TD 2: Turing Machines and NP-Completeness

Turing Machines 1

Exercise 1.

Stronger Models?

- 1. Show that every bi-infinite tape Turing machine has an equivalent Turing machine.
- 2. Show that every multiple tapes Turing machine has an equivalent Turing machine.

Exercise 2.

The Halting Problem

The HALTING problem consists in deciding wether a given Turing machine halts on a given word or not.

Show that HALTING is undecidable, *i.e.* that there does not exist any Turing machine that accepts the input $\langle M, w \rangle$ if M halts on w and rejects it otherwise. (*Hint : Adapt the* proof for the ACCEPTATION problem).

NP-Completeness 2

Exercise 3.

Restrain Satifiability The *k*-SATISFIABILITY problem is a restricted version of SATISFIABILITY in which all instances have exactly *k* literals per clause.

Show that 3-SATISFIABILITY is NP-Complete. (*Hint : Do a reduction from SATISFIABILITY*).

Culture : 2-SATISFIABILITY is not NP-Complete (we know a polynomial algorithm).

Exercise 4.

Graphs' Subsets

Let G = (V, E) be a graph. We define :

- An *independent set* is a subset $V' \subseteq V$ such that for all $u, v \in V'$, $\{u, v\}$ is not in E.
- A vertex cover is a subset $V' \subseteq V$ such that for all $\{u, v\} \in E$, $u \in V'$ or $v \in V'$.
- A *clique* is a subset $V' \subseteq V$ such that for all $u, v \in V'$, $\{u, v\}$ is in *E*.
- **1.** For any graph G = (V, E) and any subset $V' \subseteq V$, show that the following statements are equivalent :
 - (i) V' is a vertex cover for G.
 - (ii) $V \setminus V'$ is an independent set for *G*.
 - (iii) $V \setminus V'$ is a clique in the complement G^c of G where $G^c = (V, E^c)$ with $E^c =$ $\{\{u, v\}, u, v \in V \text{ and } \{u, v\} \notin E\}.$
- Let G = (V, E) be a graph and k be an integer. We define the following problem on graphs : - INDEPENDANT-SET is the problem to know whether there exists an independent set of size greater than or equal to *k* in *G* or not.
 - VERTEX-COVER is the problem to know whether there exists a vertex cover of size less than or equal to *k* in *G* or not.

- CLIQUE is the problem to know whether there exists a clique of size greater than or equal to *k* in *G* or not.
- 2. Show that VERTEX-COVER is NP-Complete. (*Hint : Do a reduction from 3-SATISFIABILITY*).
- 3. Deduce that INDEPENDENT-SET and CLIQUE are NP-Complete.

Culture : EDGE-COVER is like VERTEX-COVER but we look for a subset $E' \subseteq E$ such that every vertex of V is incident to at least one vertex in E'. Yet it is not NP-Complete (we know a polynomial algorithm).

Exercise 5.

A Difficult Reduction Let G = (V, E) be a graph. A *Hamiltonian circuit* in G is a cycle in the graph going through each vertex exactly once. The HAMILTONIAN-CIRCUIT problem consists in deciding wether a given graph contains a Hamiltonian circuit or not.

Show that HAMILTONIAN-CIRCUIT is NP-Complete. (*Hint : Do a reduction from VERTEX-COVER*).

Culture : EULERIAN CIRCUIT is like HAMILTONIAN-CIRCUIT but we look for a cycle that traverses every edge exactly once. Yet it is not NP-Complete (we know a polynomial algorithm).