p-ADIC FOURIER THEORY FOR Q_{p^2} AND THE MONNA MAP

KONSTANTIN ARDAKOV AND LAURENT BERGER

ABSTRACT. We show that the coefficients of a power series occurring in *p*-adic Fourier theory for \mathbf{Q}_{p^2} have valuations that are given by an intriguing formula.

INTRODUCTION

Let L be a finite extension of \mathbf{Q}_p , let π be a uniformizer of o_L and let LT be the Lubin-Tate formal o_L -module attached to π . The formal group maps over $o_{\mathbf{C}_p}$ from LT to \mathbf{G}_m play an important role in p-adic Fourier theory (see [ST01]). Choose a coordinate Z on LT, and let $G(Z) \in o_{\mathbf{C}_p}[\![Z]\!]$ be a generator of $\operatorname{Hom}_{o_{\mathbf{C}_p}}(\operatorname{LT}, \mathbf{G}_m)$, so that

$$G(Z) = \sum_{k \ge 1} P_k(\Omega) \cdot Z^k = \exp(\Omega \cdot \log_{\mathrm{LT}}(Z)) - 1$$

for a certain element $\Omega \in o_{\mathbf{C}_p}$ and polynomials $P_k(Y) \in L[Y]$. We have (§3 of [ST01]) val_p(Ω) = 1/(p-1) - 1/e(q-1) where e is the ramification index of L and $q = |o_L/\pi o_L|$. The power series G(Z) gives rise to a function on $\mathfrak{m}_{\mathbf{C}_p}$ and the theory of Newton polygons then allows us to compute the valuation of $P_k(\Omega)$ for $k = q^j/p^{\lfloor (j-1)/e \rfloor + 1}$ with $j \ge 0$ (Theorem 1.5.2 of [AB24]). However, the valuation of $P_k(\Omega)$ for most $k \ge 2$ has no geometric significance and depends on the choice of the coordinate Z.

During our work on the character variety, we computed the valuation of $P_k(\Omega)$ for many small values of k in a special case: we took $L = \mathbf{Q}_{p^2}$ and $\pi = p$ and chose a coordinate Z on LT for which $\log_{\mathrm{LT}}(Z) = \sum_{m\geq 0} Z^{q^m}/p^m$ (this is possible by §8.3 of [Haz12]). Note that in this setting, the theory of Newton polygons gives $\mathrm{val}_p(P_k(\Omega))$ precisely when k is a power of p. Let $w: \mathbf{Z}_{>0} \to \mathbf{Q}$ be the map defined by

$$w(k) = \frac{p}{q-1} \cdot (k_0 + p^{-1}k_1 + \dots + p^{-h} \cdot k_h) \text{ if } k = (k_h \cdots k_0)_p \text{ in base } p.$$

For all k for which we were able to compute $\operatorname{val}_p(P_k(\Omega))$, we found that $\operatorname{val}_p(P_k(\Omega)) = w(k)$. The main result of this note is that this formula holds for all k.

Theorem A. For all $k \ge 1$, we have $\operatorname{val}_p(P_k(\Omega)) = w(k)$.

The proof involves a careful study of the functional equation that G(Z) satisfies, and a direct computation of $\operatorname{val}_p(P_k(\Omega))$ for small values of k. The function w is related to the Monna map, defined in [Mon52].

Date: May 10, 2024.

