(
1 ?
0 ?

)
{0, 1}

ac

(
? 1
? 0

)
{0, 1}

bc

(
0 1
? ?

)
{0, 1}

ca

(
0 ?
? ?

)
{0, 1}

cc

(
? 0
0 ?

)
{0, 1}

bcc

(
? 0
? ?

)
{0, 1}

ccc

(
0 ?
? 0

)
{0, 1}

Equations
Tbb = Tb
Tcb = Tac
Tacb = Tac
Taaa = Taa
Taab = Taca
Taac = Tac
Tbca = Tca
Tbcb = Tab
Tcaa = Tca
Tcab = Taab
Tcac = Tbcc
Tcca = Tacc
Tccb = Tbcc
Tbccc = Tca

Automaton

0 1

a, b
a, c

b, c

a

b

Skipped matrices (by union)

Tab =

(
? 1
? ?

)
= Tac ⊕ Tcc ⊕ Tbc

Tba =

(
1 1
? ?

)
= Tb ⊕ Tbc ⊕ Ta

Tacc =

(
? ?
0 ?

)
= Taa ⊕ Tcc

Taca =

(
? ?
? ?

)
= Tab ⊕ Tca

Accessible matrices not generated

Tbaa =

(
1 ?
? ?

)
; ω(Tbaa) = {0, 1}

Taccc =

(
? ?
? 0

)
; ω(Taccc) = {0, 1}

Figure 2.7: Exploration of a transition monoid with up-to-union technique. To alleviate
notations, we identified matrices M with their associated generalized matrices M .

T1a =

(
0 ?
? 0

)
T2a =

0 ? 0
0 0 ?
? 0 0

 Ta =


0 ?
? 0

0 ? 0
0 0 ?
? 0 0


Figure 2.8: Motivating example for up-to-equivalence technique.

We fix in the sequel a NBW A = 〈S, T 〉 and two subsets S1, S2 ⊆ S. Let Md be the
set of matrices M such that:

∀i ∈ {1, 2} , ∀x, y ∈ S, x ∈ Si ∧ M(x, y) 6= 0⇒ y ∈ Si
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Such matrices look like the picture on the right. We require
Ta ∈Md for all a ∈ A: states from Si should only reach states
from Si. Since Md is closed under products (it actually forms
a sub-semiring of M ), we deduce Tu ∈Md for all u ∈ A∗.

 S1

S1 ∩ S2

S2

If S1 = S2 = S then the requirement is void, as well as the optimization to be described
below; if S1 ∩ S2 = ∅ and S1 ∪ S2 = S then this corresponds to the case where A is a
disjoint union of two NBWs. Intermediate cases are allowed. In practice if we want to
test the equivalence between starting sets X and Y we will take as S1 (resp. S2) the set
of accessible states from X (resp. Y ).

For i = 1, 2, let Mi be the set of matrices indexed by Si and let πi : Md →Mi be the ob-
vious surjective semiring homomorphism. For all M ∈Md, we have ω(M)∩Si = ω(πi(M)).
Define the following function e′ : P (Md)→ P (Md):

e′(M) = {N | 〈π1(N), π2(N)〉 ∈ e({〈π1(M), π2(M)〉 |M ∈M})}

where e(R) denotes the equivalence closure of a relation R, here for relations on M1 ]M2.
Like in the previous section, we will show by using Lemma 3, that when HKCω is

restricted to starting sets 〈X, Y 〉 ∈ P (S1)×P (S2), it remains correct when using e′ as
an up-to technique on line 4 from Figure 2.3.

We need to work in a larger structure than sets of matrices. Moreover, we need to
turn the set of discriminating sets into a relation. Set U = {1} × S1 ∪ {2} × S2. Given a
relation E ∈ Rel(U), define the following relation between P (S1) and P (S2):

X1 ≈E X2 if ∀〈〈i,D〉, 〈j,D′〉〉 ∈ E , Xi ∩D = ∅ ⇔ Xj ∩D′ = ∅

(We define ≈E as a relation between P (S1) and P (S2) because when starting with sets
X1 ⊆ S1 and X2 ⊆ S2, HKC’ will return such a relation.)

Set M ′′ = ({1} ×M1 ∪ {2} ×M2)2, write iM for the pair 〈i,M〉 ∈ {i} ×Mi and
define a mixed product operation · : M ′′ ×Md →M ′′ by setting:

〈iM, jN〉 ·O = 〈i(M · πi(O)), j(N · πj(O))〉

Now lift the functions r, s we defined after Lemma 3 to work on P (M ′′):

r(R) = {M ∈M ′′ | ∀a ∈ A, M · Ta ∈ R}
d(R) = {〈iω(M), jω(N)〉 | 〈iM, jN〉 ∈ R}
s(R) = ≈d(R)

Recall that e is the function taking the equivalence closure of a relation.

Proposition 2.6. The functions r, e and s satisfy the requirements of Lemma 3 (taking
e for f).

Proof. For compatibility of e w.r.t. r (e ◦ r ≤ r ◦ e), assume 〈i1M1, inMn〉 ∈ e(r(R)).
There are (ik,Mk)k∈[2..n[ such that for all k < n, either 〈ikMk, ik+1Mk+1〉 ∈ r(R) or
〈ik+1Mk+1, ikMk〉 ∈ r(R). We need to show that 〈i1M1, inMn〉 ∈ r(e(R)). Let a ∈ A; for all
k < n, either 〈ikMk, ik+1Mk+1〉·Ta ∈ R or 〈ik+1Mk+1, ikMk〉·Ta ∈ R, which means by defini-
tion that 〈ikMk·πk(Ta), ik+1Mk+1·πk+1(Ta)〉 ∈ R or 〈ik+1Mk+1·πk+1(Ta), ikMk·πk(Ta)〉 ∈ R.
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Therefore, for all a ∈ A, 〈i1M1·π1(Ta), inMn·πn(Ta)〉 ∈ e(R), which means 〈i1M1, inMn〉 ∈ r(e(R)),
as required.

The function e is obviously extensive and idempotent, so that it only remains to
show that s ◦ e ≤ s, i.e., for all R, s(R) ⊆ s(e(R)) (recall that we take reverse inclusions
for the partial order Y). Suppose 〈X1, X2〉 ∈ s(R), i.e., X1 ≈d(R) X2, we have to
show 〈X1, X2〉 ∈ s(e(R)), i.e., X1 ≈d(e(R)) X2. Let 〈i1D1, inDn〉 ∈ d(e(R)). There
are M1,Mn such that D1 = ω(M1), Dn = ω(Mn), and (ik,Mk)k∈[2..n[ such that for all
k < n, either 〈ikMk, ik+1Mk+1〉 ∈ R or 〈ik+1Mk+1, ikMk〉 ∈ R. Since X1 ≈d(R) X2,
we deduce that for all k < n, either Xik ∩ ω(Mk) = ∅ ⇔ Xik+1

∩ ω(Mk+1) = 0, or
Xik+1

∩ ω(Mk+1) = ∅ ⇔ Xik ∩ ω(Mk) = 0, which is just the same. By transitivity of
logical equivalence, we deduce that Xi1 ∩ω(M1) = ∅ ⇔ Xin ∩ω(Mn) = 0, as required.

Overloading the notation from Section 2.4.1, given a matrix M ∈Md, write

M = 〈1π1(M), 2π2(M)〉 ∈M ′′.

Then we have:

(1) ∀ M,N ∈Md, M ·N = M ·N (2) ∀ X1 ⊆ S1, X2 ⊆ S2, X1 ∼ω(M) X2 iff X1 ≈d(M) X2

The first property guarantees that when taking x0 = {I}, the x from Lemma 3 is the
set

{
Tu | u ∈ A∗

}
. The second property ensures that s(x) properly discriminates the

pairs provided by HKC’ (R). By Lemma 3, so does s(x′), which can easily be shown to
correspond to the computation with the optimized algorithm Discre′ , where we use the
up-to-equivalence technique to skip redundant matrices.

As in Hopcroft and Karp’s algorithm [53], one can implement the up-to-equivalence
test efficiently using an appropriate union-find data structure.

Example 2.4. When running this refined version of HKCω on the NBW over a single letter
defined by the matrix Ta in Figure 2.8, the up-to-equivalence technique makes it possible
to retain only 5 matrices of the monoid, although it contains 7 elements. Indeed, the
matrix Ta5 is skipped because the pair of its components is in the equivalence closure of
the set of pairs of components of already explored matrices. The explored part of the
transition monoid and the skipped matrices are detailed in Figure 2.9 Note that Ta6 and
Ta7 do not even need to be generated.

2.5 Conclusion and future work

We presented an algorithm for checking language equivalence of non-deterministic Büchi
automata. This algorithm exploits advanced coinductive techniques to analyze the finite
prefixes of the considered languages, through bisimulations up to congruence, as in the
algorithm HKC for NFA. The periodic part of the considered languages is also analyzed
coinductively, in order to compute the discriminating sets. Those sets make it possible to
classify the periodic words accepted by the various states of the starting automaton, thus
providing all the necessary information together with the analysis of the finite prefixes.
The coinductive framework makes it possible to develop up-to techniques similar to the
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Kept matrices
u = ε a aa aaa aaaa

Tu =


1 0
0 1

1 0 0
0 1 0
0 0 1




0 ?
? 0

0 ? 0
0 0 ?
? 0 0



? 0
0 ?

0 0 ?
? 0 0
0 ? 0




0 ?
? 0

? 0 0
0 ? 0
0 0 ?



? 0
0 ?

0 ? 0
0 0 ?
? 0 0


Skipped matrix

Taaaaa =


0 ?
? 0

0 0 ?
? 0 0
0 ? 0

 because

(
0 ?
? 0

)
∼

0 ? 0
0 0 ?
? 0 0

 ∼ (? 0
0 ?

)
∼

0 0 ?
? 0 0
0 ? 0



Figure 2.9: Exploration of a transition monoid with up-to-equivalence technique.

ones used in HKC in order to compute the discriminating sets more efficiently. We provide
two such techniques, namely coinduction up to unions (Section 2.4.1) and coinduction up
to equivalence (Section 2.4.2). It is not clear to us whether the two techniques can be
used at the same time.

We also want to investigate how to exploit techniques using simulation relations, which
were successfully used in [36, 1, 2, 69] and which tend to nicely fit in the coinductive
framework we exploit here [14, Section 5].

Our algorithm stems from the construction of Calbrix et al. [21], which we revisited
using notions from [73] in Section 2.2. HKCω is rather close to Ramsey-based algorithms [38,
1] (as opposed to rank-based ones [64, 34, 35, 36]). In particular, our matrices are often
called super-graphs in Ramsey-based algorithms. A key difference is that we focus on
language equivalence, thus enabling stronger coinductive proof principles.

A prototype implementation is available at https://framagit.org/dpous/hkcw; it
makes it possible to test several combinations of up-to techniques.
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Chapter 3

Cyclic proofs and jumping automata

Abstract

We consider a fragment of a cyclic sequent proof system for Kleene algebra, and we see it
as a computational device for recognizing languages of words. The starting proof system
is linear and we show that it captures precisely the regular languages. When adding the
standard contraction rule, the expressivity raises significantly: the system captures exactly
the class of deterministic logspace languages. We prove this result by introducing as an
intermediary model a new notion of multihead finite automata where heads can jump.

3.1 Introduction

In recent years there has been a surge of interest in the theory of non-wellfounded proofs.
This is an approach to infinitary proof theory where proofs remain finitely branching
but are permitted to be infinitely deep. A correctness criterion is usually required to
guarantee consistency, typically some ω-regular condition on the infinite branches. Proofs
whose graphs are regular trees are known as cyclic proofs; being finite objects, they can
be communicated and checked, thus playing the role of traditional inductive proofs.

Such systems have been proposed for instance by Brotherston and Simpson in the
context of first order logic with inductive predicates [17], as an alternative to the standard
induction schemes. A natural question is whether specific cyclic and inductive proof
systems have the same logical strength. The infinite descent principles associated to
cyclic proofs are in general at least as powerful as the standard induction schemes and
inductive proofs can usually be translated easily into cyclic ones (see, e.g., [17]), while
the converse problem is a delicate problem. It was proven only recently that it holds in
certain cases [12, 78], and that there are also cases where cyclic proofs are strictly more
expressive [11].

Cyclic proof systems have also been used in the context of the µ-calculus [30], where
we have inductive predicates (least fixpoints), but also coinductive predicates (greatest
fixpoints), and alternation of those. Proof theoretical aspects such as cut-elimination were



studied from the linear logic point of view [40, 32], and these systems were recently used
to obtain constructive proofs of completeness for Kozen’s axiomatisation [31, 5].

Building on these works, Das and Pous considered the simpler setting of Kleene algebra,
and proposed a cyclic proof system for regular expression containments [28]. The key
observation is that regular expressions can be seen as µ-calculus formulas using only a
single form of fixpoint: the definition of Kleene star as a least fixpoint (e∗ = µx.1 + e · x).
Their system is based on a non-commutative version of µMALL [32], and it is such that
a sequent e ` f is derivable if and only if the language of e is contained in that of f .
This work eventually led to an alternative proof of left-handed completeness for Kleene
algebra [27].

In the latter works, it is natural to consider regular expressions as datatypes [41], and
proofs of language containments as total functions between those datatypes [47]. Such
a computational interpretation of cyclic proofs was exploited to prove cut-elimination
in [29].

We follow the same approach here, focusing on an even simpler setting: our sequents
essentially have the shape A∗ ` B, where A is a finite alphabet and B is a type (or formula)
for Boolean values. Cyclic proofs no longer correspond to language containments: they
give rise to functions from words to Booleans, i.e., formal languages. We characterize the
class of languages that arise from such proofs. In chapter 4 we will consider an enriched
type system and more general sequents.

If we keep a purely linear proof system, as in [28, 29], we show that we obtain exactly
the regular languages. In contrast, if we allow the contraction rule, we can express
non-regular languages. We show that in this case, we obtain exactly the deterministic
logarithmic space languages (DLogSpace). This is done by introducing a new class
of automata, which we call jumping multihead automata1. Intuitively, when reading a
word, a multihead automaton may only move its heads forward, letter by letter, while a
jumping multihead automaton also has the possibility to let a given head jump to the
position of another head. This gives the opportunity to record positions in the word, and
to repeatedly analyze the suffixes starting from those positions. Cyclic proofs translate
naturally into this new model that is in fact equivalent to the two-way multihead automata
that were studied in the literature [49] and characterize DLogSpace.

Outline. We define our cyclic proof system and its computational interpretation in
Section 3.2. Then we define jumping multihead automata and show they define the same
languages as two-way multihead automata in Section 3.3. We prove the equivalence
between the two models in Section 3.4 (Theorem 3.2), from which the characterizations
of DLogSpace and regular languages follow. We discuss directions for future work in
Section 3.5.

3.2 Infinite proofs and their semantics

We let a, b range over the letters of a fixed and finite alphabet A. We work with only
three types (or formulas): the type B of Boolean values, the type A of letters, and the

1This new class should not be confused with the jumping finite automata introduced by Meduna and
Zemek [70], which are not multihead.
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E,F ` B
w
E, e, F ` B

E, e, e, F ` B
c

E, e, F ` B
t
` B

f
` B

(E,F ` B)a∈A
A

E,A, F ` B

E,F ` B E,A,A∗, F ` B
∗

E,A∗, F ` B

Figure 3.1: The rules of C for formal languages.

type A∗ of words. We let e, f range over types and we let [e] denote the expected set
associated to a type e. We let E,F range over finite sequences of types. Given such a
sequence E = e1, . . . , en, we write [E] for the Cartesian product [e1]× · · · × [en].

We define a sequent proof system, where sequents have the shape E ` B, and where
proofs of such sequents denote functions from [E] to B, i.e., subsets of [E].

3.2.1 Infinite proofs

We now define the cyclic proof system whose six inference rules are given in Figure 3.1. In
addition to two structural rules (weakening and contraction), we have a left introduction
rule for each type, and two right introduction rules for Boolean constants. Note that there
is no exchange rule, which explains why the structural and left introduction rules use two
sequences E and F rather than a single one.

The left introduction rule for type A∗ corresponds to an unfolding rule, looking at A∗

as the least fixpoint expression µX.(1 + A×X) (e.g., from µ-calculus). The left premiss
intuitively corresponds to the case of an empty list, while the right premiss covers the
case of a non-empty list. Except from weakening and contraction, those rules form a very
small fragment of those used for Kleene algebra in [29] (interpreting A as a sum 1 + · · ·+ 1
with |A| elements and B as the binary sum 1 + 1).

Note that we are not interested in provability in this chapter: every sequent can be
derived trivially, using weakenings and one of the two right introduction rules. The objects
of interest are the proofs themselves; this explains why we have two axioms for proving
the sequent ` B: they correspond to two different proofs.

We set B = A ] {0, 1}. A (possibly infinite) tree is a non-empty and prefix-closed
subset of B∗, which we view with the root, ε, at the bottom. We let v range over elements
of B∗, which we call addresses.

Definition 3.1. A preproof is a labeling π of a tree by sequents such that, for every

node v with children v1, . . . vn, the expression
π(v1) · · · π(vn)

π(v)
is an instance of a rule from

Figure 3.1. A preproof is regular if it has finitely many distinct subtrees, i.e., it can be
viewed as the unfolding of a finite graph. A preproof is affine if it does not use the c-rule.

If π is a preproof, we note Addr(π) its set of addresses, i.e., its underlying tree. The
formulas appearing in lists E,F of any rule instance are called auxiliary formulas. The
non auxiliary formula appearing in the conclusion of a rule is called the principal formula.

A ∗ address in a preproof π is an address v which is the conclusion of a ∗ rule in π.

54



f
` B

f
` B

t
` B

w
A∗ ` B

...

A∗ ` B
A

A,A∗ ` B
∗

A∗ ` B

...

A∗ ` B
A

A,A∗ ` B
∗

A∗ ` B
•

• •

•
...

A∗ ` B

...

A∗ ` B
w
A∗, A∗ ` B

w
A,A∗, A∗ ` B

∗
A∗, A∗ ` B

c
A∗ ` B

•

Figure 3.2: Two regular preproofs; only the one on the left is valid.

Two examples of regular preproofs are depicted in Figure 3.2. The alphabet A is
assumed to have exactly two elements, so that the A rule is binary. Backpointers are used
to denote circularity: the actual preproofs are obtained by unfolding the graphs. The
preproof on the right might look suspicious: it never uses the axioms t or f . In fact, only
the one on the left satisfies the validity criterion which we define below. Before doing so,
we need to define a notion of thread, which are the branches of the shaded trees depicted
on the preproofs. Intuitively a thread follows a star formula occurrence along a branch of
the proof. First we need to define parentship and ancestor relations.

Definition 3.2. A position in a preproof π is a pair 〈v, i〉 consisting of an address v and
an index i ∈ [0; |E| − 1], where π(v) = E ` B and Ei is a star formula. A position 〈v, i〉 is
the parent of a position 〈w, j〉 if |v| = |w|+ 1 and, looking at the rule applied at address
w the two positions point at the same place in the lists E,F of auxiliary formulas, or at
the formula e when this is the contraction rule, or at the principal formula A∗ when this
is the ∗ rule and v = w1. We write 〈v, i〉C 〈w, j〉 in the former cases, and 〈v, i〉 C· 〈w, j〉
in the latter case. We say that 〈v, i〉 is an ancestor of 〈w, j〉 when those positions are
related by the transitive closure of the parentship relation.

The graph of the parentship relation is depicted in Figure 3.2 using shaded thick lines
and an additional bullet to indicate when we pass principal star steps (C·). Note that in
the ∗ rule, the occurrence of A in the right premiss is not a parent of A∗ in the conclusion.

Remark 3.1. When working with trees, it is common in computer science to have the
convention that a node in a tree has at most one parent, and many children: the root of a
tree is the ancestor of all its leaves. Be careful that we use the opposite convention in the
present thesis, following the tradition in proof theory [20]: the ancestors are to be found
towards the leaves. This convention also matches the intuition from family trees.

We can finally define threads and the validity criterion.

Definition 3.3. A thread is a possibly infinite branch of the ancestry graph. A thread
is principal when it visits a ∗ rule through its principal formula, spectator if it is never
principal and valid if it is principal infinitely often.

In the first preproof of Figure 3.2, the infinite green thread

〈ε, 0〉 B· 〈1, 1〉B 〈11, 0〉 B· 〈111, 1〉B 〈1111, 0〉 . . .
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is valid, as well as every other infinite thread. There is no valid thread in the second
preproof: taking a principal step forces the thread to terminate and infinite threads along
the infinite branches are all spectator.

Definition 3.4. A preproof is valid if every infinite branch contains a valid thread. A
proof is a valid preproof. We write π : E ` B when π is a proof whose root is labeled by
E ` B.

In the examples from Figure 3.2, only the preproof on the left is valid, thanks to the
infinite green thread. The second preproof is invalid: infinite threads along the (infinitely
many) infinite branches are never principal.

This validity criterion is essentially the same as for the system LKA [29], which in
turn is an instance of the one used for µMALL [32]: we just had to extend the notion
of ancestry to cover the contraction rule. Note however that the presence of this rule
induces some subtleties. For instance, while in the cut-free fragment of LKA, a preproof
is valid if and only if it is fair (i.e., every infinite branch contains infinitely many ∗
steps [29, Proposition 8]), this is no longer true with contraction: the second preproof
from Figure 3.2 is fair and invalid.

In the affine case, due to the fragment we consider here, and since we do not include
cut, the situation is actually trivial:

Proposition 3.1. Every affine preproof is valid.

Proof. Except for the contraction rule and the right premiss of the ∗ rule, the length
of a sequent strictly decreases when moving from the conclusion of a rule to one of its
premisses. Therefore, every infinite branch of an affine preproof must pass through the
right of a ∗ rule infinitely often. By the subformula property, the principal (star) formulas
of these steps must be ancestors of star formulas in the conclusion of the preproof. Since
they are finitely many, at least one of the star formulas from the conclusion gives rise to a
valid thread.

3.2.2 Computational interpretation of infinite proofs

We now show how to interpret a proof π : E ` B as a function [π] : [E]→ B. Since proofs
are not well-founded, we cannot reason directly by induction on proofs. We use instead
the following relation on computations, which we prove to be well-founded thanks to the
validity criterion.

Definition 3.5. A computation in a fixed proof π is a pair 〈v, s〉 consisting of an address
v of π with π(v) = E ` B, and a value s ∈ [E]

Given two computations, we write 〈v, s〉 ≺ 〈w, t〉 when

1. |v| = |w|+ 1,

2. for every i, j such that 〈v, i〉C 〈w, j〉, we have si = tj, and

3. for every i, j such that 〈v, i〉 C· 〈w, j〉, we have |si| < |tj|.
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The first condition states that the subproof at address v should be one of the premisses
of the subproof at w; the second condition states that the values assigned to star formulas
should remain the same along auxiliary steps; the third condition ensures that they
actually decrease in length along principal steps.

Lemma 6. The relation ≺ on computations is well-founded.

Proof. Suppose by contradiction that there exists an infinite descending sequence. By
condition 1/, this sequence corresponds to an infinite branch of π. By validity, this branch
must contain a thread which is principal infinitely many times. This thread contradicts
conditions 2/ and 3/ since we would obtain an infinite sequence of lists of decreasing
length.

Definition 3.6. The return value [v](s) of a computation 〈v, s〉 with π(v) = E ` B is a
Boolean defined by well-founded induction on ≺ and case analysis on the rule used at
address v.

w : [v](s, x, t) , [v0](s, t)

c : [v](s, x, t) , [v0](s, x, x, t)

t : [v]() , tt

f : [v]() , ff

A : [v](s, a, t) , [va](s, t)

∗ : [v](s, l, t) is defined by case analysis on l:

• [v](s, ε, t) , [v0](s, t)

• [v](s, x :: q, t) , [v1](s, x, q, t)

In each case, the recursive calls are made on strictly smaller computations: they occur on
direct subproofs, the values associated to auxiliary formulas are left unchanged, and in
the second subcase of the ∗ case, the length of the list associated to the principal formula
decreases by one.

Definition 3.7. The semantics of a proof π : E ` B is the function [π] : s 7→ [ε](s).

(Note that we could give a simpler definition of the semantics for affine proofs by reasoning
on the total size of the arguments; such an approach however breaks in presence of
contraction.)

Let us compute the semantics of the first (and only) proof in Figure 3.2. Recall that
A has two elements in this example, so set A = {a, b} (and thus B = {0, 1, a, b}), and let
us use a (resp. b) to navigate to the left (resp. right) premiss of the A rule. Starting from
words ab and aab, we get the two computations on the left below:

[ε](ab)

= [1](a, b)

= [1a](b)

= [1a1](b, ε)

= [1a1b](ε)

= [1a1b0]()

= ff

[ε](aab)

= [1](a, ab)

= [1a](ab)

= [1a1](a, b)

= [1a1a](b)

= [1a1a0]()

= tt

[ε](ε) = ff

[ε](au) = [ε](u)

[ε](bu) = [1a](u)

[1a](ε) = ff

[1a](au) = tt

[1a](bu) = [ε](u)

Using the fact that the subproofs at addresses ε, 1a and 1a1b are identical, we can also
deduce the equations displayed on the right, which almost correspond to the transition
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π

E, F ` B

...

E,A∗, F ` B
wA

E,A,A∗, F ` B
∗

E,A∗, F ` B
•

Figure 3.3: Weakening stars (Pro-
position 3.2).

ff

tt

...

A∗ ` B

ff

×

...

A∗, A∗ ` B
∗

A∗, A∗ ` B
∗

A∗, A∗ ` B
∗

A∗, A∗ ` B
∗

A∗, A∗ ` B
c

A∗ ` B ∗
A∗ ` B
•

•
•

•
•
•

•

Figure 3.4: A regular proof for
{
a2n | n ∈ N

}
.

table of a deterministic automaton with two states ε and 1a. This is not strictly speaking
a deterministic automaton because of the fifth line: when reading an a, the state 1a
decides to accept immediately, whatever the remainder of the word. We can nevertheless
deduce from those equations that ε recognizes the language A∗aaA∗.

Trying to perform such computations on the invalid preproof on the right in Figure 3.2
gives rise to non-terminating behaviors, e.g., [ε](ε)  [0](ε, ε)  [00](ε)  . . . and
[ε](x :: q) [0](x :: q, x :: q) [01](x, q, x :: q) [010](q, x :: q) [0100](x :: q) . . . .

Before studying a more involved example, we prove the following property:

Proposition 3.2. The weakening rule (w) is derivable in a way that respects regularity,
affinity, existing threads, and the semantics.

Proof. When the weakened formula is A, it suffices to apply the A rule and to use the
starting proof |A| times. When the weakened formula is A∗, assuming a proof π : E,F ` B,
we construct the proof in Figure 3.3. The step marked with wA is the previously derived
weakening on A. The preproof is valid because this step does preserve the blue thread.

As a consequence, the full proof system is equivalent to the one without weakening.
We shall see that the system would remain equally expressive with the addition of an
exchange rule (see Remark 3.3 below), but that the contraction rule instead plays a crucial
role and changes the expressive power, going from regular languages to DLogSpace
languages.

Let us conclude this section with an example beyond regular languages: we give in
Figure 3.4 a proof whose semantics is the language of words over a single letter alphabet,
whose length is a power of two (a language which is not even context-free). Since the
alphabet has a single letter, the A rule becomes a form of weakening, and we apply it
implicitly after each ∗ step. We also abbreviate subproofs consisting of a sequence of
weakenings followed by one of the two axioms by tt, ff , or just × when it does not matter
whether we return true or false.

Writing n for the word of length n and executing the proof on small numbers, we
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observe

[ε](0) = [0]() = ff

[ε](1) = [1](0) = [10](0, 0) = [100](0) = tt

[ε](2) = [1](1) = [10](1, 1) = [101](1, 0) = [1010](1) = [ε](1) = tt

[ε](3) = [1](2) = [10](2, 2) = [101](2, 1) = [1011](2, 0) = ff

[ε](4) = [1](3) = [10](3, 3) = [101](3, 2) = [1011](3, 1) = [10111](3, 0) = [101111](2, 0)

= [101](2, 0) = [1010](2) = [ε](2) = tt

More generally, the idea consists in checking that the given number can be divided by
two repeatedly, until we get 1. To divide a number represented in unary notation by two,
we copy that number using the contraction rule, and we consume one of the copies twice
as fast as the other one (through the three instances of the ∗ rule used at addresses 101,
1011, and 10111); if we reach the end of one copy, then the number was even, the other
copy precisely contains its half, and we can proceed recursively (through the backpointer
on the left), otherwise the number was odd and we can reject. The subproof at address
101110 is never explored: we would be in a situation where the slowly consumed copy
gets empty before the other one.

Finally note that every (even undecidable) language can be represented using an
infinite (in general non regular) proof: apply the left introduction rules eagerly, and fill in
the left premisses of the ∗ rules using the appropriate axiom.

3.3 Jumping multihead automata

Now we introduce the model of Jumping Multihead Automata (JMA) and establish
its equivalence with the two-way multihead automata model [49]. We will give direct
translations between JMA and cyclic proofs in Section 3.4.

3.3.1 Definition and semantics of JMAs

Let A be a finite alphabet and / /∈ A be a fresh symbol. We note A/ = A ] {/}.

Definition 3.8. A jumping multihead automaton (JMA) is a tupleM = 〈S, k, s0, sacc, srej , δ〉
where:

• S is a finite set of states;

• k ∈ N is the number of heads;

• s0 ∈ S is the initial state;

• sacc ∈ S and srej ∈ S are final states, respectively accepting and rejecting;

• δ : Strans × (A/)
k −→ S × Actk is the deterministic transition function, where

Strans , S\{sacc, srej} is the set of non-final states, and Act , {�, �}]{J1, J2, . . . , Jk}.

59



In the transition function, symbols � and � stand for “stay in place” and “move
forward” respectively, and action Ji stands for “jump to the position of head number i”.
Intuitively, if the machine is in state s, each head j reads letter ~a(j), and δ(s,~a) = (s′, α),
then the machine goes to state s′ and each head j performs the action α(j). Accordingly,
to guarantee that the automaton does not try to go beyond the end marker of the word,
we require that if δ(s,~a) = (s′, α), then for all j ∈ J1, kK with ~a(j) = / we have α(j) 6= �.

A configuration of a JMA M = 〈S, k, s0, sacc, srej , δ〉 is a triple c = (w, s, p) where w
is the input word, s ∈ S is the current state, and p = (p1, . . . , pk) ∈ J0, |w|Kk gives the
current head positions. If the position pi is |w| then the head i is scanning the symbol /.

The initial configuration on an input word w is (w, s0, (0, . . . , 0)). Let w = a0a1 . . . an−1

be the input and an = /. Let (w, s, (p1, . . . , pk)) be a configuration with s ∈ Strans ,
and (s′, (x1, . . . , xk)) = δ(s, (ap0 , . . . apk)) be given by the transition function. Then the
successor configuration is defined by (w, s′, (p′1, . . . , p

′
k)), where for all i ∈ J1, kK p′i depends

on xi in the following way:

(1) p′i = pi if xi = � (2) p′i = pi + 1 if xi = � (3) p′i = pj if xi = Jj

A configuration (w, s, p) is final if s ∈ {sacc, srej}. It is accepting (resp., rejecting)
if s = sacc (resp., s = srej ). A run of a JMA M on w is a sequence of configurations
c0, c1, . . . , cr on w where c0 is the initial configuration, and ci+1 is the successor configur-
ation of ci for all i. If cr is rejecting (resp. accepting), we say that the run is rejecting
(resp. accepting). We say that M terminates on w if there is a (maximal, finite) run of
M on w ending in a final configuration (either accepting or rejecting). The language of
M, noted L(M), is the set of finite words leading to an accepting run in M.

Example 3.1. The language L = {a2n | n ∈ N} can be recognized by the following JMA
with two heads. (Missing transitions all go to the rejecting final state.)

s0 s1 s2

srej

sacc

(a, /),�, J1
(a, a),�, �

(a, a), �, �

(a, /), �,�
(/, /),�,�

(a, /),�,�

The idea behind the automaton is similar to one for the proof given in Figure 3.4: one
head advances at twice the speed of the other. When the fast head reaches the end of
the word, it either rejects if the length is odd and at least 2, or jumps to the position of
the slow head located in the middle of the word. From there, the automaton proceeds
recursively.

Notice that on an input word u, three scenarios are possible: the automaton accepts by
reaching sacc, rejects by reaching srej , or rejects by looping forever. In order to translate
JMAs into cyclic proofs, whose validity criterion ensures termination, it is convenient
to forbid the last scenario. We ensure such a property by a syntactic restriction on the
transition structure of JMAs.

Definition 3.9. The transition graph of a JMA M = 〈S, k, s0, sacc, srej , δ〉 is the labeled
graphGM = (S,E), where the vertices are states S, and the set of edges is E ⊆ S×S×Actk,
defined by E = {(s, s′, α) | ∃~a ∈ (A/)

k, δ(s,~a) = (s′, α)}.
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A JMA M is progressing if for every cycle e1e2 . . . el in its transition graph, where
ei = (si, si+1, αi) for each i ∈ J1, lK and sl+1 = s1, there exists a head j ∈ J1, kK with
α1(j)α2(j) . . . αl(j) ∈ (�∗ · � ·�∗)+.

(Intuitively we require that for every loop, one of the heads does not jump during this
loop and moves forward at least once.)

The JMA from Example 3.1 always terminates, but it is not progressing due to the
loop on the initial state. It could easily be modified into a progressing JMA by introducing
a new intermediary state instead of looping on s0. In fact, even in cases where a JMA can
indefinitely loop on some inputs, one can always turn it into a progressing one recognizing
the same language. Hence all JMAs are assumed to be progressing from now on.

Lemma 7. Every JMA can be converted into a progressing JMA with the same language.

Proof. LetM = 〈S, k, s0, sacc, srej , δ〉 be a JMA. We want to construct a progressing JMA
M′ such that L(M) = L(M′). We use the fact that the number of possible configurations
on a given word w is bounded polynomially in the length of w. We add heads to the JMA
that just advance counting up until this bound, making the JMA progressing.

For all w such that M terminates on w, the run c0, c1, . . . , cr of M on w is such that
r < |S||w|k. Indeed, for a given word w, there are only |S||w|k distinct configurations.
So if there is an accepting run c0, c1, . . . , cr on w of length greater than |S||w|k then
necessarily there exists i 6= j such that ci = cj, meaning the automaton M has entered a
loop. Since M is deterministic, it will stay in this loop forever, which contradicts the fact
that M terminates on w.

We construct M′ by adding k + 1 heads to M. The (k + 1)th head stays at the
beginning of the word to allow the other heads to jump back to it. The first added head
reads the word letter by letter; when it reaches the final marker /, it jumps back to the
beginning and starts again. Then for all i < k, the (i+ 1)th head advances each time the
ith reads the end symbol / and jumps back to the beginning every time it reaches the end.
Note that the ith head takes exactly |w|i steps to read the whole word. The state space S ′

of M′ is defined as S × J1, |S|K, with initial state s′0 = (s0, 1). The second component of
S ′ will be called the counter. Each time the kth head reads the end symbol, we increment
the counter in addition to jumping back to the beginning. If the counter reaches |S| and
needs to be incremented, the automaton M′ enters state srej and rejects the input.
M′ is progressing. Indeed if there is a loop e1e2 . . . el with ei = (si, si+1, αi) in GM′

then it corresponds to a loop of M with a fixed counter value, so the kth head never
jumps back. Let i = max{j ∈ J1, kK | ∃t αt(j) = �}. Then the ith head never jumps back.
In fact if i < k and the ith head had jumped back then the (i + 1)th head would have
advanced, which contradicts the maximality of i.
M′ recognizes exactly L(M). Indeed if w ∈ L(M) then there exists an accepting

run of M of length less than |S||w|k, this run also exists in M′ and so w ∈ L(M′). If
w 6∈ L(M) then either M rejects it in less than |S||w|k steps, in which case M′ also
rejects it, or M′ will reject the word after |S||w|k + 1 steps.

Lemma 8. Given a JMA M, we can check in NL whether M is progressing. If M is
progressing, then it terminates on all words.

Proof. To witness that an input JMAM is not progressing, it suffices to guess on-the-fly a
loop in the transition graph violating the condition defining progressing automata. Notice
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that the memory needed to verify that the loop violates the condition is Θ(k), since for
each head, one needs to remember whether it has already violated the condition, and
if not whether it has already moved to the right. The transition table of M is of size
exponential in k, so this memory of Θ(k) is indeed logarithmic in the input size. Since
NL = coNL, this yields a NL algorithm to verify that a JMA is progressing.

We now show that if M is a progressing JMA, it terminates on all words. Assume by
contradiction that there is a word w of length n such that M does not terminate on w.
Since its transition function is total, it means that M has an infinite run ρ on w. Let
I ⊆ J1, kK be the set of heads that advance infinitely many times in ρ. We can choose a
factor τ of ρ such that each head from I advances at least n+ 2 times in τ , heads not in
I do not advance in τ , and additionally the first and last state of τ are identical. Since τ
corresponds to a loop in the transition graph of M, and M is progressing, there must
be a head j ∈ I that does not jump during τ . This means this head j advances n + 2
times without jumping, which is impossible on the word w of length n. We reached a
contradiction, thereby proving that a progressing JMA must terminate on all words.

3.3.2 Expressive power of JMAs

Write JMA(k) for the set of languages expressible by a progressing JMA with k heads.
JMAs encode precisely the DLogSpace languages; one-head JMAs capture exactly the
regular languages.

Lemma 9. JMA(1) = Reg.

Proof. Every deterministic automaton translates directly into a JMA with a single head.
Conversely, a progressing JMA with a single head cannot jump or stay in place, so that it
suffices to extend the transition table to make the two final states sink states. (Moreover
note that a JMA with a single head can be transformed into a progressing one without
adding new heads: it suffices to add a sink state.)

Theorem 3.1.
⋃
k≥1 JMA(k) = DLogSpace

The forward direction of Theorem 3.1 is relatively easy:

Lemma 10.
⋃
k≥1 JMA(k) ⊆ DLogSpace.

Proof. It is straightforward to translate a JMA with k heads into a Turing machine using
space O(logk(n)), by remembering the position of the heads.

To obtain the other direction of Theorem 3.1, we go through a notion of (non-jumping)
multihead automata that has already been investigated in the literature [49]. They consist
of automata with a fixed number of heads (k) that can either only go from left to right,
(one-way automata, 1DFA(k)), or in both directions (two-way automata, 2DFA(k)). We
briefly compare JMAs to those automata, starting with the one-way case.