1. The polynomials $P_m(Y)$

Let $L = \mathbf{Q}_{p^2}$ and $\pi = p$, so that $q = p^2$, and choose a coordinate Z on LT for which $\log_{\mathrm{LT}}(Z) = \sum_{k \ge 0} Z^{q^k} / p^k$. The polynomials $P_m(Y) \in L[Y]$ are given by

$$\exp(Y \cdot \log_{\mathrm{LT}}(Z)) = \sum_{m=0}^{+\infty} P_m(Y) \cdot Z^m.$$

Proposition 1.1. We have

$$P_m(Y) = \sum_{m_0 + qm_1 + \dots + q^d m_d = m} \frac{Y^{m_0 + \dots + m_d}}{m_0! \cdots m_d! \cdot p^{1 \cdot m_1 + 2 \cdot m_2 + \dots + d \cdot m_d}}$$

Proof. Since $\log_{\mathrm{LT}}(Z) = \sum_{k \ge 0} Z^{q^k} / p^k$ and exp is the usual exponential,

$$\sum_{m=0}^{+\infty} P_m(Y) Z^m = \exp(Y \cdot \log_{\mathrm{LT}}(Z)) = \prod_{k \ge 0} \exp(Y \cdot Z^{q^k} / p^k) = \prod_{k \ge 0} \sum_{j \ge 0} (Y \cdot Z^{q^k} / p^k)^j / j!$$

The coefficient of Z^m is the sum of $Y^{m_0+\dots+m_d}/m_0!\dots m_d! \cdot p^{1\cdot m_1+2\cdot m_2+\dots+d\cdot m_d}$ over all $d \ge 0$ and $(m_0,\dots,m_d) \in \mathbf{Z}_{\ge 0}^{d+1}$ such that $m_0 + qm_1 + \dots + q^d m_d = m$. \Box

For example, if $i \leq q - 1$, then

$$P_{i}(Y) = Y^{i}/i!$$

$$P_{q+i}(Y) = \frac{Y^{q+i}}{(q+i)!} + \frac{Y^{i+1}}{p \cdot i!}$$

$$P_{2q+i}(Y) = \frac{Y^{2q+i}}{(2q+i)!} + \frac{Y^{q+i+1}}{p \cdot (q+i)!} + \frac{Y^{i+2}}{2p^{2} \cdot i!}$$

Because $L = \mathbf{Q}_{p^2}$, it follows from Lemma 3.4.b of [ST01] that

$$\operatorname{val}_p(\Omega) = \frac{1}{p-1} - \frac{1}{e(q-1)} = \frac{p}{q-1}.$$

Lemma 1.2. If $i \leq q-1$ and $i = (ab)_p$ in base p, then $\operatorname{val}_p(P_i(\Omega)) = \frac{a+bp}{q-1} = w(i)$.

Proof. If $i \leq q - 1$, then $P_i(\Omega) = \Omega^i / i!$ by Proposition 1.1, so that

$$\operatorname{val}_{p}(P_{i}(\Omega)) = i \cdot \left(\frac{1}{p-1} - \frac{1}{q-1}\right) - \frac{i - s_{p}(i)}{p-1} = \frac{s_{p}(i)}{p-1} - \frac{i}{q-1} = \frac{a + bp}{q-1}.$$
2. The MAP *w*

Recall that $w: \mathbf{Z}_{\geq 0} \to \mathbf{Q}$ is the map defined by

$$w(k) = \frac{p}{q-1} \cdot (k_0 + p^{-1}k_1 + \dots + p^{-h} \cdot k_h) \text{ if } k = (k_h \cdots k_0)_p \text{ in base } p.$$

Proposition 2.1. The function $w : \mathbb{Z}_{\geq 0} \to \mathbb{Q}_{\geq 0}$ has the following properties:

- (1) w(k) < 1 + 1/(q-1);
- (2) $w(k) \ge 1$ if and only if $k \equiv -1 \mod q$, and then w(k) > 1 unless k = q 1;

- (3) if $\ell > k$, then $w(\ell) w(k) \in \mathbb{Z}$ if and only if k = qj and $\ell = qj + (q-1)$;
- (4) $w(pk) = 1/p \cdot w(k);$
- (5) $w(p^nk+i) = w(p^nk) + w(i)$ if $0 \le i \le p^n 1$;
- (6) For all $a, b \ge 0$ we have $w(a+b) \le w(a) + w(b)$.