First of all, it is clear that for all k ≥ 1, 1DFA(k) ⊆ JMA(k) (in particular, because
1DFAs can be assumed to be progressing without increasing the number of heads).

Remark 3.2. Since emptiness, universality, regularity, inclusion and equivalence are unde-
cidable for 1DFAs with 2 heads [49], these problems are also undecidable for JMAs with 2
heads.
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Concerning two-way automata (2DFA) it is known that
⋃
k≥1 2DFA(k) = DLogSpace [49],

so that by Lemma 10 every JMA can be translated into a deterministic multihead two-way
automaton, not necessarily preserving the number of heads. We prove the converse
direction with a direct transformation of a two-way multihead automaton into a jumping
multihead one. We start by giving an example of a seemingly 2-way behavior that can be
simulated by JMAs.

Example 3.2. The palindrom language L = {w | w ∈ A∗ ∧w = wR} where wR denotes the
reverse of w is recognizable by a JMA with 4 heads. Let us call these 4 heads h0, hlin, hlin
and htemp in the following. The head h0, will always stay at the beginning of the word to
allow other heads to jump back to this position. The head hlin will linearly read the word
from left to right. The head hlin will simulate the linear reading of the word from right to
left by doing multiple jumps. The head htemp will help hlin to find the position of its next
move.

In the initial configuration of the automaton, all the reading heads are locating on
the first letter of the input word. Then, each time hlin is reading the i-th letter we do as
follow:

– hlin and htemp jump respectively on h0 and hlin and then htemp moves one step right.
They are exactly i letters apart.

– hlin and htemp move right synchronously until htemp is reading the end symbol of the
word / (i.e. the (n+ 1)-th letter). Then hlin is reading the (n+ 1− i)-th letter.

The automaton compares the letters read by hlin and hlin. If they are different it halts
and rejects the word. Otherwise hlin moves right. If it reaches the end symbol of the word
/ then the automaton halts and accepts, otherwise we do the same process again.

The automaton recognizing the palindrom language works by simulating a head that
reads the word from the right to the left thanks to an auxiliary head and multiple jumps.
We can generalize this process to simulate any two-way multihead automaton.

Lemma 11. Let M be a two-way (deterministic) multihead automaton with k heads.
Then there exists M′ a JMA with 2k + 2 heads such that L(M) = L(M′).

Proof. We construct M′ as follows.
For each head h of M we add another reading head h′ that will be always kept at the

symmetric position of h (i.e. when h will be reading the i-th letter, h′ would be reading
the n− i+ 1-th letter). Moreover we add a head h0 that will always stay at the beginning
of the word and a head htemp that we will use to make a given head move one letter left.

Each time a head h moves (left or right) in M, in M′ the corresponding head h will
do the same move and its symmetric head h′ the inverse move. We always begin by doing
the right move and then use the fact that we have a head at the symmetric position to find
the position where the second head should move with htemp. For simplicity let’s assume
that h moves right so that h′ should move left. If h is reading the i-th letter then we have
to find the n− i+ 1-th letter. We proceed as follow:

– h′ and htemp jump respectively on h0 and h and then htemp moves one step right.
They are exactly i letters apart.
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– h′ and htemp move right synchronously until htemp is reading the end symbol of the
word / (i.e. the n+ 1-th letter). Then h′ is reading the n+ 1− i-th letter.

Since it was shown in [93] that 2DFAs are strictly more expressive than 1DFAs, it is
also the case that JMAs are strictly more expressive than 1DFAs. We refine this result
here, and show that JMAs with 2 heads can already compute languages that are not
computable by 1DFAs with any number of heads.

Proposition 3.3. For all k ≥ 1, JMA(2) * 1DFA(k).

Proof. It is proven in [93] that (1DFA(k))k∈N forms a strict hierarchy, by defining a
language Lb that is recognizable by a 1DFA with k heads if and only if b <

(
k
2

)
. We

slightly modify these languages so that they become expressible with a two-head JMA
while keeping the previous characterization for 1DFA.

We define a language Lb+ that is recognizable by a JMA with only 2 heads while it
can be recognized by a 1DFA with k heads if and only if b <

(
k
2

)
. To do so, we start

from the language defined in [93] to prove the hierarchy theorem for 1DFAs. We slightly
modify this language in order to add some information that helps an automaton with
jumping heads but not one with only multiple heads.

In [93], it is proven that the language Lb = {w1$ . . . $w2b | ∀i, wi = w2b+1−i ∈ A∗} is
recognizable by a 1FA with k heads if and only if b <

(
k
2

)
(with $ a fresh letter not in A).

Let us define the language Lb+ in the following way:

Lb+ = {(+)bw1$(+)b−1$ . . . $ + wb$wb+1$ . . . $w2b$ | ∀i, wi ∈ A∗ ∧ wi = w2b+1−i}

(Again, with + another fresh letter not in A.) The proof from [93] can easily be adapted
to prove that the language Lb+ is recognizable by a 1DFA with k heads if and only if
b <

(
k
2

)
: it suffices to define type2 of a configuration according to the number of + that

have been added to the words.
On the other hand we can recognize Lb+ with a JMA with only 2 heads. This

automaton works in two steps. The first one serves to verify that the word is of the shape
(+)bw1$(+)b−1$ . . . $ + wb$wb+1$ . . . $w2b$ with wi ∈ A∗ for all i. The second step serves
to verify that wi = w2b+1−i for all i. For the first step, one of the heads makes sure the
word consists of b sequences of + of length b, b− 1, . . . , 1, each followed by a word of A∗

and a $ separator and then b words of A∗ followed by a $ separator. Since b is a constant
of the language this is feasible even if it requires many states. Then the head jumps to
the beginning of the word (using the second head). For the second step, one head linearly
reads the word. During this process the second head does the following. Each time the
first head reads a $ separator, the second head jumps to the same position if it is also on
a $ separator and rejects otherwise. Then, for each + read by the first head, the second
head goes through the word until it has skipped one $ separator if it is the first + of a
sequence and two separators otherwise. Thereby when the first head begins to read the
word wi, it has just read $(+)b+1−i (or (+)b for w1) and thus the second head has skipped
2(b+ 1− i)− 1 separators and is reading the word w2b+1−i. When the first head begins to
read one of the wi, the second head begins to read at the same place as the first head

2see [93].
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until the first head reaches a separator. If at some point the two letters being read differ
then the automaton rejects the word. When a separator is reached (simultaneously by the
two heads), the second head jumps back to the first one and the process continues. If at
some point, after reading a separator, the first head does not read a + then the process
stops and the word is accepted.

3.4 Equivalence between JMAs and cyclic proofs

We now turn to proving the following equivalence.

Theorem 3.2. The languages recognized by JMAs are those recognized by regular proofs.

Together with Theorem 3.1 we deduce that regular proofs recognize exactly the
DLogSpace languages. We prove the theorem in the next two subsections, by providing
effective translations between the two models. Notice that by Remark 3.2, the the-
orem implies that for regular proofs π, emptiness and other basic properties of [π] are
undecidable.

3.4.1 From JMAs to cyclic proofs

Let M = 〈S, k, s0, sacc, srej , δ〉 be a jumping multihead automaton. We want to build
a regular proof πM of A∗ ` B such that [πM] = L(M). A difficulty is that heads in
the automaton may stay in place, thus reading the same letter during several steps. In
contrast the letters are read only once by cyclic proofs, so that we have to remember this
information. We do so by labeling the sequents of the produced proof πM with extra
information describing the current state of the automaton. If k′ ∈ N, let Fk′ be the set of
injective functions J1, k′K→ J1, kK. A labeled sequent is a sequent of the form (A∗)k

′ ` B
together with an extra label in S ×Fk′ × (A ] {�, /})k.

The intuitive meaning of a label (s, f, ~y) is the following: s is the current state of the
automaton, f maps each formula A∗ of the sequent to a head of the automaton, and ~y
stores the letter that is currently processed by each head. Symbol � is used if this letter
is unknown, and the head is scheduled to process this letter and move to the right. The
values intuitively provided to each A∗ formula of the sequent are the suffixes to the right
of the corresponding heads of the automaton. On the examples, labels will be written in
gray below the sequents.

It will always be the case that if the label of (A∗)k
′
is (s, f, ~y), then Im(f) ⊆ {i | yi 6= /},

i.e., all heads reading symbols from A ] {�} correspond to a formula A∗ in the sequent.
We say that a sequent is fully labeled if its label does not contain �.

The construction of πM will proceed by building gadgets in the form of proof trees,
each one (apart from the initial gadget) connecting a labeled sequent in the conclusion to a
finite set of labeled sequents in the hypotheses. If some labeled sequents in the hypotheses
have already been encountered, we simply put back pointers to their previous occurrence.
Since the number of labeled sequents is finite, this process eventually terminates and
yields a description of πM.

When describing those gadgets we abbreviate sequences of inference steps or standalone
proofs using double bars labeled with the involved rule names.
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Initial gadget. The role of the initial gadget is to reach the first labeled sequent from
the conclusion A∗ ` B. It simply creates k identical copies of A∗. This expresses the fact
that the initial configuration is 〈w, s0, (0, 0, ...0)〉. We note idk the identity function on
J1, kK. The initial labeled sequent is (A∗)k ` B together with label (s0, idk, (�, . . . ,�)).

The initial gadget is as follows:
(A∗)k ` B
s0,idk,(�,...,�)

c, . . . , c
A∗ ` B

Reading gadget. Every time the label (s, f, ~y) of the current address is not fully labeled,
we use the gadget readi, where i = min{j | ~y(j) = �} to process the first unknown letter.

We note i′ = f−1(i) the position of the A∗ formula corresponding to head i and define
the gadget readi as follows:

(A∗)k
′−1 ` B

s,f ′,(y1,...,yi−1,/,...,yk)

(
(A∗)k

′ ` B
s,f,(y1,...,yi−1,a,...,yk)

)
a∈A

A
(A∗)i

′−1, A,A∗, (A∗)k
′−i′ ` B

∗
(A∗)k

′ ` B
s,f,(y1,...,yi−1,�,...,yk)

where f ′(x) ={
f(x) if 1 ≤ x < i′

f(x+ 1) if i′ ≤ x ≤ k′ − 1

Transition gadget. Thanks to the readi gadgets, we can now assume we reach a fully
labeled sequent, with label of the form (s, f, (y1, . . . , yk)). If s /∈ {sacc, srej}, we use a trans-
ition gadget, whose general shape is as on the right below, with (s′, α) = δ(s, (y1, . . . , yk)):

This gadget is designed such that for all i ∈ J1, kK:

• if α(i) = � then zi = yi

• if α(i) = � then zi = �,

• if α(i) = Jj then zi = yj.

(A∗)k
′′ ` B

s′,f ′,(z1,...,zk)
δ

(A∗)k
′ ` B

s,f,(y1,...,yk)

In the last case, a contraction is used to duplicate the A∗ formula corresponding to head j,
and the function f ′ maps this new formula to head i. The occurrence of A∗ corresponding
to yi is weakened (possibly after having been duplicated if another head jumped to i).

We describe this gadget on two examples below. An element f : J1, k′K → J1, kK is
simply represented by f(1)f(2) . . . f(k′).

δ(s, (a, b, /)) = (s′, (�,�, J1)) δ(s, (c, d, e)) = (s′, (J3, �, J2))

A∗, A∗, A∗ ` B
s′,132,(�,b,a)

c
A∗, A∗ ` B
s,12,(a,b,/)

A∗, A∗, A∗ ` B
s′,231,(e,�,d)

w ,w
A∗, A∗, A∗, A∗, A∗ ` B

c, c
A∗, A∗, A∗ ` B

s,123,(c,d,e)

Notice that it is also possible to avoid unnecessary contractions, in order to bound the
number of A∗ formulas in a sequent by k. The symbol � means that the formula A∗ is
scheduled for a ∗ rule, and will be immediately processed thanks to the gadget readi as
described above.

Final gadget. It remains to describe what happens if the current sequent is fully labeled
with s ∈ {sacc, srej}. In this case, we simply conclude with a (tt) axiom if s = sacc or with
a (ff) axiom if s = srej .
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This achieves the description of the preproof πM. The following lemma expresses its
correctness.

Lemma 12. If M is a progressing JMA, the preproof πM is valid, and [πM] = L(M).

Proof. Assume πM is not valid, i.e., there exists an infinite branch ρ without validating
thread. By considering a sufficiently long prefix of ρ, we can find addresses v, w in ρ such
that

• v and w correspond to the same subtree, and contain a fully labeled sequent.

• there is no thread visiting a position from v to w.

The path from v to w witnesses a loop in the transition graph of M. Moreover, since
positions in πM are only encountered when a head advances, and a thread is cut only
when the corresponding head jumps, this loop does not verify the progressing condition,
i.e., there is no head that advances without jumping, otherwise it would yield a thread
from v to w visiting a position. We obtain a contradiction, thereby proving that πM is
valid.

To show that [πM] = L(M), we can analyze the computation of the proof πM on a
word u ∈ A∗. We proceed by induction, and show the computation of πM closely follows
the computation of M in the following way:

• each sequence of steps of the evaluation of [πM](u) between two fully labeled sequents
corresponds to a transition of M

• when reaching address v with sequent (A∗)k
′

fully labeled by (s, f, ~y), the computa-
tion of [πM](u) evaluates [v](u1, . . . , uk′) where s is the current state of M, f maps
each ui to a head f(i), ~y describes the letters currently read by each head, and
u1, . . . , uk′ is the list of suffixes remaining to be read by heads that did not reach
the end of the input.

The initial gadget and read1, . . . , readk gadgets ensure that the first fully labeled sequent
describes the initial configuration according to the above correspondence. The transition
gadget and readi gadgets preserve the above invariant, and accurately simulate a transition
ofM. The final gadget allows one to stop the computation of [πM](u) wheneverM stops
on input u, and returns the same value.

3.4.2 From cyclic proofs to JMAs

Let π be a regular proof with conclusion A∗ ` B. Let k be the maximal number of star
formulas in the sequents of π. We build a JMA M with k heads such that L(M) = [π].

The idea of the construction is to store all necessary information on the current state of
the computation in π into the state space ofM, besides the content of star formulas. This
includes the current address in π, and the actual letters corresponding to the alphabet
formulas, together with some information linking star formulas to heads of the automaton.

This allows M to mimic the computation of [π] on an input u, in a similar way as
the converse translation from Section 3.4.1. In particular, we keep the invariant that the
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value associated to each star formula is the suffix of u to the right of the corresponding
head of M.

State space of M. Let m be the maximal number of alphabet formulas in the sequents
of π. We use a register with m slots, each one possibly storing a letter from A. Let
R =

⋃m
i=0A

i be the set of possible register values. An element b1 . . . bi of R describes the
content of the i alphabet formulas of the current sequent. We denote the empty register
by ♦. Intuitively, the register needs to store the values that have been processed by the
automaton, but are still unknown in the proof π as they are represented by alphabet
formulas.

Let F be the set
⋃k
i=0J1, kK

i. An element f ∈ F associates to each A∗ formula of a
sequent the index of a head of M. This allows us to keep track of the correspondence
between heads of M and suffixes of the input word being processed by π.

We define the state space of M as S = (Addr(π)×R×F) ] {sacc, srej}.
Notice that Addr(π) is infinite, so M is an infinite-state JMA. However, if π has

finitely many subtrees, we will be able to quotient Addr(π) by v ∼ w if v and w correspond
to the same subtree, and obtain a finite-state JMA.

If (v, r, f) is a state of M, we will always have |r| = m′ and |f | = k′, where m′ (resp.
k′) is the number of alphabet (resp. star) formulas in π(v). Moreover, for all i ∈ J1,m′K,
the ith alphabet formula contains the letter r(i) stored in the ith slot of the register r.

The initial state is s0 = (ε,♦, 1). It points to the root of π, with empty register, and
maps the only star formula to head 1.

Transition function of M. If s = (v, r, f) is a state of M, and ~a = (a1, . . . , ak) is the
tuple of letters read by each head with ai ∈ A/, we want to define δ(s,~a) = (s′, α) ∈ S×Actk.

We write αid for the action tuple (�, . . . ,�) leaving each head at the same position.
We write move i (resp. jumpi,j) for the element of Actk which associates to heads i′ 6= i
the action � and to head i the action � (resp. jump to head j).

First of all, if the rule applied to v in π is an axiom (tt) (resp. (ff)), we set s′ = sacc
(resp. srej ) and α = αid . This allows M to stop the computation and return the same
value as [π]. Otherwise, we define s′ = (v′, r′, f ′) and α depending on the rule applied to
v in π. By Proposition 3.2, we can assume that the proof π does not use the weakening
rule. Let m′ (resp., k′) be the number of alphabet (resp. star) formulas in π(v).

Contraction rule:
We set v′ = v0, and do a case analysis on the principal formula:

• ith alphabet formula: we set f ′ = f , r′ = r(1) · · · r(i− 1) · r(i) · r(i) · r(i+ 1) · · · r(m′)
and α = αid .

• ith star formula: let j ∈ J1, kK be the smallest integer not appearing in f , corres-
ponding to the index of the first available head. We want to allocate it to this
new copy, by making it jump to the position of the head f(i). We take r′ = r,
f ′ = f(1) · · · f(i) · j · f(i+ 1) · · · f(k′), and α = jumpj,f(i).

Star rule:
Let i be the index of the principal star formula. We now want the head j , f(i)

pointing on this formula to move right. The letter processed by this head will be added
to the register.
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• if ~a(j) = /, the head reached the end of the input. This corresponds to the left
premiss of the ∗ rule. We set v = v0, f ′ = f(1) · · · f(i− 1)f(i+ 1) · · · f(k′), r′ = r
and α = αid .

• if ~a(j) ∈ A, we set v′ = v1, f ′ = f , α = move i, and r′ = r(1) · · · r(i′)~a(i)r(i′+1) · · · r(m′),
where i′ is the number of A formulas before the principal star formula.

Alphabet rule:
Let i be the index of the principal A formula, and a = r(i) be the letter associated to

it. We define v′ = va, f ′ = f , α = αid , and r′ = r(1) . . . r(i− 1)r(i+ 1) . . . r(m′), i.e., we
erase the ith slot.

This completes the description of the JMA M = 〈S, k, s0, sacc, srej , δ〉.

Lemma 13. The JMA M is progressing, and L(M) = [π].

Proof. A loop (v, r, f)→ (v, r, f) in the transition graph of M corresponds to a path in
π from v to some vu, two addresses corresponding to the same subtree. By validity of π,
the branch vuω contains a validating thread. So there is a thread t from 〈v, i〉 to 〈vu, j〉
for some i, j, containing a ∗ position. Let h = f(i) be the index of the head pointing to
the A∗ formula in position 〈v, i〉. By construction of δ, this head did not jump during the
loop (or the thread t would be cut), and performs at least one action � (where the thread
t visits a ∗ position). We proved that the JMA M is progressing, since any loop verifies
the progressing condition.

The fact that L(M) = [π] is proved by induction on the computation of [π] on any
input u. At any point, the construction ofM preserved the announced invariants: registers
store the contents of alphabet formulas, for each i the content of the ith star formula is
the suffix to the right of the head number f(i). The transition function δ is built to follow
the computation of [π](u) on any u, and return the same result when a (tt) or (ff) axiom
is reached.

Example 3.3. We can obtain a progressing JMA for the language L = {a2n | n ∈ N} by
translating the proof from Figure 3.4 using the above procedure. As there are at most two
star formulas in the sequents of the proof, the produced JMA has two heads. As there is
only one letter in the alphabet, we can just forget the register. Similarly we consider that
any ff part (resp. tt part) of the proof corresponds to the state srej (resp. sacc). Using

for reading any symbol (a letter a or /), we can represent the obtained automaton as
follows:

ε; (1) 1; (1) 11; (1, 2) sacc

111; (1, 2)

srej 1111; (1, 2) 11111; (1, 2)

(a, ), �,�

(/, ),�,�

( , ),�, J1 ( , /),�,�

( , a),�, �( , /),�,�

( , a),�, �

( , /),�,� ( , a),�, �

(a, ), �,�
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Remark 3.3. Our encoding from regular proofs to JMAs would still work if we had included
an exchange rule in the system, and the encoding from JMAs to regular proofs does not
require the exchange rule. Therefore, such a rule would not increase the expressive power.

3.4.3 The affine case: regular languages

Looking at the encodings in the two previous sections, we can observe that:

• the encoding of an affine regular proof is a JMA with a single head: in absence of
contraction, all sequents in proof ending with A∗ ` B have at most one star formula;

• the encoding of a JMA with a single head does not require contraction: this rule is
used only for the initial gadget and when the action of a head is to jump on another
one.

As a consequence, we have a correspondence between affine regular proofs and JMAs with
a single head, whence, by Lemma 9:

Theorem 3.3. The regular languages are those recognizable by affine regular proofs.

3.5 Conclusion and future work

We have defined a cyclic proof system where proofs denote formal languages, as well as a
new automata model: jumping multihead automata. We have shown that regular proofs
correspond precisely to the languages recognizable by jumping multihead automata, which
turn out to be the DLogSpace languages. Moreover we have shown that the restriction
to affine regular proofs corresponds to the regular languages. We see two directions for
future work.

First, we restricted to sequents of the shape E ` B in order to focus on languages.
As we shall see in Chapter 4, the proof system we started from (LKA [29]) however
makes it possible to deal with sequents of the shape E ` e: it suffices to include right
introduction rules for the alphabet (A) and star formulas (A∗). By doing so, we obtain a
system where proofs of A∗ ` A∗ denote transductions : functions from words to words. We
conjecture that in the affine case, we obtain exactly the subsequential transductions [76],
i.e., transductions definable by deterministic 1-way transducers. In the general case (with
contraction), we would need a notion of jumping multihead transducers.

Second, we used a cut-free proof system. While adding the cut rule for the presented
system (restricted to sequents E ` B) seems peculiar since the input and output are not of
the same shape, it becomes reasonable when moving to general sequents for transductions.
We have observed that we can go beyond MSO-definable transductions when doing so,
even in the affine case. We would like to investigate and hopefully characterize the
corresponding class of transductions.
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Chapter 4

Cyclic proofs and functional
programs

Abstract

We extend the cyclic proof system from the previous chapter to deal with regular expression
types and arrow types, so that proofs in C can be seen as strongly typed functional
programs. We show that they denote computable total functions and we analyze the
relative strength of C and Gödel’s system T. In the general case, we prove that the
two systems capture the same functions on natural numbers. In the affine case, i.e.,
when contraction is removed, we prove that they capture precisely the primitive recursive
functions—providing an alternative and more general proof of a result by Dal Lago, about
an affine version of system T.

Without contraction, we manage to give a direct and uniform encoding of C into T,
by analyzing cycles and translating them into explicit recursions schemes. Whether such
a direct and uniform translation from C to T can be given in the presence of contraction
remains open.

We obtain the two upper bounds on the expressivity of C using a different technique:
we formalize weak normalization of a small step reduction semantics in subsystems of
second-order arithmetic: ACA0 and RCA0.

4.1 Introduction

As explained in the previous chapter, a natural question in non-wellfounded proof theory
is whether specific cyclic and inductive proof systems have the same logical strength.
Indeed, while inductive proofs can usually be translated easily into cyclic ones (see, e.g.,
[17]), the converse problem is often harder [78, 12], or impossible [11, 26].

Here we propose a cyclic proof system which we study from the other side of the
Curry-Howard correspondence: the proof system is seen as a type system, and proofs
(i.e., typing derivations) as programs. Intuitively, those programs are unstructured yet



strongly typed functional programs; we call them cyclic programs in the sequel. Despite
the strongly typed discipline, the corresponding language is low-level, and closer in spirit
to assembly or goto programs than to higher-level languages with while loops, like C or
Pascal.

As in the previous chapter, we import from cyclic proof theory a validity criterion which
makes it possible to ensure termination of cyclic programs. This criterion is non-local,
but syntactic and decidable via Büchi automata algorithms. Although we work here with
structured values and total operations, this criterion can also be seen as an instance of
the celebrated size change termination principle [65].

We characterize the computational strength of cyclic programs in terms of more
traditional devices: primitive recursive functions and Gödel’s system T (i.e., simply typed
lambda-calculus with natural numbers and recursion).

We take as types the formulas of intuitionistic multiplicative additive linear logic
(IMALL) with a least fixpoint operator for lists. We can thus manipulate datatypes
consisting of natural numbers and functions, but also pairs, lists, or sums, without the
need for encodings. Our cyclic proof system, which we call system C, is basically the
sequent system LAL for action lattices from [29], to which we add the three usual structural
rules: exchange, weakening and contraction. Proceeding this way makes it possible to
consider the affine fragment Caff of C, where the contraction rule is forbidden.

Accordingly, we use a variant of Gödel’s system T with the same formulas/types as
C in order to ease comparisons. We define this type system in a slightly non-standard
way: like for C, we use explicit structural rules in order to be able to talk about the affine
fragment Taff of T.

Contraction indeed plays an important role in those systems: we show that

1. Caff and Taff are equally expressive (at all types), and their functions on natural
numbers are the primitive recursive functions;

2. C and T capture the same functions on natural numbers, those that are provably
total in Peano arithmetic.

We obtain those results via the translations summarized below, where dotted arrows
denote encodings restricted to functions on natural numbers.

T C
Thm. 4.2

Cor. 1, via ACA0

Taff Caff prim. rec.
Thm. 4.2

Thm. 4.3

Thm. 4.1

Cor. 3, via RCA0

As expected, we can translate terms of T into cyclic programs of C (Theorem 4.2); this is
a compilation process, the translation is uniform and maps affine terms to affine programs.
We also observe that we do not need contraction to encode primitive recursive functions
into C (Theorem 4.1).

Conversely, encoding cyclic programs into T is much harder: this is a decompilation
process, we have to delineate possibly complex cycle structures in order to use the very
strict recursion capabilities of T. Seen from the logic side, this is in fact an instance of
the difficult problem of translating cyclic proofs into inductive ones [78, 12, 11, 26]. We
manage to provide a direct and uniform encoding in the affine case (Theorem 4.3), which
we do not know how to extend in the presence of contraction.
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In order to get our upper bounds on the expressivity of C and affine C for functions
on natural numbers (Corollary 1 and Corollary 3), we define a small steps reduction
semantics for C. This semantics matches the higher-level and higher-order semantics we
use elsewhere in the chapter, and we prove that it is weakly normalizing. We obtain
Corollary 1 by observing that this weak normalization proof can be performed inside the
subsystem ACA0 of second order arithmetic [79], whose provably recursive functions are
precisely those from system T.

For the affine case (Corollary 3), Dal Lago’s system H(∅) [23] is a variant of Gödel’s
system T which characterizes primitive recursive functions and which is really close to our
affine version of T. Unfortunately, we need additive pairs in order to translate affine C
into affine T. Those are not available in H(∅), and it is not clear how to extend Dal Lago’s
proof to deal with such operations: his proof is complex and relies on a semantics based on
geometry of interaction, whose extension to additives is notoriously difficult [43, 10, 4, 55].
We instead prove Corollary 3 by using another proof of weak normalization for C, which
works only on the image of our translation from affine T to C. This argument can be
formalized into another subsystem of second order arithmetic, RCA0, which is known to
define only the primitive recursive functions [7]. This yields an alternative and more
general proof of Dal Lago’s result (Corollary 2).

On system C as a programming language. As explained above, the cyclic proof
system C can be seen as a type system for a low-level programming language manipulating
structured values. Even though this language is pure—no side effects—and strongly typed,
we insist that it is low-level because loops are expressed using goto instructions rather
than high-level constructs such as while loops or iterators. Accordingly, the (cyclic) type
system ensures termination via a global yet decidable criterion (an ω-regular condition).
This is in sharp contrast with other terminating programming languages such as system T
(or Agda, Coq), where termination is ensured using a local notion of guardedness: there,
although recursive definitions can be nested in complicated ways, termination is ensured
by imposing that each recursive call must be guarded.

Related work System T was originally introduced by Gödel in [46] as an equational
theory built up over a fragment of the term calculus that we identify as T here. That
work introduced the ‘Dialectica’ functional interpretation, that allows T to interpret
Peano Arithmetic.1 Our work can be seen as a counterpart in T to recent work on cyclic
arithmetic [78, 26]. Das pursued this work and proposed a circular version of system T, as
an equational theory [25]. He refined the correspondence we establish here by analyzing
its type-level complexity (see concluding remark at the end of Section 4.7), and proved
that his version of circular system T (CT) defines the same functionals as the original
system T, at all types. Note that the contraction is always present in his work: he does
not consider affine systems.

Other infinitary versions of system T are well-known, in particular [82]. These also
induce a ‘term model’ of T where recursors are replaced by infinitely long yet well-founded
terms. This difference resembles the difference between logical systems with ω-branching

1Gödel only treated Heyting Arithmetic, the intuitionistic counterpart of Peano Arithmetic. An inter-
pretation of the latter is duly obtained by composition with an appropriate double-negation translation.
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versus their non-wellfounded counterparts, e.g., as in arithmetic [78, 26].
Although there are works on using cyclic proof systems to perform proof search and

reason automatically about inductive types or program equivalence [67, 68], those ideas
do not really apply in system C because it is a programming language with a fancy (i.e.,
cyclic) yet simple type system. Proof search would correspond to type inhabitation—a
trivial problem for closed types in our setting: the types we use are not expressive enough
to serve as specifications.

4.2 System C and its semantics

4.2.1 Regular expressions as types

We let the letters a, b range over the elements of a fixed set A of type variables. We define
types with the following syntax.

e, f := a | e · f | e+ f | e∗ | 1 | e→ f | e ∩ f

The five first entries correspond to regular expressions; the arrow adds function spaces.
As a first approximation, the intersection operator (∩) can be identified with the product
operator (·): both operators are interpreted as Cartesian product in the high-level semantics
we define below. Our set of rules will turn the former into an additive conjunction and the
latter into a multiplicative conjunction. We use the above notations for the connectives
rather than those from linear logic because:

• we want to emphasize that expressions e, f are types rather than formulas (although
we shall also call them formulas when this is more natural);

• in the presence of contraction and weakening, the linear behavior the various
connectives disappears.

We assume a family (Da)a∈A of sets indexed by A, representing elements of atomic
types. To every type e, we associate a set [e] of values, by induction on e:

[e · f ] , [e ∩ f ] , [e]× [f ] [1] , 1

[e+ f ] , [e] + [f ] [e∗] , [e]∗

[e→f ] , [f ][e] [a] , Da

We have that [1∗] is in bijection with N, so that we can use 1∗ as a type for natural
numbers.

We letE,F range over finite sequences of types. Given such a sequence E = e0, . . . , en−1,
we write [E] for [e0]× · · · × [en−1].

We will define a sequent proof system where sequents have the shape E ` e, and proofs
of such sequents, cyclic programs, will denote functions from [E] to [e].
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id
e ` e

E ` e e, F ` g
cut

E,F ` g
E, f, e, F ` g

x
E, e, f, F ` g

E ` g
w
e, E ` g

e, e, E ` g
c
e, E ` g

e, f, E ` g
·-l
e · f, E ` g

E ` e F ` f
·-r

E,F ` e · f

e, E ` g f, E ` g
+-l

e+ f, E ` g
E ` ei

+-ri i ∈ {0, 1}
E ` e0 + e1

E ` g e, e∗, E ` g
∗-l

e∗, E ` g
∗-rε
` e∗

E ` e F ` e∗
∗-r::

E,F ` e∗

E ` g
1-l

1, E ` g
1-r
` 1

E ` e f, F ` g
→-l

e→ f, E, F ` g
e, E ` f

→-r
E ` e→ f

ei, E ` g
∩-li i ∈ {0, 1}

e0 ∩ e1, E ` g
E ` e E ` f

∩-r
E ` e ∩ f

Figure 4.1: The rules of C.

4.2.2 Non-wellfounded proofs

The rules of C are given in Figure 4.1; in addition to the structural rules (exchange,
weakening, contraction, axiom, and cut), we have introduction rules on the left and on
the right for each type connective (logical rules). Those rules are standard, they are those
of intuitionistic multiplicative additive linear logic, when interpreting · as multiplicative
conjunction (⊗), + as additive disjunction (⊕), ∩ as additive conjunction (&), and → as
linear arrow (−◦). The rules for type e∗ correspond to unfolding rules, looking at e∗ as
the least fixpoint expression µx.1 + e · x (e.g., from the µ-calculus).

Those rules are also essentially the same as those used for action lattices in [29]. The
only differences are that they can be slightly simplified here since we have the exchange
rule, and that there is only one arrow, being in a commutative setting—again, due to the
exchange rule.

Given those rules, we define preproofs, ancestry, threads and validity exactly as in
Chapter 3. We nonetheless repeat those definitions in order to ease the reading.

Recall that a (binary, possibly infinite) tree is a non-empty and prefix-closed subset of
the set {0, 1}∗ of addresses. In this chapter, we write v (resp. @) for the prefix relation
(resp. strict prefix) on addresses.

Definition 4.1. A preproof is a labeling π of a tree by sequents such that, for every node

v with children v1, . . . vn (n = 0, 1, 2), the expression
π(v1) · · · π(vn)

π(v)
is an instance of a
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id
e∗ ` e∗

...

e∗, e∗ ` e∗

id
e ` e

id
e∗ ` e∗∗-r::

e, e∗ ` e∗
cut

e, e∗, e∗ ` e∗
∗-l

e∗, e∗ ` e∗
•

∗-rε ` b∗

id
a ` a

id
a∗ ` a∗∗-r::

a, a∗ ` a∗

...

a∗ ` b∗
cut

a, a∗ ` b∗
∗-l

a∗ ` b∗
•

• ...

e∗ ` f

...

e∗ ` f
w
e∗, e∗ ` f

w
e, e∗, e∗ ` f

∗-l
e∗, e∗ ` f

c
e∗ ` f

•

Figure 4.2: Three regular preproofs.

rule from Figure 4.1. Given an address v in a preproof π, we write πv for the sub-preproof
rooted at v, defined by πv(w) = π(vw). A preproof is regular if it has finitely many
distinct subtrees. A preproof is cut-free (resp. affine, linear) if it does not use the cut
rule (resp. c rule, c and w rules).

The formula e in an instance of the cut rule is called the cut formula; the formulas
appearing in lists E,F of any rule instance are called auxiliary formulas, and the non
auxiliary formula appearing in the antecedent of the conclusion of the logical rules is
called the principal formula.

Three examples of regular preproofs are depicted in Figure 4.2. The bottom-right one
has exactly the same structure as the one on the right in Figure 3.2. We define below
a validity criterion, which is satisfied only by the topmost preproof. Before doing so,
we need to define threads. As in Chapter 3, those are the branches of the shaded trees
depicted on the preproofs.

All rules but the cut rule have the subformula property: every formula appearing in
the premisses is a subformula of one of the formulas appearing in the conclusion, usually
called its immediate descendant in the literature. We use a slightly stricter notion of
ancestry here.

Definition 4.2. A position in a preproof π is a pair 〈v, i〉 consisting of an address v and
an index i such that π(v) = E ` f and Ei is a star formula. A ∗-l address is an address
pointing at the conclusion of a ∗-l step. A position 〈v, i〉 is a principal when v is a ∗-l
address and i = 0 .

A position 〈v, i〉 is a parent of a position 〈w, j〉 if |v| = |w| + 1 and, looking at the
rule applied at address w the two positions point at the same place in the lists E,F of
auxiliary formulas, or at the formula e (resp. e or f) when this is the contraction rule
(resp. exchange rule), or at the principal formula e∗ when this is the ∗-l rule and v = w1.
We write 〈v, i〉C 〈w, j〉 in the former cases, and 〈v, i〉 C· 〈w, j〉 in the latter case (in which
case i = 1 and j = 0). We say that 〈v, i〉 is an ancestor of 〈w, j〉 when those positions are
related by the transitive closure of the parentship relation.
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The graph of the parentship relation is depicted in Figure 4.2 using shaded thick lines
and an additional bullet to indicate when we pass principal steps (C·). Note that in rule
∗-l, the occurrence of e in the second premiss is not a parent of e∗ in the conclusion. Due
to this restriction, positions linked by the ancestry relation all point to the same star
formula.

Remark 4.1. Suppose that u v v are addresses in a preproof π. Then a position at v is
the ancestor of at most one position at u, and it is only in the presence of contraction
that a position at u may have two or more ancestors at v.

Definition 4.3. A thread is a branch of the ancestry graph, i.e., a set of positions forming
a linear order with respect to the ancestry relation; it is principal when it visits a principal
position, spectator if it is never principal, valid if it is principal infinitely many often.

In the topmost preproof of Figure 4.2, the infinite red thread

〈ε, 0〉 B· 〈1, 1〉B 〈10, 0〉 B· 〈101, 1〉B 〈1010, 0〉 . . .

is valid while the infinite green thread

〈ε, 1〉B 〈1, 2〉B 〈10, 1〉B 〈101, 2〉B 〈1010, 1〉 . . .

is spectator. In the bottom left preproof, all threads are finite: the instances of the cut
rule disconnect the copies of the thread 〈ε, 0〉 B· 〈1, 1〉 occurring in the only infinite branch
of the preproof. In the remaining preproof, all infinite threads are spectator: principal
steps force the thread to terminate.

Definition 4.4. A preproof is valid if every infinite branch contains a valid thread. A
proof is a valid preproof. We write π : E ` e when π is a proof whose root is labeled by
E ` e.

In Figure 4.2, only the first preproof is valid, thanks to the infinite red thread. The
second preproof is invalid: every thread is finite. The third preproof is invalid: infinite
threads along the (infinitely many) infinite branches are all spectator.

Like in Chapter 3, this validity criterion is decidable for regular preproofs: it can be
formulated as a Büchi condition, and checked via standard automata algorithms. It is
essentially the same as in LKA [29], which in turn is an instance of the one for µMALL [32]:
we just had to extend the notion of ancestry to cover the weakening and contraction rules.
This induces an important subtlety:

Remark 4.2. In a fixed branch of an affine preproof, every maximal thread is determined
by its first element (a position). This is not true with contraction since we can choose
which parent position to follow at each contraction step.

That a sequent E ` e is provable in system C is not something interesting per
se: most sequents are provable, essentially because every closed type is inhabited (see
Lemma 15 below). Instead of provability, we do focus on proofs themselves, and on their
computational content.
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4.2.3 Computational interpretation of system C

We now show how to interpret a proof π : E ` e as a function [π] : [E] → [e]. Like in
Chapter 3.3, we cannot reason directly by induction on proofs and we use instead the
following relation which we prove to be well-founded.