Proof. Item (1) results from the fact that

$$w(k) = (k_0 + p^{-1}k_1 + \dots + p^{-h} \cdot k_h) \cdot \frac{p}{q-1} < \frac{p^2}{q-1} = 1 + \frac{1}{q-1}$$

If $k_0 \leq p-2$, or if $k_0 = p-1$ and $k_1 \leq p-2$, then $w(k) \leq (p^{h+1}-1-p^{h-1})/p^{h-1}(q-1) < 1$, so if $w(k) \geq 1$, then $k_0 = p-1$ and $k_1 = p-1$, and $k \equiv -1 \mod q$. Conversely, if $k \equiv -1 \mod q$, then $k_0 = p-1$ and $k_1 = p-1$, and $w(k) \geq 1$. Finally, if we have equality, then $k_i = 0$ for all $i \geq 2$. This proves (2).

Write $k = (k_h \cdots k_0)_p$ and $\ell = (\ell_i \cdots \ell_0)_p$. Since w(k) < 1 + 1/(q-1), if $w(\ell) - w(k) \in \mathbb{Z}_{\geq 0}$, then $w(\ell) = w(k)$ or $w(\ell) = w(k) + 1$. If $w(\ell) = w(k)$, then $k_0 + p^{-1}k_1 + \cdots + p^{-h} \cdot k_h = \ell_0 + p^{-1}\ell_1 + \cdots + p^{-i} \cdot \ell_i$. By comparing *p*-adic valuations, we get h = i, and then $k_h \equiv \ell_i \mod p$ so that $k_h = \ell_i$. By descending induction, $k_j = \ell_j$ for all *j*, and $k = \ell$. If $w(\ell) = w(k) + 1$, then $w(\ell) \geq 1$, and hence $\ell = (\ell_i \cdots \ell_2 (p-1)_1 (p-1)_0)_p$ by item (2). We then have $w((\ell_i \cdots \ell_2 0_1 0_0)_p) = w(k)$ and hence $k = (\ell_i \cdots \ell_2 0_1 0_0)_p$. This implies (3).

Items (4) and (5) are straightforward. For item (6), let $\{a_i\}, \{b_i\}$ and $\{c_i\}$ be the digits of a, b and c in base p. Let $r_0 = 0$ and let $r_i \in \{0, 1\}$ be the *i*th carry when adding a and b, so that $c_i = a_i + b_i + r_i - pr_{i+1}$. The result follows from the following computation.

$$\sum_{i\geq 0} \frac{c_i}{p^i} = \sum_{i\geq 0} \frac{a_i + b_i}{p^i} + \frac{r_i}{p^i} - \frac{pr_{i+1}}{p^i} = \sum_{i\geq 0} \frac{a_i + b_i}{p^i} - (p^2 - 1) \sum_{i\geq 1} \frac{r_i}{p^i} \le \sum_{i\geq 0} \frac{a_i + b_i}{p^i}.$$

3. Congruences for the $P_k(\Omega)$

From now on, we write u_k for $P_k(\Omega)$ to lighten the notation. Recall that $q = p^2$. The power series G(Z) is a map between LT and \mathbf{G}_m , so that $G([p]_{\mathrm{LT}}(Z)) = [p]_{\mathbf{G}_m}(G(Z))$.

Proposition 3.1. We have $\sum_{m=1}^{+\infty} u_m Z^{qm} \equiv \sum_{k=1}^{+\infty} u_k^p Z^{kp} \mod p \cdot \mathfrak{m}_{\mathbf{C}_p}$.

Proof. We have $G(Z) \in \mathfrak{m}_{\mathbf{C}_p}[\![Z]\!]$ and $[p]_{\mathrm{LT}}(Z) \equiv Z^q \mod p$ and $[p]_{\mathbf{G}_{\mathrm{m}}}(Z) = Z^p \mod p$. Since $G([p]_{\mathrm{LT}}(Z)) = [p]_{\mathbf{G}_{\mathrm{m}}}(G(Z))$, we get $G(Z^q) \equiv G(Z)^p \mod p \cdot \mathfrak{m}_{\mathbf{C}_p}$.

Corollary 3.2. If k is not divisible by p, then $\operatorname{val}_p(u_k) > 1/p$.

Corollary 3.3. We have $u_{pm}^p \equiv u_m \mod p \cdot \mathfrak{m}_{\mathbf{C}_p}$.

Proof. Take k = pm in Proposition 3.1.

Corollary 3.4. Take $m \ge 0$.

(1) Suppose that $\operatorname{val}_p(u_m) \leq 1$. Then $\operatorname{val}_p(u_{pm}) = 1/p \cdot \operatorname{val}_p(u_m)$.

(2) Suppose that $\operatorname{val}_p(u_m) > 1$. Then $\operatorname{val}_p(u_{pm}) > 1/p$.

Proof. Both cases follow easily from Corollary 3.3.

We now compare $[p]_{LT}(Z)$ and $Z^q + pZ$ (compare with (iv) of §2.2 of [Haz12]).

Lemma 3.5. We have $[p]_{LT}(Z) = Z^q + pZ + p^2 \cdot s(Z)$ for some $s(Z) \in Z^2 \cdot \mathbb{Z}_p[\![Z]\!]$.

Proof. There exists $r(Z) \in Z^2 \cdot \mathbb{Z}_p[\![Z]\!]$ such that $[p]_{\mathrm{LT}}(Z) = Z^q + pZ + pr(Z)$. By the properties of \log_{LT} , we have $\log_{\mathrm{LT}}([p]_{\mathrm{LT}}(Z)) = p \log_{\mathrm{LT}}(Z)$. Expanding around Z^q , we get $\log_{\mathrm{LT}}(Z^q + pZ + pr(Z)) = \log_{\mathrm{LT}}(Z^q) + (pZ + pr(Z)) \log'_{\mathrm{LT}}(Z^q) + \sum_{i \ge 2} \frac{(pZ + pr(Z))^i}{i!} \log^{(i)}_{\mathrm{LT}}(Z^q)$

Our choice of \log_{LT} is such that $\log_{\mathrm{LT}}(Z^q) = p \log_{\mathrm{LT}}(Z) - pZ$ and $\log'_{\mathrm{LT}}(Z) \in 1 + pZ \cdot \mathbf{Z}_p[\![Z]\!]$ and $\log_{\mathrm{LT}}^{(i)}(Z) \in p\mathbf{Z}_p[\![Z]\!]$ for all $i \geq 2$. Note also that $p^{i+1}/i! \in p^2\mathbf{Z}_p$ for all $i \geq 2$.

The above equation now implies that $pr(Z) \equiv 0 \mod p^2$ so that r(Z) = ps(Z).

Corollary 3.6. The coefficient of Z^{qn} in $G([p]_{LT}(Z))$ is congruent to $u_n \mod p^2$.

Proof. Since $[p]_{LT}(Z) \equiv Z^q + pZ \mod p^2$, Lemma 3.5 tells us that

$$G([p]_{\mathrm{LT}}(Z)) \equiv G(Z^q) + pZ \cdot G'(Z^q) \mod p^2$$
$$\equiv \sum_{k \ge 1} u_k Z^{qk} + \sum_{m \ge 1} pm \cdot u_m Z^{q(m-1)+1} \mod p^2.$$