Definition 4.5. A computation in a fixed proof π is a pair 〈v, s〉 consisting of an address
v of π with π(v) = E ` e, and a value s ∈ [E]. Given two computations, we write
〈v, s〉 ≺ 〈w, t〉 when |v| = |w|+ 1 and

1. for all i, j s.t. 〈v, i〉C 〈w, j〉, we have si = tj, and

2. for all i, j s.t. 〈v, i〉 C· 〈w, j〉, we have |si| < |tj|.

(Recall that positions such as 〈v, i〉 and 〈w, j〉 in the above definition always refer to
star formulas.) The two conditions state that the values assigned to star formulas should
remain the same along auxiliary steps and decrease in length along principal steps.

Lemma 14. The relation ≺ on computations is well-founded.

Proof. Exactly like for Lemma 6.

Definition 4.6. The return value [v](s) of a computation 〈v, s〉 with π(v) = E ` e is a
value in [e] defined by well-founded induction on ≺ and case analysis on the rule used at
address v2.

id : [v](s) , s

cut : [v](s, t) , [v1]([v0](s), t)

x : [v](s, x, y, t) , [v0](s, y, x, t)

w : [v](x, s) , [v0](s)

c : [v](x, s) , [v0](x, x, s)

·-l : [v](〈x, y〉, s) , [v0](x, y, s)

→-l : [v](h, s, t) , [v1](h([v0](s)), t)

∗-l : [v](l, s) is defined by case analysis on l:

• [v](ε, s) , [v0](s)

• [v](x :: q, s) , [v1](x, q, s)

+-l : [v](x, s) is defined by case analysis on x:

• if x ∈ [e0], [v](x, s) , [v0](x, s)

• if x ∈ [e1], [v](x, s) , [v1](x, s)

1-l : [v](〈〉, s) , [v0](s)

∩-li : [v](〈x0, x1〉, s) , [v0](xi, s)

·-r : [v](s, t) , 〈[v0](s), [v1](t)〉

→-r : [v](h) , (x 7→ [v0](x, h))

∗-rε : [v]() , ε

∗-r:: : [v](s, t) , [v0](s) :: [v1](t)

+-ri : [v](s) , [v0](s)

1-r : [v]() , 〈〉

∩-r : [v](s) , 〈[v0](s), [v1](s)〉
2Here and elsewhere in the chapter, we use commas and we omit brackets to display tuples of values

such as s in a return value [v](s). We also restrict our usage of brackets, ε and :: to display values which
happen to be tuples or lists (i.e., elements of [1], [e · f ], [e ∩ f ] or [e∗] for some types e, f).
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(In the cut , x , →-l, ·-r and ∗-r:: cases, the size of the tuples s and t is chosen consistently
with the corresponding rule instances.)

In each case, the recursive calls are made on strictly smaller computations: they occur
on direct subproofs, the values associated to auxiliary formulas are left unchanged, and
in the second subcase of the ∗-l case, the length of the list associated to the principal
formula decreases by one.

Note that in the cut and→-l cases, the values [v0](s) and h([v0](s)) might be arbitrarily
large. This is not problematic: the corresponding positions have no children, so that those
values are left unconstrained by the relation ≺. Similarly, in order to define the graph
of the returned function in the →-r-case, we call the inductive hypothesis an arbitrary
number of times, with arbitrarily large values for x.

Definition 4.7. The semantics of a proof π : E ` e is the function [π] : [E]→ [e] defined
by [π](s) , [ε](s).

The above semantics presents proofs of C as goto programs (the address v in a
computation [v](s) being the program counter) operating on a structured memory and
using a strongly typed discipline to avoid runtime errors. Accordingly, we sometimes call
proofs of C cyclic programs.

Remark 4.3. We could have given a syntax for untyped cyclic programs (as sequences of
gotos and basic instructions operating on a finite set of registers), and then presented
the proof system C as a two-layers type system for those untyped cyclic programs. The
first layer (preproofs) would have ensured that the values stored in the registers are
manipulated along a simply typed discipline, ensuring properties such as ‘progress’ and
‘subject-reduction’. The second layer (the global validity criterion) would have ensured
termination. The syntax of those untyped programs would be quite redundant with the
definition of C itself (essentially, one instruction per rule from Figure 4.1), whence our
choice to omit it.

Let us compute the semantics of the first and only proof (cyclic program) in Figure 4.2.
We have

[ε](ε, l) = [0](l) = l

[ε](x :: q, l) = [1](x, q, l) = [11](x, [10](q, l)) = [110](x) :: [111]([10](q, l)) = x :: [10](q, l)

= x :: [ε](q, l)

In the last equality we used the fact that π10 = πε, so that [10] = [ε]. We recognize for
[ε] the standard definition of list concatenation, which is recursive on its first argument.
Trying to perform such computations on the two invalid preproofs from Figure 4.2 would
give rise to non-terminating behaviors, e.g., [ε](x :: q)  [11](x :: q) = [ε](x :: q) in the
second preproof.

4.2.4 Weakening and contraction

A type is closed when it does not contain variables; it is positive when it does not contain
negative connectives (→,∩).
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1-r
` 1

...

e∗ ` 1
IHe

e, e∗ ` 1
∗-l

e∗ ` 1

inhe
` e

1-r
` 1

IHf

f ` 1
→-l

e→ f ` 1

inhf
` f

IHe

e ` f
→-r
` e→ f

Figure 4.3: Erasing star and arrow formulas, inhabiting arrow formulas.

rem
e ` 1

E ` f
1-l

1, E ` f
cut

e, E ` f

dup
e ` e · e

e, e, E ` f
·-l
e · e, E ` f

cut
e, E ` f

Figure 4.4: Deriving weakening and contraction.

Lemma 15. For every closed type e, there are linear regular proofs reme : e ` 1 and
inhe : ` e.

Proof. We proceed by induction on e. The first interesting case is the weakening of a
star formula e∗ which is depicted on the left of Figure 4.3. The rule marked IHe is
the weakening rule derived for e by induction hypothesis and the widget on the left in
Figure 4.4. The second interesting case is the weakening of an arrow formula e → f
depicted on the right of Figure 4.3: we use the fact that e is inhabited, by induction. The
third interesting case is for inhabitation of arrow types, where use the fact that e can be
erased, by induction.

As a consequence, weakening is admissible for closed types, by replacing it with the
gadget on the left in Figure 4.4; moreover, every closed sequent is derivable, already in
the linear fragment of C.

The linear system also allows for some form of duplication: while arrow types cannot
be duplicated, basic types such as natural numbers (1∗) or lists of natural numbers (1∗∗)
can.

Lemma 16. For every positive closed type e, there is a linear regular proof dupe : e ` e · e
such that for all x ∈ [e], [dupe](x) = 〈x, x〉.

Proof. We proceed by induction on e; the interesting case is the duplication of a star
formula e∗, which is depicted in Figure 4.5. The subproofs labeled with ’cons’ consist of
an application of the ∗-r:: rule followed by two identity axioms. The rule marked IHe at
address 110 is the contraction rule derived for e by induction hypothesis and the widget
on the right in Figure 4.4.

Like above, it follows that positive closed instances of the contraction rule are derivable
in the linear system, using the gadget on the right in Figure 4.4. However, they are not
admissible in general: the gadget does cut the potential threads on the contracted formula,
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∗-rε ` e∗
∗-rε ` e∗·-r

` e∗ · e∗

...

e∗ ` e∗ · e∗

cons
e, e∗ ` e∗

cons
e, e∗ ` e∗

·-r
e, e, e∗, e∗ ` e∗ · e∗

IHe

e, e∗, e∗ ` e∗ · e∗
·-l
e, e∗ · e∗ ` e∗ · e∗

cut
e, e∗ ` e∗ · e∗

∗-l
e∗ ` e∗ · e∗

•

Figure 4.5: Duplicating a star formula.

so that it cannot be freely used in arbitrary proofs. For instance, anticipating Section 4.2.5
below, if we use it to replace the contraction on a star formula in the proof from Figure 4.7,
the affine preproof we obtain is not valid: the green/blue thread is cut at each iteration.
Actually, if contraction on closed types was derivable in a thread-preserving way, and thus
admissible, we would obtain a counter-example to Corollary 3 below.

4.2.5 Functions on natural numbers

Natural numbers can be represented through the type 1∗ of lists over the singleton set.
The logical rules for this specific instance of the star type can be optimized as follows:

E ` g 1∗, E ` g
1∗-l

1∗, E ` g
1∗-r0
` 1∗

E ` 1∗
1∗-rS

E ` 1∗

Those rules are immediate consequences of the logical rules for 1 and star. Using these
rules, we deduce that for all n ∈ N, we can build a finite proof n : ` 1∗ such that [n]() = n.

Similarly, for every function (even an uncomputable one) f : N→ N, we can obtain a
proof f : 1∗ ` 1∗ such that [f ] = f : repeatedly apply the 1∗-l rule to obtain a comb-shape
infinite tree, and fill the remaining leaves with finite proofs for the successive values of
the function. This proof, which is essentially the graph of the function f , is linear and
cut-free, but not regular in general.

f(0)
` 1∗

f(1)
` 1∗

f(2)
` 1∗

...
1∗-l

1∗,` 1∗
1∗-l

1∗,` 1∗
1∗-l

1∗,` 1∗
•

•
•

Our first expressivity result for regular proofs is:

Theorem 4.1. For every primitive recursive function f : N× · · · ×N→ N, there exists a
linear and regular proof π : 1∗, . . . , 1∗ ` 1∗ such that [π] = f .

Proof. By induction on the definition scheme for primitive recursive functions. The
constant 0-ary function and the successor 1-ary functions give rise to simple finite proofs.
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The projection functions just require weakening for 1∗ (Lemma 15). Function composition
is implemented using the cut rule, as expected, but it also requires duplicating the
arguments to provide them to the composed functions. For instance, to compose a 2-ary
function h with two 1-ary functions f, g, we use the following scheme:

πf

1∗ ` s

πg

1∗ ` t
πh

s, t ` r
cut

s, 1∗ ` r
cut

1∗, 1∗ ` r
c′

1∗ ` r
We used the abbreviations r = s = t = 1∗ to distinguish between the respective return
types of h, f and g, and we marked with c′ our usage of the derivable contraction rule
(Lemma 16). That this step cuts the threads is not problematic here: cycles cannot visit
this contraction step.

It remains to deal with primitive recursion. Suppose f is defined as follows:{
f 0 ~y = g ~y

f (Sx) ~y = h x (f x ~y) ~y

where g and h are primitive recursive functions of respective arity n and n + 2. By
induction hypothesis there exist proofs πg and πh that encode g and h. In the recursive
definition above, one can observe that both x and ~y are used twice. The latter can easily be
handled using the derivable contraction rule since they are not involved in the termination
argument. On the contrary, the duplication of x is problematic since the corresponding
thread should validate the recursion. To circumvent this difficulty, we perform a recursion
that returns a copy of the recursive argument together with the expected return value.
We write E for the sequence of 1∗s of length n (i.e., the types for ~y). We use r = 1∗ to
denote the return type of the primitive recursion scheme, and e∗ = 1∗ to denote the type
of the recursive argument. We set r′ = e∗ · r and we construct the proof in Figure 4.6,
where the subproof labeled with “cons” consists of a ∗-r:: step followed by two identity
axioms.

Note that when displaying proofs, we omit usages of the exchange rule, which typically
make it possible to apply left introduction rules on arbitrary formulas rather than just on
the first one. Moreover, we sometimes abbreviate sequences of steps or standalone proofs
using double bars.

The above argument works in the fragment of C without arrows, sums, and intersections,
and where star and unit are replaced with a base type for natural numbers together with
the dedicated rules for 1∗. Pairs are exploited only to avoid using the contraction rule and
remain in the affine fragment: with contraction, we could build a proof whose sequents
mention only the formula 1∗.

As announced in the introduction, contraction makes it possible to go beyond primitive
recursion:

Example 4.1. We give a regular proof whose semantics is Ackermann-Péter’s function
in Figure 4.7. The subproof labeled with S is a proof for the successor function. The
subproof labeled with 1 is a proof for the constant value 1.
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∗-rε ` e∗
πg

E ` r·-r
E ` r′

...

e∗, E ` r′

cons
e, e∗ ` e∗

πh

e∗, r, E ` r
·-r

e, e∗, e∗, r, E ` r′
c′

e, e∗, r, E ` r′
·-l

e, r′, E ` r′
cut

e, e∗, E, E ` r′
c′, . . . , c′

e, e∗, E ` r′
∗-l

e∗, E ` r′

id
r ` r

w ′

r, e∗ ` r
·-l

r′ ` r
cut

e∗, E ` r

•

•

Figure 4.6: Regular linear proof for primitive recursion; e , 1, r , 1∗; r′ , e∗ · r.

S
k ` 1∗

w
m, k ` 1∗

1
` 1∗

...

n, k ` 1∗
cut

n ` 1∗
w
n, m ` 1∗

...

m, k ` 1∗

...

n, k ` 1∗
cut

n, m, k ` 1∗
1∗-l

n, m, k ` 1∗
1∗-l

n, m, k ` 1∗
c

n, k ` 1∗

•
•

(a)

(b)

(a′)

Figure 4.7: A regular proof for Ackermann-Péter’s function; n , m , k , 1∗.

The preproof is valid: every infinite branch either goes infinitely often through loops
(a) or (a′), in which case it is validated by the green and blue thread, where we go right on
contraction steps (switching from green to blue) when the next visited backpointer is (b);
or it eventually goes only through loop (b), in which case it is validated by the red thread.

Its semantics satisfies the same recursive equations as those defining Ackermann-Péter’s
function: we have

[ε](0, k) = [0](0, 0, k) = [00](0, k) = [000](k) = Sk

[ε](Sn, 0) = [0](Sn, Sn, 0) = [01](n, Sn, 0) = [010](n, Sn) = [0100](n) = [01001](n, 1)

= [ε](n, 1)

[ε](Sn, Sk) = [0](Sn, Sn, Sk) = [01](n, Sn, Sk) = [011](n, Sn, k) = [0111](n, [0110](Sn, k))

= [ε](n, [ε](Sn, k))

We prove in the Section 4.3 that we can actually represent all system T functions with
regular proofs.
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1∗-r0 ` 1∗

·-r
y, x ` y · x

id
y ` 1∗

w
y, f, x ` 1∗

S
y ` y′

...

y′, f, x ` 1∗
cut

y, f, x ` 1∗
w
k/, y, f, x ` 1∗

1∗-l
k, y, f, x ` 1∗

→-l
y, y, f , f, x, x ` 1∗

c, c, c
y, f, x ` 1∗

cut
f, x ` 1∗

Figure 4.8: The preproof πµ for minimization.

4.2.6 Turing completeness

We can also go beyond total functions by forgetting the validity criterion: we can encode
the minimization operator µ using a regular but invalid preproof, so that every computable
partial function can be represented by a regular preproof

We define µ with one integer parameter x, as any tuple of parameters can be encoded
in one. Thus µ is defined as follows: if f : N×N→ N, then µ(f)(x) is the smallest y ∈ N
such that f(y, x) = 0, and is undefined if no such y exists.

Therefore, the µ operator has type (N × N → N) → N → N. The preproof πµ is
represented in Figure 4.8. In this figure, x, y stand for 1∗, f stands for 1∗ · 1∗ → 1∗, and
k stands for 1∗: it stores the result f(y, x). We note k/ the predecessor of k and y′ the
successor of y. Principal formulas may be emphasized by a red font.

The principle behind this preproof is simply to compute k = f(y, x) for y = 0, 1, 2, . . . ,
and returns y as soon as k = 0. The preproof is not valid, as the infinite branch contains
no validating thread. The only infinite thread in this branch is the one following x, which
is never principal.

In order to give a semantic to such an invalid preproof (as a partial function on natural
numbers), one can use the small-step semantic from Section 4.6: feed the proof with
natural numbers and try to compute a result value with leftmost innermost reduction
strategy. If this terminates, we can read back a natural number by Lemma 21, otherwise
the function is undefined at the considered point.
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id
x : e ` x : e

Γ, y : f, x : e,∆ `M : g
x

Γ, x : e, y : f,∆ `M : g

Γ `M : f
w
x : e,Γ `M : f

x : e, x : e,Γ `M : f
c

x : e,Γ `M : f

Γ `M : e · f x : e, y : f,∆ ` N : g
·-e

Γ,∆ ` let 〈x, y〉 := M in N : g

Γ ` S : e+ f x : e,∆ `M : g y : f,∆ ` N : g
+-e

Γ,∆ ` D(S;x.M ; y.N) : g

Γ ` L : e∗ ∆ `M : g x : e, y : g ` N : g
∗-e

Γ,∆ ` R(L;M ;x.y.N) : g

Γ `M : 1 ∆ ` N : g
1-e

Γ,∆ ` let 〈〉 := M in N : g

Γ `M : e→ f ∆ ` N : e
→-e

Γ,∆ `MN : f

Γ `M : e0 ∩ e1
∩-ei i ∈ {0, 1}

Γ ` piM : ei

Γ `M : e ∆ ` N : f
·-i

Γ,∆ ` 〈M,N〉 : e · f
Γ `M : ej

+-ij j ∈ {0, 1}
Γ ` ijM : e0 + e1

∗-iε
` [] : e∗

Γ `M : e ∆ ` N : e∗
∗-i::

Γ,∆ `M :: N : e∗

1-i
` 〈〉 : 1

x : e,Γ `M : f
→-i

Γ ` λx.M : e→ f

Γ `M : e Γ ` N : f
∩-i

Γ ` 〈〈M,N〉〉 : e ∩ f

Figure 4.9: Typing rules for system T.

4.3 Extended, resource-tracking system T

We define in this section the variant of system T we will work with. We use the following
syntax for terms, where x ranges over a set of variables and i ranges over 0, 1.

M,N,O ::= x | λx.M |MN
| 〈M,N〉 | let 〈x, y〉 := M in N
| 〈〉 | let 〈〉 := M in N
| iiM | D(M ;x.N ;x.O)
| [] |M :: N | R(M ;N ;x.y.O)
| 〈〈M,N〉〉 | piM

It consists of a lambda-calculus extended with pairs, singletons, sums, lists, and
additive pairs. We let Γ,∆ range over typing environments, i.e., lists of pairs of a variable
and a type. The type system is given in Figure 4.9. Unlike for C, typing derivations are
just finite trees built from the rules, as usual. This type system however departs from
the standard presentations in that it keeps track of resources: the rules for the various
connectives are those of a linearly typed lambda-calculus. We include contraction and
weakening rules (c,w), so that the standard typing rules for system T are all admissible
(see [63, Appendix B.1] for more details on the equivalence between this version of system
T and the standard one).

The structural and introduction rules are term-decorated versions of the corresponding
rules of C (Figure 4.1). In contrast, the elimination rules differ: they follow the ‘natural
deduction’ scheme and each of them intuitively contains a cut on the corresponding
formula.
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Let us focus on the recursion operator on lists (R). This operator expects a list as
first argument, and then two arguments for the cases of the empty and non-empty lists.
Intuitively, we have

R([];M ;x.y.N) = M

R(X::Q;M ;x.y.N) = N {x← X; y ← R(Q;M ;x.y.N)}

Note that this is an iterator rather than a recursor : the tail of the list (Q) is not given to
N . This is not a restriction since recursors can be encoded from iterators and pairs. Its
(elimination) typing rule is the following one:

Γ ` L : e∗ ∆ `M : g x : e, y : g ` N : g
∗-e

Γ,∆ ` R(L;M ;x.y.N) : g

Like in Dal Lago’s system H(∅) [23], the important point is that the third argument (the
one being iterated) is typed in the empty environment—except for its two variables x for
the head of the list and y for the value of the recursive call on the tail of the list. This is
crucial in the affine system to get a linear recursion operator; this is not a restriction in
the full system, thanks to arrows and contraction (see [63, Appendix B.1]).