Hence $pZ \cdot G'(Z^q)$ doesn't contribute to the coefficient of Z^{qn} modulo p^2 . **Proposition 3.7.** For all $k \ge 1$, we have $k \cdot u_k = u_1 \cdot \sum_{r=0}^{\lfloor \log_q(k) \rfloor} p^r u_{k-q^r}$. Proof. We have $\sum_{k\ge 0} u_k Z^k = \exp(u_1 \cdot \log_{\mathrm{LT}}(Z))$. Applying d/dZ, we get $\sum_{k\ge 1} k u_k Z^{k-1} = \exp(u_1 \cdot \log_{\mathrm{LT}}(Z)) \cdot u_1 \cdot \log'_{\mathrm{LT}}(Z)$ $= u_1 \cdot (\sum_{i\ge 0} u_i Z^i) \cdot (\sum_{r\ge 0} (q/p)^r Z^{q^r-1}).$

The result follows from looking at the coefficient of Z^{k-1} on both sides.

Corollary 3.8. We have $u_1 \cdot u_{k-1} \equiv ku_k \mod p$ for all $k \ge 1$.

Proposition 3.9. If $0 \le i \le p-1$ and $m \ge p$, then there exists $\zeta_{i,m} \in o_L$ such that $u_{mp+i} \equiv {\binom{mp+i}{i}}^{-1} \cdot u_{mp} \cdot u_i + p \cdot \zeta_{i,m} \cdot u_{p(m-p)+i+1} \mod p^2.$

Proof. We proceed by induction on i. When i = 0, we can even achieve equality by setting $\zeta_{0,m} := 0$, because $u_0 = 1$. Write k := mp + i for brevity. For $i \ge 1$ we have

$$u_k \equiv \frac{1}{k}u_1 \cdot u_{k-1} + \frac{p}{k}u_1 \cdot u_{k-q} \bmod p^2$$

by Proposition 3.7, because here $k \in o_L^{\times}$. By the inductive hypothesis, we have

$$u_{k-1} \equiv {\binom{k-1}{i-1}}^{-1} u_{mp} \cdot u_{i-1} + p\zeta_{i-1,m} \cdot u_{k-q} \mod p^2.$$

Note that since $i \leq p-1$, we have $u_i = u_1^i/i!$ by Proposition 1.1, so $u_1u_{i-1} = \frac{u_1^i}{(i-1)!} = iu_i$. Substituting this information, we obtain

$$u_{k} \equiv \frac{u_{1}}{k} \cdot \left(\binom{k-1}{i-1}^{-1} u_{mp} \cdot u_{i-1} + p\zeta_{i-1,m} u_{k-q} \right) + \frac{p}{k} u_{1} \cdot u_{k-q}$$
$$\equiv \frac{i}{k} \binom{k-1}{i-1}^{-1} u_{mp} \cdot u_{i} + \frac{p}{k} (\zeta_{i-1,m} + 1) u_{1} \cdot u_{k-q} \mod p^{2}.$$

On the other hand, by Corollary 3.8, we have

$$pu_1 \cdot u_{k-q} \equiv p(k-q+1)u_{k-q+1} \bmod p^2.$$

Hence we can rewrite the congruence as follows:

$$u_{k} \equiv {\binom{k}{i}}^{-1} u_{mp} \cdot u_{i} + p \frac{k-q+1}{k} (\zeta_{i-1,m} + 1) u_{k-q+1} \mod p^{2}.$$

Define $\zeta_{i,m} := \frac{k-q+1}{k}(\zeta_{i-1,m}+1)$ and observe that this lies in o_L because $p \nmid k$.

We need to know what $\zeta_{p-1,m}$ is modulo p.

Lemma 3.10. Take $1 \le i \le p-1$ and $m \ge 0$ and let k = mp + i. If $\zeta_{0,m} = 0$ and $\zeta_{i,m} = \frac{k-q+1}{k}(\zeta_{i-1,m}+1)$ whenever $1 \le i \le p-1$, then $\zeta_{p-1,m} \equiv 0 \mod p$.

Proof. Note that modulo p, the recurrence relation satisfied by $\zeta_{i,m}$ is simply

$$\zeta_{i,m} \equiv \frac{i+1}{i} (\zeta_{i-1,m} + 1) \bmod p.$$

Now set i = p - 1 to see that $\zeta_{p-1,m} \equiv 0 \mod p$.