Terms should always be considered as equipped with their typing derivation. A typed
term is affine (resp. linear) when its typing derivation does not use c (resp. c and w).

Given a typing environment Γ = x1 : e1, . . . , xn : en, we write Γ for the list of types
e1, . . . , en.

Definition 4.8. The semantics of a typed term Γ `M : e is the function [M ] : [Γ]→ [e]
defined as follows by induction on the typing derivation:

id : [x](s) , s

x : [M ](s, u, v, t) , [M ](s, v, u, t)

w : [M ](v, s) , [M ](s)

c : [M ](v, s) , [M ](v, v, s)

·-i : [〈M,N〉](s, t) , 〈[M ](s), [N ](t)〉

+-ij : [ijM ](s) , [M ](s)

∗-iε : [[]]() , ε.

∗-i:: : [M :: N ](s, t) , [M ](s) :: [N ](t)

1-i : [〈〉]() , 1

→-i : [λx.M ](s) , (u 7→ [M ](u, s))

∩-i : [〈〈M,N〉〉](s) , 〈[M ](s), [N ](s)〉

·-e : [let 〈x, y〉 := M in N ](s, t) , [N ](u, v) where the induction provided [M ](s) = 〈u, v〉.
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+-e : [D(S;x.M ; y.N)](s, t) , [M ]([S](s), t) if [S](s) ∈ [e] and [N ]([S](s), t) otherwise.

∗-e : [R(L;M ;x.y.N)](s, t) , h(x1, h(x2, . . . h(xn, a) . . . )), where the induction provided
a list [L](s) = x1, . . . , xn, an element a , [M ](t), and a function h , [N ].

1-e : [let 〈〉 := M in N ](s, t) , [N ](t)

→-e : [MN ](s, t) , [M ](s)([N ](t))

∩-ei : [piM ](s) , [M ](s)

Note that in the contraction case (c), the two occurrences of M are shorthands for
two distinct stages of the typing derivation: the recursive call is made on a smaller typing
derivation, even though the displayed term remains unchanged.

Example 4.2. We can define list concatenation as follows:

λh.λk.R(h; k;x.qk.x::qk)

This term has type e∗ → e∗ → e∗ for every type e. Note that this term is strictly linear:
it is typed without exchange, contraction and weakening.

Example 4.3. Remember that we code natural numbers as lists over the singleton set.
Writing 1 for the constant 〈〉::[] and S for the successor function λn.〈〉::n, we can define
Ackermann-Péter’s function as follows:

λn.R(n;S; .f.λk.R(k; f1; .r.fr))

This term can be typed with type 1∗ → 1∗ → 1∗ in the empty environment. The outer
recursion produces a function of type 1∗ → 1∗. This term is not affine: we need the
contraction rule since f is used twice in the outer recursion.

As announced before, system C contains system T:

Theorem 4.2. For every typing derivation Γ ` M : e, there exists a regular proof
M : Γ ` e such that [M ] = [M ]. If M is affine/linear, so is M .

Proof. We proceed by induction on the typing derivation. The structural rules (exchange,
weakening, contraction and identity) as well as the introduction rules of system T translate
immediately to their counterparts in system C. It remains to deal with the elimination
rules of system T. Leaving the ∗-e rule aside, they all translate into a cut on the eliminated
formula, followed by an application of the corresponding left introduction rule (and an
identity rule for the negative connectives ∩ and →). For instance, for the ·-e case (i.e.,
term let 〈x, y〉 := M in N), we obtain two regular proofs M : Γ ` e · f and N : e, f,∆ ` g
by induction, and we construct the following preproof:

M

Γ ` e · f

N

e, f,∆ ` g
·-l
e · f,∆ ` g

cut
Γ,∆ ` g

This preproof is regular and valid: every infinite branch eventually belongs either to M or
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N .
The ∗-e case (i.e., term R(L;M ;x.y.N)) is the only one where we introduce circularities:

we obtain by induction three regular proofs L : Γ ` e∗, M : ∆ ` g and N : e, g ` g, and
we construct the following preproof:

L

Γ ` e∗

M

∆ ` g

...

e∗,∆ ` g
N

e, g ` g
cut

e, e∗,∆ ` g
∗-l

e∗,∆ ` g
cut

Γ,∆ ` g

•

•

This preproof is regular by construction, and valid: the only infinite branch that does not

eventually belong either to L, M or N is the one along the constructed cycle, which it is
validated by the red thread on e∗.

We use the contraction (resp. weakening) typing rule from system T only to translate
contraction (resp. weakening) nodes in the starting proof, whence the second part of the
statement. Moreover, we do not need to forge any new formula: all types appearing in M
already appear in M .

Encoding the term given in Example 4.2 for list concatenation yields the first proof in
Figure 4.2. In contrast, encoding the term we provided for Ackermann-Péter’s function
(Example 4.3) does not yield the proof given in Figure 4.7: the outer recursion in this
term constructs functional values, which give rise through the encoding to cycles over
sequents with arrow types on the right. More importantly, the proof in Figure 4.7 has a
non-trivial cycle structure, while in the proofs in the image of the encoding every infinite
branch eventually loops on a single cycle of the finite presentation of the proof.

4.4 From affine C to affine T (using ∩ and →)

The converse direction, encoding cyclic proofs into system T terms, is much harder since
we have to delineate the possibly complex cycle structure of the starting proof in order to
recover simple structural recursion schemes.

We provide a direct translation for the affine case in this section, where we proceed in
two steps: first we show that affine regular proofs can be presented in such a way that
cycles are associated to star formulas and occur in a hierarchic way (this is the notion of
ranked proof in Section 4.4.3), this makes it possible to proceed bottom up in a second
step, translating cycles associated to a given star formula into blocks of functions defined
by mutual structural recursion (Section 4.4.4).

The second step is inspired by the one sketched in [29, Theorem 33] to translate regular
proofs in LAL into equational proofs in action lattices. However, the authors of [29] did
not realize that the first step we describe here is necessary, so that their argument is
incorrect. The technique we present here makes it possible to repair it.
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4.4.1 Proofs with backpointers

We first formalize precisely how regular proofs are represented by finite graphs with
backpointers, as pictured earlier in the chapter.

Definition 4.9. A proof with backpointers (bp-proof for short) is a pair πbp = 〈π,Pts〉
where π is a proof, and Pts is a set of backpointers, where each backpointer pt has a source
address src(pt) and a target address tgt(pt), such that

• For all pt ∈ Pts, tgt(pt) @ src(pt) and the subtrees of π rooted in src(pt) and
tgt(pt) are isomorphic.

• For every infinite branch B of π, there exists a unique pt ∈ Pts with src(pt) ∈ B.

An address of a bp-proof is a source if it is the source of a backpointer, it is canonical if it
is a prefix of a source address.

This definition is similar to that of ‘cycle normal form’ from [16]. The backpointers
define a ‘bar’ across the proof, and by weak König’s lemma the definition implies that
in every bp-proof 〈π,Pts〉, the set Pts must be finite. To define a bp-proof, it suffices to
describe the (finite) restriction of π to canonical addresses, as it was done earlier in the
figures of this chapter. Moreover, every regular proof can be represented as a bp-proof.
We show below that backpointers can be assumed to satisfy additional properties related
to threads.

4.4.2 Idempotent normal form

Let π be a regular proof and let s be the maximal length of sequent antecedents in π.
Let F be the set of partial functions J0, s − 1K → J0, s − 1K. This set equipped with
composition ◦ is a finite monoid. An element f ∈ F is idempotent if f ◦ f = f .

If u @ v are addresses in π, we define fu,v ∈ F by

fu,v(j) ,

{
i if 〈v, j〉 is an ancestor of 〈u, i〉
undefined if no such i exists

Given a backpointer pt , we write fpt for ftgt(pt),src(pt).
We say that a bp-proof is in idempotent normal form, or an ibp-proof, if for all

backpointers pt , tgt(pt) is a ∗-l address and fpt is an idempotent with fpt(0) = 0. This
means that the branches that eventually loop only through this backpointer can be
validated by the thread which is principal at tgt(pt). Since there are other infinite
branches in general, the validity criterion is still required.

Example 4.4. Let us go back to the proof for Ackermann-Péter’s function given in Figure 4.7.
The depicted backpointers do not point to ∗-l addresses; in order to have this property, we
must shift the three backpointers one level up. We get idempotent backpointers by doing
so: (a) and (a′) both give rise to the idempotent partial function 0, 1 7→ 0, and (b) to the
idempotent 0, 1 7→ 1; 2 7→ 2. However, while (a) and (a′) preserve the principal position
(fa(0) = fa′(0) = 0), this is not the case for (b): fb(0) = 1. To fix this, observe that the
branches that eventually visit only (b) are validated by the red thread on k. Accordingly,
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Figure 4.10: Threads and backpointers of the ibp-proof for Ackermann-Péter’s function.

the backpointer (b) should thus point to the red ∗-l step on k rather than the green one
on n. In order to obtain this, it suffices to shift (b) one level further up.

Doing so, we obtain an ibp-proof whose shape is depicted in Figure 4.10: the three
backpointers are idempotent and preserve their principal position3.

Proposition 4.1. Every regular proof π can be extended into an ibp-proof 〈π,Pts〉.

The rest of this subsection is devoted to the proof of this proposition. The key idea is
that since F is a finite monoid, any sequence containing sufficiently many elements has
an idempotent infix. This makes it possible to cut every infinite branch of the starting
proof by inserting an idempotent backpointer between two of the infinitely many principal
positions of a thread validating the branch.

Let π be a regular proof. We have to define a set of backpointers turning π into an
ibp-proof.

We first establish a generic lemma. A backpointer condition P is a property of bp-proofs
of the form: “for each backpointer pt , a property P (pt) depending only on src(pt), tgt(pt),
and the branch from the root of the proof to src(pt) is verified”.

We say that a backpointer pt is correct when it verifies the first item from Definition 4.9,
i.e., the subtrees rooted in src(pt) and tgt(pt) are isomorphic.

Lemma 17. Let π be a preproof and P be a backpointer condition such that for every
infinite branch of π, there exists a correct backpointer pt such that P (pt) is satisfied. Then
π can be turned into a bp-preproof where all backpointers satisfy P .

Proof. For each infinite branch ρ of π, we define the backpointer ptρ given by the hypothesis
of the Lemma.

Let Pts0 = {ptρ | ρ branch of π}, and Pts1 = {pt ∈ Pts0 | ∀pt ′ ∈ Pts0, src(pt ′) 6@ src(pt)},
i.e., we only keep pointers from Pts0 with a minimal source. We show that Pts1 is finite. In-
deed, assume Pts1 is infinite, and let T = {u | ∃pt ∈ Pts1, u v src(pt)}. Since T contains
all sources from Pts1, and that this sources are incomparable with each other, T is infinite.
By König’s lemma, since T is finitely branching, T contains an infinite branch ρ. By

3The pictures can be slightly confusing here, because we do not include exchange steps. While formally,
principal positions always have index 0, whence the constraint fpt(0) = 0 in our definition of ibp-proof,
the index of the principal position for the generalized ∗-l step used at address 01 (on k in Figure 4.7) is
graphically 2, so that the constraint for the shifted backpointer (b) becomes fb(2) = 2 with this graphical
intuition.
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definition of Pts1, there exists pt ∈ Pts1 with src(pt) v src(ptρ). Let v be an address of ρ
with src(pt) v v. Since ρ is contained in T , there must be pt ′ ∈ Pts1 with v v src(pt ′). We
obtain src(pt) @ src(pt ′), contradicting the fact that pt ′ ∈ Pts1. We can thus conclude that
Pts1 is finite. Let Pts2 = {pt ∈ Pts1 | ∀pt ′ ∈ Pts1, src(pt) = src(pt ′)⇒ tgt(pt) v tgt(pt ′)},
i.e., for each possible source we keep only the pointer with the smallest target. Since each
pointer pt in Pts2 is correct and satisfies P (pt), and since each branch of π contains the
source of exactly one pointer from Pts2, we obtain that 〈π,Pts2〉 is a bp-proof satisfying
the backpointer condition P .

Thanks to Lemma 17, in order to show Proposition 4.1 it suffices to show the following
lemma:

Lemma 18. If π is a regular proof, every infinite branch ρ of π can be equipped with an
idempotent correct backpointer.

Proof. Let s be the maximal length of sequent antecedents in π and F be the set of partial
functions on J0, s− 1J.

Let eval : F∗ → F be the evaluation morphism, defined inductively by eval(ε) = id
and eval(~uf) = eval(~u) ◦ f . Since F is a finite monoid, there exists m ∈ N such that
any word ~u ∈ Fm contains an infix ~v ∈ F+ such that eval(~v) is idempotent. This is a
well-known basic consequence of Ramsey’s theorem.

We say that two ∗-l addresses u, v have same type if the subtrees rooted in u, v in π
are isomorphic. By extension, the type of a position is the type of its address.

Since π is valid and the number of distinct types is finite, every branch of π contains a
thread going through infinitely many principal positions of the same type, and in particular
it is the case for the branch ρ where we want to find an idempotent correct backpointer.
Let n ∈ N such that the prefix of ρ of length n contains a thread which goes through
m+ 1 such positions 〈v0, 0〉, 〈v1, 0〉, . . . , 〈vm, 0〉 of the same type.

For all i ∈ J1,mK, we define fi = fvi−1,vi ∈ F as above. By choice of m, there exists
i < j ∈ J1,mK such that f = fi ◦ fi+1 ◦ · · · ◦ fj is idempotent. Moreover, as witnessed
by the thread t, we have f(0) = 0. We define a backpointer pt with src(pt) = vj and
tgt(pt) = vi−1.

Together with Lemma 17, we can conclude that every regular proof can be extended
into an ibp-proof: we have proved Proposition 4.1.

4.4.3 Ranked proofs

We still need one more step before translating proofs into system T terms: we use the
following notion of ranks in order to organize cycles in such a way that they can be
translated into structural recursions. Intuitively, we mark positions with natural numbers
(their rank) in such a way that positions marked with the same rank give rise to a single
recursive definition, and positions with highest rank give rise to the outermost recursors
in the produced term.

A ranked proof is a tuple 〈π,Pts , rk〉 such that πbp = 〈π,Pts〉 is an ibp-proof and rk
is a function from positions of π to N satisfying the following properties, where we write
rk(v) for rk〈v, 0〉 when v is a ∗-l address.
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(BP) backpointers preserve ranks: for all pt ∈ Pts , for all i, rk〈src(pt), i〉 = rk〈tgt(pt), i〉.

(Con) Positions with the same rank are strongly connected via threads and backpointers
with that rank.

(Dec) Ranks decrease along threads, except when passing through ∗-l steps of higher ranks:
if 〈v, i〉 is the parent of 〈w, j〉, then either we have rk〈v, i〉 ≤ rk〈w, j〉, or v is a ∗-l
address and rk〈w, j〉, rk〈v, i〉 < rk(v).

(Thd) Backpointers preserve threads of higher ranks: for all pt ∈ Pts, for all i such that
rk〈tgt(pt), i〉 > rk〈tgt(pt), 0〉, there is a thread from 〈tgt(pt), i〉 to 〈src(pt), i〉.

(Blk) If u @ v @ w are ∗-l addresses with rk(u) = rk(w), then rk(v) ≤ rk(u).

(Org) A ∗-l address v is an origin of rank r if v is a minimal ∗-l address with rk(v) = r.
We require that if u @ v are origin addresses then rk(u) > rk(v).

These conditions are meant to enforce some inductive structure on the proof. They
are such that in a ranked proof, cycles in computations can be considered as nested “for”
loops, where higher ranks correspond to outer loops. We briefly give some explanations
on how to interpret these rules in light of this intuition. Rules (BP) and (Con) ensure the
local coherence of ranks with respect to the structure of the proof. Rule (Dec) expresses
that lower ranks correspond to innermost loops, by restricting how the computation can
transition from a rank to another. Rule (Thd) and (Blk) express that computations in
inner loops do not interfer with outer loops, it simply put them on pause. Finally, rule
(Org) stipulates that outer loops start before inner ones in the computation.

Let us now investigate the formal consequences of these rules. By (BP) a ranked proof
uses only finitely many ranks. Rule (Blk) implies that the threads enforced by condition
(Thd) are actually spectactor from 〈tgt(pt), i〉 to 〈src(pt), i〉. Together with (Dec), this
means that threads along a backpointer with rank r behave like in the picture below:

Note that the conditions on ranks imply validity:

Lemma 19. Every (affine) ranked preproof is valid.

Proof. We must exhibit a valid thread for each infinite branch of the preproof.
Let 〈π,Pts , rk〉 be an (affine) ranked preproof. Let ρ be an infinite branch of π,

corresponding to an infinite path b in the canonical graph of π, staying in canonical
address and following backpointers. Let Pts∞ be the restriction of Pts to the backpointers
that are seen infinitely often when going along b. This set is not empty because b is
infinite and Pts is finite. Let r be the maximal rank in Pts∞ and bp be the associated
backpointer:

r = max{rk(src(pt)) | pt ∈ Pts∞} = rk(src(bp))
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There exists some node v in the infinite path b such that from this node the only
backpointers that are seen form exactly the set Pts∞. Note that from this point every
node is between tgt(pt) and src(pt) for some pt ∈ Pts∞ (depending on the current node).
Let’s follow (in b) the thread of the principal formula of the first occurrence of the node
src(bp) after v. Then the thread goes only through positions of the proof that are located
between the target and the source of a backpointer of rank r′ ≤ r. If r′ < r, the thread
exists and stays spectator between those points by (Thd). If r′ = r, the thread also exists
between the target and the source of the backpointer because π being a ranked preproof
implies in particular that it is an ibp-preproof. Moreover this thread is principal infinitely
often because the node src(bp) is visited infinitely often. Thus any branch ρ is valid, and
the ranked preproof π is valid.

Before proving that affine regular proof can be assigned ranks, we prove the following
strengthening of Lemma 18.

Lemma 20. Let π be a regular proof, and 〈u, 0〉 be a principal position of π. Every infinite
branch of π can be equipped by a correct idempotent backpointer pt such that

• either 〈src(pt), 0〉 and 〈tgt(pt), 0〉 are ancestors of 〈u, 0〉,

• or the segment [tgt(pt), src(pt)] contains no principal position that is an ancestor of
〈u, 0〉.

Proof. This is an adaptation of the proof of Lemma 18. When the branch ρ is fixed, two
cases can occur:

• if infinitely many ancestors of 〈u, 0〉 are principal on ρ, then infinitely many of them
have the same type, and we can use the proof of Lemma 18 to define a correct
idempotent backpointer between two of them.

• if only finitely many ancestors of 〈u, 0〉 are principal on ρ, it suffices to consider a
suffix ρ′ of ρ containing none of these positions, and use the proof of Lemma 18 to
define a correct idempotent backpointer in this suffix.

We can now establish the main proposition of this subsection:

Proposition 4.2. Every affine and regular proof π can be extended into a ranked proof
〈π,Pts , rk〉.

Proof. We describe a recursive algorithm that builds a set of backpointers and assigns
ranks to all canonical positions.

1. Use Proposition 4.1 to obtain Pts0 such that π0
bp = 〈π,Pts0〉 is an ibp-proof, and

consider the canonical graph G0 consisting of the restriction of π to canonical
addresses, and where sources and targets of backpointers from Pts0 are identified.

2. We consider each strongly connected component (SCC) of G0 separately, to assign
ranks in the corresponding parts of π. When ranks have been assigned in each SCC,
a shift is applied (i.e., all ranks of the same SCC are shifted by the same amount)
so that different SCCs do not share ranks, and rules (Dec) and (Org) are respected.
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3. We proceed as follows to assign ranks within a SCC of the canonical graph. By strong
connectedness, we build an infinite path visiting all nodes of this SCC infinitely
many times. This corresponds to an infinite branch in π, which must be validated
by a master thread : a thread going through all backpointers infinitely many times.
All positions of this master thread—exactly one per sequent of the SCC since we are
in the affine case—are assigned with a maximal rank M . (This rank M is actually
a placeholder standing for “maximal rank in the current SCC”: it has to be shifted
to an appropriate value after the subsequent recursive calls are completed.)

4. We now need to reorganize backpointers of the ibp-proof in order to respect rule
(Thd) and (Blk), by forbidding a ∗-l rule of maximal rank M to occur in the scope
of a backpointer linking rules of lower rank (to be assigned later). We do so using
Lemma 17 and Lemma 20, taking the origin of rank M as distinguished position
〈u, 0〉. The latter lemma gives us idempotent backpointers that are either linking
addresses of rank M , or that do not contain addresses of rank M in their scope. In
this last case the thread of rank M is spectactor between the source and the target
of the backpointer.

5. At this point, we are done with the positions of rank M . Since backpointers have
been updated, we need to recompute the canonical graph. We remove from it all ∗-l
steps of rank M , thus creating new SCCs, and we proceed recursively from step 2.

This process terminates, because the maximal number of positions with unassigned rank
in a sequent of the considered SCC decreases at each step. Indeed, the master thread
visits every sequent of the considered SCC, so that we assign the rank M to a star position
in each of these sequents.

The algorithm generates a set of backpointers Pts and a rank function rk such that
〈π,Pts , rk〉 is a ranked proof. Rule (BP) is ensured by the identification of sources and
target of pointers in canonical proof graphs. Rules (Dec) and (Org) are ensured when
shifting the ranks of SCC after internal computations. Rule (Thd) is ensured by the
choice of a maximal rank for the master thread, that must be preserved in all paths of
the canonical graph. Rule (Blk) is ensured by step 4 and by avoiding overlapping of ranks
between different SCCs. Rule (Con) is ensured by step 3, where all positions assigned with
the same rank are connected by a thread, and by avoiding overlapping of ranks between
SCCs.

To see why this construction fails in the presence of contraction, consider
the ibp-proof for Ackermann-Péter’s function given in Figure 4.10. It
contains the pattern depicted on the right, where the green thread is
not preserved by the red backpointer, but is somehow “saved” via an
auxiliary blue thread. When considering an infinite branch visiting
infinitely many times the three backpointers (a, a′, b) from Figure 4.10,
we obtain a validating thread that alternates between blue and green
positions (see Example 4.1). We should assign a maximal rank to
all these positions, but then condition (Thd) is violated for the red
backpointer, no matter how we try to shift it away.
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` 〈〉 : 1

∗-iε
` [] : e∗

X : E `M : e Y : F ` N : e∗
∗-i::

X : E, Y : F `M :: N : e∗

X : E `M : e Y : F ` N : f
·-i
X : E, Y : F ` 〈M,N〉 : e · f

X : E `M : ei
+-ii i ∈ {0, 1}

X : E ` iiM : e0 + e1

x : e,X : E `M : f
→-i

X : E ` λx.M : e→ f

X : E `M : e X : E ` N : f
∩-i

X : E ` 〈〈M,N〉〉 : e ∩ f

Figure 4.11: Typing derivations for translating right rules of C into T. Green sequents
represent the results obtained through the induction.

4.4.4 Affine translation

We can finally translate ranked proofs into system T terms.
Given a list of expressions E = e1, . . . , en and a list of variables X = x1, . . . , xn, we

write X : E for the typing environment x1 : e1, . . . , xn : en. We moreover write E → f for
the type e1 → . . .→ en → f .

Theorem 4.3. For every regular and affine proof π : E ` e and every list X of variables
of size |E| there exists an affine term M such that X : E `M : e and [π] = [M ].

Proof. By Proposition 4.2, it suffices to prove the property for ranked proofs. We do so
by lexicographic induction on the rank of the proof followed by its size, where the rank
of a ranked proof is its highest assigned rank and the size of a bp-proof is its number of
canonical addresses.

If the rule applied at the root of the proof is not a ∗-l rule, there are no backpointers
pointing to the root, so that the subproofs rooted at its premisses are standalone and
ranked proofs of strictly smaller size and at most same rank. We translate those by
induction, and we combine the results to obtain the desired term. For instance, in the
case of a cut , we obtain two terms M and N and we construct the term (λx.M)N . The
cases for right introduction rules are given in Figure 4.11; the ones for left introduction
rules and cut are given in Figure 4.12.

Otherwise, the root must be of the form e∗, E0 ` e0, and its rank m must be maximal
by condition (Org). This is where we have to output a recursor. We explore the ancestry
tree of e∗ as long as its rank is m and we find:

• canonical ∗-l addresses v0, . . . , vn, . . . , vn′ of rankm, labeled with sequents (e∗, Ei ` ei)i∈J0,nK

(with v0 = ε), such that v0, . . . , vn are not sources and vn+1, . . . , vn′ are sources (point-
ing to the former ones);

• canonical addresses w1, . . . , wp labeled with sequents (Fj, e
∗, F ′j ` fj)j∈J1,pK such that

〈wj, |Fj|〉 has rank < m.

The situation is illustrated in the following picture:
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id
x : 1 ` x : 1 X : E `M : e

1-e
x : 1, X : E ` let 〈〉 := x in M : e

id
z : e · f ` z : e · f x : e, y : f,X : E ` N : g

·-e
z : e · f,X : E ` let 〈x, y〉 := z in N : g

id
z : e+ f ` z : e+ f x : e,X : E `M : g y : f,X : E ` N : g

+-e
z : e+ f,X : E ` D(z;x.M ; y.N) : g

x : f, Y : F `M : g
→-i

Y : F ` λx.M : f → g

id
y : e→ f ` y : e→ f X : E ` N : e

→-e
y : e→ f,X : E ` yN : f

→-e
y : e→ f,X : E, Y : F ` (λx.M)(yN) : g

id
z : e0 ∩ e1 ` z : e0 ∩ e1∩-ei
z : e0 ∩ e1 ` piz : ei

x : ei, X : E `M : f
→-i

X : E ` λx.M : ei → f
→-e

z : e0 ∩ e1, X : E ` (λx.M)(piz) : f

X : E ` N : e

x : e, Y : F `M : g
→-i

Y : F ` λx.M : e→ g
→-e

X : E, Y : F ` (λx.M)N : g

Figure 4.12: Typing derivations for translating left rules of C into T. Green sequents
represent the results obtained through the induction. The last derivation is the one for the
cut rule, as described in Section 4.4.4. The derivations used for weakening and identity
are trivial and omitted here.
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We construct a term that defines simultaneously all functions ([vi])i∈J0,nK, by an
encoding of mutual recursion. The addresses wj correspond to points where we escape
from this recursion, e.g., to enter a recursion on another argument.

Let g , e∗ ∩
⋂
i∈J0,nK(Ei → ei). This type g is the ‘invariant’ of our recursion: it

contains room for all the mutually defined functions and for a copy of the starting recursive
argument.

Given a list x,X of variables for the sequence e∗, E0, we construct a term M of the
form

M , (p0p1R(x;M ε; y.k.M ::)) X1 . . . Xl

with ` M ε : g and y : e, k : g ` M :: : g, so that we have x : e∗, X : E0 ` M : e0 as
expected.

This term iterates the function λyk.M :: over the list x, starting from M ε, to obtain a
value of type g; then it calls the first mutually defined function in that value.

Defining M ε is easy. For all i ∈ J0, nK, the subproof rooted at vi0, i.e., the left premiss
of the ∗-l node at vi, is a standalone ranked proof of Ei ` ei, with strictly smaller rank
and size. Indeed, by (Blk), backpointers whose source belongs to this subproof may not
point below it. We can thus translate these subproofs by induction and obtain terms
M ε

i ` Ei → ei for all i ≤ n. We combine them as follows:

M ε , 〈〈[], 〈〈M ε
0, . . . ,M

ε
n〉〉〉〉

Defining M :: is more involved. Our goal here is to obtain for all i ≤ n a term M ::
i of

type Ei → ei in environment y : e, k : g. Then we will combine those terms as follows:

M :: , 〈〈y :: p0k, 〈〈M ::
0 , . . . ,M

::
n〉〉〉〉

As expected, we use the subproof rooted at vi1 to define M ::
i . However, this subproof ends

with e, e∗, Ei ` ei, and is not standalone: backpointers along e∗ may escape this subproof.
To obtain a ranked proof of e, g, Ei ` ei, we copy this subproof bottom up, substituting
ancestors of e∗ by g as long as their rank is m. Several situations appear when doing so:

• we reach a ∗-l node for which e∗ is principal: an address vk0 with k0 ≤ n′. If k0 ≤ n
we set k , k0, otherwise vk0 is the source of a backpointer to vk1 for some k1 ≤ n
and we set k , k1. We stop copying and we insert the following finite proof:

→-l, id
Ek → ek, Ei ` ek

∩-l0,∩-l1
g, Ek ` ek
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• we reach a node for which e∗ is spectator and its rank decreases. This means we
reached an address wj for some j ∈ J1, pK. We insert a ∩-l0 rule to transform the
type g in the produced proof back into an e∗, and we copy the remainder of the
ranked proof as is, without performing the substitution anymore.

• we reach a backpointer following another star formula. Since m is maximal, the
target of this backpointer must be above vi1 by (Blk). Moreover if e∗ still occurs at
the source of this backpointer, its thread must have been preserved by (Thd) and
remained spectator, so that e∗ was uniformly substituted into g. The backpointer
can thus be inserted in the copied proof.

The produced object is a ranked proof (with smaller rank); in particular, the ranks
of principal positions it contains must have their origins inside it by (Blk), so that
condition (Org) is preserved. We can thus obtain M ::

i by induction.

The type g used as invariant for recursions in the above translation is reminiscent of
the type r we used to encode primitive recursion (Figure 4.6). Its first component gives
access to a copy of the current value of type e∗ in those cases where we exit the recursion
before exhausting this value.

It is crucial that g is defined using additive pairs in order to obtain an affine term.
Indeed, while M ε is typed in the empty context, the variables y and k must be provided
to all components of M ::. Contraction would thus be required if we had been using
multiplicative pairs. Symmetrically, having additive pairs makes it possible to avoid
weakenings at the various places where values of type g are used (to perform recursive
calls, to get the current value of type e∗, and to eventually call the first mutually defined
function).

Remark 4.4. Let C’ be the fragment of C where contraction is allowed, except on star
formulas. The above argument still works and gives us a direct and uniform encoding of
C’ into T: threads in C’ behave exactly like in affine C. Moreover, contraction on star
formulas is derivable in C’ (by an easy adaptation of Lemma 16), so that Theorem 4.2
can be refined into an encoding of T into C’. C’ and T are thus equally expressive, at all
types.

This correspondence makes C’ quite appealing and we could have chosen to take it as
the main system. However, C’ unnecessarily rules out programs such as the implementation
of Ackermann-Péter’s function in Figure 4.7 (which does not require the arrow type, unlike
the implementation we obtain in C’ via Example 4.3 and Theorem 4.2—it is actually not
clear that we can implement this function in C’ without using arrow types).

The structure of threads is more subtle in C than in C’—cf. Remark 4.2; we find it
intriguing and we would like to advocate its study.

4.5 Subsystems of second-order arithmetic

We define in this section the second-order logics ACA0 and RCA0, as well as the properties
we need about them. A comprehensive introduction to these theories and the ‘reverse
mathematics’ program can be found in [79, 48]. Also, an excellent introduction to the
functional interpretations of proofs, including for the theories covered here, is [8].

98



4.5.1 Some ‘second-order’ theories of arithmetic

We consider a two-sorted first-order language, henceforth called ‘second-order logic’ as
is traditional, consisting of individual variables x, y, z etc., terms s, t, u etc., and set
variables X, Y, Z etc. We have quantifiers for both the individual sort and the set sort.
There is a single binary relation symbol ∈ connecting the two sorts, allowing us to
write formulas of the form t ∈ X. (We may sometimes write X(t) instead.) We have
an equality relation for the individual sort; set equality is expressed by extensionality:
X = Y , ∀x, (X(x)⇔ Y (x)).

The language of arithmetic consists of the non-logical symbols 0, S,+,×, <, with their
usual intended interpretations. A theory is just a set of closed formulas, and we say that a
theory T proves a formula ϕ if ϕ is a logical consequence of T . The base theory Q2 extends
second-order logic by basic axioms governing the behavior of the non-logical symbols,
namely stating that (0, S0,+,×, <) is a commutative semiring discretely ordered by <,
with S representing the successor. Bounded quantifiers are of the shape ∃x, (x < t ∧ ϕ)
and ∀x(x < t⇒ ϕ).

Definition 4.10 (Arithmetical hierarchy). A possibly open formula is in Σ0
0 = Π0

0 = ∆0
0 if

it has only bounded quantifiers. From here we define the arithmetical hierarchy as follows:

• Σ0
k+1 formulas are those of the form ∃~x, ϕ with ϕ ∈ Π0

k.

• Π0
k+1 formulas are those of the form ∀~x, ϕ with ϕ ∈ Σ0

k.

The formulas of the arithmetical hierarchy are the arithmetical formulas, those that do
not contain second-order quantifiers. A formula is ∆0

k (provably in a theory T ) if it is
equivalent to both a Σ0

k formula and a Π0
k formula (resp. provably in T ).

We define the following axiom schemata for induction and comprehension, where free
variables may occur in ϕ:

(ϕ(0) ∧ ∀x, (ϕ(x)⇒ ϕ(Sx)))⇒ ∀x, ϕ(x) (induction)

∃X∀x, (X(x)⇔ ϕ) (comprehension)

Definition 4.11 (ACA0, RCA0).

• ACA0 extends Q2 by instances of induction and comprehension where ϕ is arithmet-
ical.

• RCA0 extends Q2 by instances of induction where ϕ ∈ Σ0
1 and instances of compre-

hension where ϕ is provably ∆0
1.

Note that ACA0 can equivalently be defined as Q2 extended with arithmetical instances
of comprehension and the following single induction axiom:

(∀X,X(0) ∧ ∀x, (X(x)⇒ X(Sx)))⇒ ∀x,X(x) (induction’)

Also note that in the above definition of RCA0, the available instances of comprehension
and the notion of RCA0 itself are mutually defined. It is equivalent to extending Q2 by
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Σ0
1 instances of induction and the following axiom scheme, where ϕ and ψ vary over Σ0

1

formulas.

∀x(ϕ⇔ ¬ψ)⇒ ∃X∀x(X(x)⇔ ϕ)

We often write formulas in natural language to stand for their obvious formalization in
arithmetic. We do not concern ourselves with such low-level encodings in the sequel.
Statements written in natural language are typically robust under the choice of encoding.

4.5.2 Provably total computable functions

The utility of the second-order theories we have introduced, for this work, lies in the
fact that they may reason about programs and potentially infinite computations, by way
of quantification over set variables. What is more, the functions they may well-define,
or programs that they may prove terminating, are well-understood, in terms of their
computational strength: we may freely use such functions in logical formulas without
affecting logical complexity.

Proposition 4.3 (Witnessing for ACA0). Suppose ACA0 proves ∀~x∃y, ϕ(~x, y), where ϕ is
Σ0

1 and contains no set symbols. Then there is a term M of T with a typing derivation
x1 : 1∗, . . . , xn : 1∗ `M : 1∗ such that N � ∀~x, ϕ(~x, [M ]).

This result follows immediately from the conservativity of ACA0 over Peano Arithmetic
and thence, under the Gödel-Gentzen double-negation translation, Gödel’s Dialectica
functional interpretation of Heyting Arithmetic into T (see, e.g., [8] for more details).

A similar characterization of RCA0 is known: this theory is conservative over IΣ1,
the restriction of Peano Arithmetic to Σ1-induction, which is known to well-define only
primitive recursive functions. This result was originally established by Parsons in his
predicative functional interpretation [71], though there are also direct proofs, e.g., by
cut-elimination (see [19]).

Proposition 4.4 (Witnessing for RCA0). Suppose RCA0 proves ∀~x∃y, ϕ(~x, y), where ϕ
is Σ0

1 and contains no set symbols. Then there is a primitive recursive function f such
that N � ∀~x, ϕ(~x, f(~x)).

4.5.3 Reverse mathematics of cyclic proof checking

While the notion of preproof can easily be formalized already in RCA0, dealing with the
validity criterion is non-trivial: we must be able to verify it within our theories too. In fact,
the correctness of a generic cyclic proof checker is not available in RCA0 [26]. However, it
is known that for any fixed preproof, RCA0 can check whether it is valid or not:

Proposition 4.5 ([26], also implicit in [58]). Let π be a regular proof. Then RCA0 proves
that π (written as a finite graph) is a proof, i.e., that each infinite branch contains a valid
thread.

This is a nontrivial result that is obtained by formalizing the reduction of proof
validity to the universality problem for nondeterministic Büchi automata and proving the
correctness of a universality algorithm.
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4.6 Small steps reduction semantics for C

We fix a regular proof π in this section. We define a simplified version of the rewriting
system used in [29] to prove cut-elimination in the system LAL. Programs are defined via
the following syntax, where v ranges over addresses.

P,Q ::= 〈〉 | [] | P :: P | v(P1, . . . , Pn)

The first three entries correspond to constructors for singletons and lists. The fourth one
corresponds to calling the node v of π with the given list of arguments. This syntax is
much simpler than that used in [29]: we put constructors only for singletons and lists,
which are the only types we want to observe in the present work. In particular, we do not
need lambda abstractions to represent functional values. Also note that here programs
are always ‘closed’.

We use a simple type system to rule out ill-formed programs. Typing judgments have
the form ` P : e; intuitively meaning that the program P produces values of type e.

` 〈〉 : 1 ` [] : e∗
` P : e ` Q : e∗

` P :: Q : e∗

` P1 : e1 . . . ` Pn : en

` v(P1, . . . , Pn) : f
π(v) = e1, . . . , en ` f

Every program has at most one typing derivation (relatively to the fixed proof π), which
can be computed in linear time. This argument is easily formalisable in RCA0.

We associate to every program P of type e a semantic value [P ] ∈ [e], by induction:

[〈〉] , 〈〉 [[]] , ε [P ::Q] , [P ] :: [Q] [v(P1, . . . , Pn)] , [v]([P1], . . . , [Pn])

Note that in the last case, [v] is the semantics of the node v in the proof π (Definition 4.6).
This semantics cannot be defined ACA0 or RCA0: values may be objects of arbitrary type.

Definition 4.12 (Reduction). Reduction, written , is the smallest relation on programs
which is closed under all contexts and satisfies the following rules, defined by case analysis
on the rules used at addresses mentioned in the program. We use v (resp. w) to range
over addresses of left (resp. right) introduction rules, and u to range over other addresses.
We moreover assume that the sizes of the vectors match those that arise from the implicit
typing derivations.

id : u(P )  P

cut : u(~P , ~Q)  u1(u0(~P ), ~Q)

x : u(~P ,Q,R, ~S)  u0(~P ,R,Q, ~S)

w : u(P, ~R)  u0(~R)

c : u(P, ~Q)  u0(P, P, ~Q)

1-l : v(〈〉, ~R)  v0(~R)

∗-l : v([], ~R)  v0(~R)

∗-l : v(P ::Q, ~R)  v1(P,Q, ~R)

1-r : w()  〈〉
∗-rε : w()  []

∗-r:: : w(~P , ~Q)  w0(~P )::w1( ~Q)
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·-l/ · -r : v(w(~P , ~Q), ~R)  v0(w0(~P ), w1( ~Q), ~R)

+-l/+ -ri : v(w(~P ), ~R)  vi(w0(~P ), ~R)

→-l/→-r : v(w(~P ), ~Q, ~R)  v1(w0(v0( ~Q), ~P ), ~R)

∩-li/∩-r : v(w(~P ), ~R)  v0(wi(~P ), ~R)

We used a compact presentation of these rules; for instance, the ·-l/ · -r rule should be
understood as follows:

If πw ends
E ` e F ` f

·-r
E,F ` e · f

, πv ends
e, f,G ` g

·-l
e · f,G ` g

, and |E| = |~P |,

then v(w(~P , ~Q), ~R) v0(w0(~P ), v1( ~Q), ~R).

As expected, subject reduction holds, so that we only work with well-typed programs
in the sequel. Also note that  is computable in RCA0, and so is provably ∆0

1. We also
have the following characterization of irreducible programs, still in RCA0

Lemma 21. If P is irreducible, then P is of the form

• 〈〉, [], or P1 :: P2 for some programs P1, P2; or,

• v(~P ) for some address v such that πv ends with +-ri, ·-r, ∩-r or →-r.

Proof. The characterization given in the statement is computable, and so we may prove
the lemma by Σ0

1-induction on the structure of programs. If P starts with a constructor,

we are done; otherwise, if P = v[~P ] then v cannot be a structural rule, the identity
rule, or the cut rule, otherwise P would reduce. If v is a left introduction rule then by
induction P1 (which is irreducible) must be a constructor or of the form w[ ~Q] with w a
right introduction rule, thus enabling a reduction step for P , a contradiction.

It follows that every irreducible program of type e∗ is a list of irreducible programs of
type e.

We also have that reductions preserve the semantics. We use this property only at the
meta-level, it cannot even be stated in ACA0 since it involves higher-order objects:

Proposition 4.6 (Semantic preservation). For all programs P, P ′, if P  P ′ then
[P ] = [P ′].

Given a natural number n, let us write n for its encoding as a program of type 1∗,
such that [n] = n. By Lemma 21, the irreducible programs of type 1∗ are all of this shape.
This encoding makes it possible to reason about proofs from natural numbers to natural
numbers: if π : 1∗ ` 1∗, then for all n, [π](n) can be obtained by reducing the program

π(n). (Writing π(~P ) for ε(~P ).)

4.6.1 Weak normalization in ACA0, in the general case

We write P ↓π P ′ when P reduces to an irreducible P ′ via the left-most innermost strategy.
We want to show:
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Theorem 4.4 (Weak normalisation). For every fixed regular proof π, ACA0 proves that
for all P , there exists P ′ with P ↓π P ′.

Note that π is fixed, and that the universal quantification on P only ranges over
those computations that can be performed within π. Since π is regular, those programs
involve only finitely many types, and the statement we prove inside ACA0 does not imply
consistency of Peano arithmetic.

To prove this theorem, we use the following sets Re of reducible programs, defined by
induction on e. Those are inspired by reducibility candidates [83, 44].

R1 , {P | P ↓π 〈〉}
Re∗ , {P | P ↓π Q1 :: · · · :: Qn, with Q1, . . . , Qn ∈ Re}

Re·f ,
{
P | P ↓π v( ~Q, ~R), with v a ·-r step, v0( ~Q) ∈ Re, and v1(~R) ∈ Rf

}
Re∩f ,

{
P | P ↓π v( ~Q), with v a ∩-r step, v0( ~Q) ∈ Re, and v1( ~Q) ∈ Rf

}
Re0+e1 ,

{
P | P ↓π v( ~Q), with v a +-ri step and vi( ~Q) ∈ Rei

}
Re→f ,

{
P | P ↓π v( ~Q), with v a →-r step and ∀Q ∈ Re, v0(Q, ~Q) ∈ Rf

}
(Like earlier in the chapter, in the third case, we assume that the lengths of the vectors
are consistent with the rule instances used at v.)

Note that these sets are defined non-uniformly in ACA0: we use separate instances of
comprehension at each stage. This is not a problem: we will need only finitely many of
them since the starting proof π is regular.

Every program in Re is weakly normalisable by definition, so that it suffices to show
that all programs of type e belong to Re. We proceed by induction on the syntax of
programs. The constructor cases are straightforward; for the remaining case we use the
following proposition. If ~P = P1, . . . , Pn and E = E1, . . . , En, we write ~P ∈ RE when
Pi ∈ REi for all i.

Proposition 4.7. For every address w : E ` e, and for all programs ~P ∈ RE, we have
w(~P ) ∈ Re.

This property on addresses is locally preserved by the rules of C. This observation is
not sufficient to conclude since we work with non-wellfounded proofs. We actually prove
a strengthening of local preservation, by contraposite:

Lemma 22. For every address w : E ` e, for all programs ~P ∈ RE such that w(~P ) 6∈ Re,

there are v, F, f, ~Q such that |v| = |w|+ 1, v : F ` f , v( ~Q) 6∈ Rf , and:

1. for all i, j s.t. 〈v, i〉C 〈w, j〉, we have |Qi| = |Pj|, and

2. for all i, j s.t. 〈v, i〉 C· 〈w, j〉, we have |Qi| < |Pj|.

(Where given P ∈ Re∗, we write |P | for the length of the list given by the definition of
Re∗.)
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Proof. We abbreviate P ↓π P ′ as P ↓ P ′ in this proof, and we often use the fact that if
P ∈ Re, then P ↓ P ′ for some P ′ ∈ Re, which we abbreviate as P ↓ P ′ ∈ Re. We also
write P ∈ R↓e when P ∈ Re and P is irreducible. We use the notation  only for left-most
innermost reduction steps.

We can assume w.l.o.g. that the elements of ~P are irreducible. We reason by case
analysis on the rule used at w; we only list the most significant cases. We call the vector
~Q we have to provide the witness.

cut : πw ends
E ` e e, F ` f

cut
E,F ` f

. Assume ~P ∈ R↓E, ~Q ∈ R↓F and w(~P , ~Q) 6∈ Rf . There

are two cases:

• if w0(~P ) 6∈ Re then we choose v = w0, taking ~P as witness.

• if w0(~P ) ∈ Re then we choose v = w1, taking w0(~P ), ~Q as witness since

w(~P , ~Q) w1(w0(~P ), ~Q)

c : πw ends
e, E ` g

c
e, e, E ` g

. Assuming P ∈ R↓e, ~P ∈ R↓E, we take v = w0 with witness

P, P, ~P , since

w(P, ~P ) w0(P, P, ~P )

→-r : πw ends
e, E ` f

→-r
E ` e→ f

. Assume ~P ∈ R↓E and w(~P ) 6∈ Re→f . w(~P ) is irreducible,

so that there must be a R ∈ Re such that w0(R, ~P ) 6∈ Rf . We choose v = w0 with

R, ~P as witness.

→-l : πw ends
E ` e f, F ` g

→-l
e→ f, E, F ` g

. Assume P = u[~R] ∈ R↓e→f ,
~P ∈ R↓E, ~Q ∈ R↓F and

w(P, ~P , ~Q) 6∈ Rg. There are two cases:

• if w0(~P ) 6∈ Re, we take v = w0 with witness ~P .

• if w0(~P ) ∈ Re, then w0(~P ) ↓ P0 ∈ Re. By definition of Re→f we obtain

u0(P0, ~R) ∈ Rf . We choose v = w1, taking u0(P0, ~R), ~Q as witness, since

w(P, ~P , ~Q) w1(u0(w0[~P ], ~R), ~Q)

 ∗ w1(u0(P0, ~R), ~Q)

∗-r:: : πw ends
E ` e F ` e∗

∗-r::
E,F ` e∗

. Assume ~P ∈ R↓E, ~Q ∈ R↓F , and w(~P , ~Q) 6∈ Re∗ . If

w0(~P ) 6∈ Re we take v = w0 with ~P as witness. Otherwise w0(~P ) ↓ R0 ∈ Re and

we take v = w1 with ~Q as witness. Indeed, if we had w1( ~Q) ∈ Re∗ then we would
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get w1( ~Q) ↓ R1 :: · · · :: Rn with the Ri in Re; this would contradict the assumption
about w since

w(~P , ~Q) w0(~P ) :: w1( ~Q)

 ∗ R0 :: w1( ~Q)

 ∗ R0 :: R1 :: · · · :: Rn

∗-l : πw ends
E ` g e, e∗, E ` g

∗-l
e∗, E ` g

. Assume P ∈ R↓e∗ , ~P ∈ R↓E and w(P, ~P ) 6∈ Rg.

According to the definition of Re∗ we can distinguish two cases:

• if P = [], we take v = w0 with ~P as witness:

w(P, ~P ) w0(~P )

• or P = X :: Q, and we take v = w1 with X,Q, ~P as witness:

w(P, ~P ) w1(X,Q, ~P )

We have |P | = |Q|+ 1 in this case, so that we satisfy the condition 2/ for i = 1
and j = 0. (this is the only place where this condition is not void)

The condition 1/ is straightforward to check in all cases.

Proof of Proposition 4.7. Suppose by contradiction that for some address w : E ` e we
have ~P ∈ RE such that w(~P ) 6∈ Re. By using Lemma 22 repeatedly, we can construct an
infinite branch of π starting at w. We conclude like in Lemma 14.

This concludes the ACA0 proof of Theorem 4.4 and we deduce:

Corollary 1. If π : 1∗ . . . 1∗ ` 1∗ is a regular proof, then there exists a term M from
system T such that [π] = [M ].

Proof (for unary functions). By Proposition 4.5 and Theorem 4.4 we obtain a proof
in ACA0 of “∀n,∃m,π(n) ↓π m”. By Proposition 4.3, we extract a system T term
M such that for all n, π(n)  ∗ [M ](n). By Proposition 4.6, we deduce for all n,
[π](n) = [π(n)] = [[M ](n)] = [M ](n).

4.6.2 Weak normalization in RCA0, in the affine case

Given Proposition 4.4, it could be tempting to revisit the proof from the previous section,
trying to see if we could use RCA0 instead of ACA0 in the absence of contraction. This
fails, however, because the Re sets already require set comprehensions outside ∆0

1 (due to
the quantifier alternation in the definition of Re→f ). We need only finitely many such sets
for a given regular proof, so that we could hope to use only their defining formulas, but
then our main induction on the syntax of programs, to prove that all programs of type e
belong to Re, is not a Σ0

1-induction.
Instead, we use another termination argument, relying on the translation from Sec-

tion 4.4.
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Definition 4.13. A simple proof is an ibp-proof such that for every backpointer pt ,
src(pt) = tgt(pt)10 and the rule used at tgt(pt)1 is a cut , as illustrated on the left below.

E ` g

...

e∗, E ` g e, g ` g
cut

e, e∗, E ` g
∗-l

e∗, E ` g
•

•
E ` g e, g ` g

∗-l′
e∗, E ` g

In other words, a simple proof is a well-founded proof using the derivable rule on the
right.

Our translation from T to C (Theorem 4.2) actually produces simple proofs, so that
by Theorem 4.3, every affine proof can be translated into a simple affine proof with the
same semantics.

Accordingly, we assume in the rest of this section that the fixed proof π is affine and
simple. This assumption makes it possible to optimize the notion of reduction: we write
·
 for the relation defined like in Definition 4.12, except that when v is the target of a
backpointer, we use the following rule instead of the two ∗-l reduction rules:

v(P1:: . . . ::Pn::[], ~R)
·
 v11(P1, . . . , v11(Pn, v0[~R]))

This rule has to be compared with the 2n+ 1 reductions we can obtain with  :

v(P1:: . . . ::Pn::[], ~R) v1(P1, P2:: . . . ::Pn::[], ~R)

 v11(P1, v10(P2:: . . . ::Pn::[], ~R))

. . .

 v11(P1, . . . , v(10)n11(Pn, v(10)n([], ~R)))

 v11(P1, . . . , v(10)n11(Pn, v(10)n0(~R)))

Due to the backpointer from v01 to v, we have πv(01)n = πv, so that the semantics is

preserved. The main advantage of
·
 is that when P

·
 P ′, if P contains only canonical

addresses, then so does P ′.

Lemma 23. If there is an infinite leftmost innermost reduction sequence along  , then
there is an infinite reduction sequence along

·
 where programs only contain canonical

addresses.

Proof. By mapping addresses into their canonical addresses and compressing finite se-
quences of reductions as above.

We assume all programs only mention canonical addresses in the sequel. Let m(P ) be
the finite multiset of (canonical) addresses mentioned in a program P . These multisets
can be represented and computed in RCA0 via appropriate encodings; we write m(u) for
the number of occurrences of an address u in a multiset m. We write � for the multiset
ordering, where addresses are ordered by reverse prefix ordering (i.e., longer addresses are
considered as smaller):

m � m′ , ∀v,m(v) ≥ m′(v) ∨ ∃u, u v v,m(u) > m′(u)
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Lemma 24. If P
·
 P ′ then m(P ) � m(P ′).

Proof. By straightforward analysis of the reduction rules. (Note that the reduction rule
for contraction fails this property because it duplicates arbitrary addresses.)

At the meta-level, these two lemmas suffice to conclude that every leftmost innermost
reduction sequence along terminates: since we have finitely many canonical addresses in
π, the reverse prefix ordering on canonical addresses is well-founded, as well as the above
multiset ordering. This latter result cannot be proved uniformly in RCA0, however [79,
Theorem IX.5.4]. Instead, we use the folklore fact that the multiset order on a fixed and
finite order is provably well-founded in RCA0:

Proposition 4.8. For all n ∈ N, RCA0 proves that the multiset order on J0, nK is well-
founded.

Proof. This is part of [79, Theorem IX.5.4], where the corresponding proof is mentioned
as straightforward. We give an explicit proof in [63, Appendix D.3].

That we restrict to the multiset order on a finite and total order in the above statement
is not a restriction since every finite partial order—like our reverse prefix ordering on
canonical addresses—embeds in a finite total order.

Theorem 4.5 (Weak normalisation). For every fixed affine simple proof π, RCA0 proves
that for all P , there exists P ′ with P ↓π P ′.

Proof. Write Pn for the n-th reduct of P via the leftmost innermost strategy (if any). It
suffices to show that there exists n such that Pn is irreducible. Suppose by contradiction
that for all n, Pn can be reduced, i.e., Pn  Pn+1 since we fixed a strategy. By Lemma 23
and Lemma 24, we find an infinite decreasing sequence of multisets over J0, kK where k is
the maximal length of canonical addresses in π, contradicting Proposition 4.8.

Corollary 2. If x1:1∗ . . . xn:1∗ ` M : 1∗ is an affine term of T, then [M ] is primitive
recursive.

Proof. Translate M into a simple affine proof using Theorem 4.2. Then proceed like
for Corollary 1, using Theorem 4.5 and Proposition 4.4 instead of Theorem 4.4 and
Proposition 4.3. Note that Proposition 4.5 is not required here since simple proofs do not
need any validity criterion.

This corollary generalizes Dal Lago’s upper bound for H(∅) [23]: our proof handles
additive pairs, which we do not know how to handle using Dal Lago’s method. Also note
that the cyclic proof machinery is not required to obtain this corollary: we use the easy
translation from T into C (Theorem 4.3) in order to obtain a small steps semantics which
is convenient to work with, but this translation only produces simple proofs, which can
be presented inductively, as finite trees.

Instead, the following corollary requires the machinery from Section 4.4 to delineate
the cycle structure of affine proofs. We do not know of a more direct approach so far.

Corollary 3. If π : 1∗ . . . 1∗ ` 1∗ is an affine regular proof, then [π] is primitive recursive.

Proof. Translate π into an affine term by Theorem 4.3, conclude with Corollary 2.
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We also recover as a corollary the following known fact [79, Theorem IX.5.4]:

Corollary 4. RCA0 cannot prove that the multiset order on N is well-founded.

Proof. If this was a theorem of RCA0, then we would get a uniform proof of Theorem 4.5,
from which we could extract a ‘universal primitive recursive function’ whose complexity
would bound the complexity of all primitive recursive functions (via Theorem 4.1).

4.7 Conclusion and future work

We proposed the cyclic sequent proof system C, which we equipped with both a denotational
semantics (Definition 4.7), and a small steps operational semantics (Definition 4.12). Under
this interpretation, regular proofs of system C can be seen as functional programs with
unstructured recursion (gotos), whose termination is guaranteed by a decidable validity
criterion: an instance of the Size Change Principle [65].

We studied the expressive power of system C as a programming language, by comparing
it with an appropriate version of Gödel’s system T—a structured programming language.
Encoding cyclic programs into structurally recursive ones is nontrivial, but we managed
to give a direct encoding from C to T in the affine case. To obtain upper bounds on the
complexity of functions of C and its affine variant we then appealed to proofs of totality
in systems of second-order arithmetic, thus obtaining simulations in T and primitive
recursive arithmetic, respectively.

We used the connectives of IMALL plus a least fixpoint operator for lists to illustrate
the genericity of our approach. Small fragments of C are already complete w.r.t. the
considered classes of functions (e.g., 1∗ and · do suffice to capture primitive recursive
functions). Conversely, other least fixpoint operators could be handled (e.g., µx.e+ x · x
for binary trees with leaves in e). Cyclic systems with both least and greatest fixpoints
have been studied [40, 32]; whether they correspond to appropriate extensions of T is left
for future work.

Our current translation of C with contraction into T works for natural number
functions, but it does not scale directly to higher types. Indeed, the technique we use
(usual reducibility and hereditary recursivity arguments to obtain a proof of totality in
ACA0) is restricted to computations returning finite values. It would thus be interesting
to attain a ‘direct’ translation in the style of the one we obtained for the affine case in
Section 4.4. As explained in Remark 4.4, higher types do not seem to be problematic per
se, but we need a better understanding of the structure of threads with contractions on
star formulas.

The type levels of recursors in T programs are closely related to the logical complexity
of induction in Peano Arithmetic (in the sense of Definition 4.10). At this level of
granularity, it was observed recently in [26] that there is indeed a difference between cyclic
and inductive proofs: cyclic proofs using Σn formulas is equivalent to inductive proofs
using Σn+1 formulas (over Πn+1 theorems). In a slightly different setting, where C and
T are presented as equational theories, Das proved recently that C restricted to level n
types is equivalent to T restricted to level n+ 1 recursors (over level n+ 1 functions) [25].
This is consistent with the fact that we do have an implementation of Ackermann-Péter’s
function in C at level 0 (Figure 4.7), while level 1 is required in T.
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53–65. Springer, 2001.

[43] J.-Y. Girard. Geometry of interaction iii: accommodating the additives. In workshop
on Advances in linear logic, pages 329–389. Cambridge University Press, 1995.

[44] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University
Press, USA, 1989.

[45] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Y. Vardi. On complementing
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