4. PROOF OF THEOREM A

We now use the functional equation of G(Z) modulo p^2 in order to prove Theorem A.

Definition 4.1. For each $n \ge 0$, let C_n be the coefficient of Z^{qn} in

$$(1+G(Z))^p = \left(\sum_{k=0}^{\infty} u_k Z^k\right)^p.$$

We develop some notation to compute C_n .

Definition 4.2.

- (1) Let $|\mathbf{k}| := k_1 + \cdots + k_p$ for all $\mathbf{k} \in \mathbf{N}^p$.
- (2) For each $\mathbf{k} \in \mathbf{N}^p$, define $u_{\mathbf{k}} := u_{k_1} \cdot u_{k_2} \cdot \cdots \cdot u_{k_p}$.
- (3) For each $n \ge 0$, let $X_n \subset \mathbf{N}^p$ be a complete set of representatives for the orbits of the natural action of S_p on $\{\mathbf{k} \in \mathbf{N}^p : |\mathbf{k}| = n\}$.

In this language, expanding $\left(\sum_{k=0}^{\infty} u_k Z^k\right)^p$ gives the following

Lemma 4.3. We have $C_n = \sum_{\mathbf{k} \in X_{qn}} |S_p \cdot \mathbf{k}| u_{\mathbf{k}}$.

Lemma 4.4. We have $\operatorname{val}_p(|S_p \cdot \mathbf{k}|) = 1$ whenever $k_i \neq k_j$ for some $i \neq j$.

Proof. Let H be the stabiliser of \mathbf{k} in S_p , so that $|S_p \cdot \mathbf{k}| = |S_p|/|H|$. If $k_i \neq k_j$ for some $i \neq j$, then H cannot contain any p-cycle. The only elements of S_p of order p are p-cycles, so by Cauchy's Theorem, $\operatorname{val}_p(|H|) = 0$. Hence $\operatorname{val}_p(|S_p|/|H|) = \operatorname{val}_p(|S_p|) = 1$.

Lemma 4.5. If $\mathbf{k} \in X_{qn} \setminus q\mathbf{N}^p$, then $\operatorname{val}_p(u_{\mathbf{k}}) > w(n) - 1$.

Proof. Since $\frac{1}{q-1} > w(n) - 1$ by Proposition 2.1(1), it is enough to show that

$$\operatorname{val}_p(u_{\mathbf{k}}) > \frac{1}{q-1}$$

If some k_i is not divisible by p, then by Corollary 3.2,

$$\operatorname{val}_p(u_{\mathbf{k}}) \ge \operatorname{val}_p(u_{k_i}) > \frac{1}{p} > \frac{1}{q-1}.$$

Assume now that for each i = 1, ..., p, we can write $k_i = pm_i$ for some $m_i \ge 0$ so that $|\mathbf{m}| = \frac{1}{p}|\mathbf{k}| = pn$. Since $\mathbf{k} \notin q\mathbf{N}^p$ by assumption, we must have $m_i \not\equiv 0 \mod p$ for some i. Because $|\mathbf{m}| = np \equiv 0 \mod p$, in this case there must be at least two distinct indices i, j such that $m_i \neq 0 \mod p$ and $m_j \neq 0 \mod p$. Using Corollary 3.2 again, we obtain

$$\operatorname{val}_p(u_{\mathbf{m}}) \ge \operatorname{val}_p(u_{m_i}) + \operatorname{val}_p(u_{m_j}) \ge \frac{2}{p} > \frac{p}{q-1}$$

Suppose now that $\operatorname{val}_p(u_{m_i}) \leq 1$ for all *i*. Then Corollary 3.4(1) implies that

$$\operatorname{val}_p(u_{\mathbf{k}}) = \frac{1}{p} \operatorname{val}_p(u_{\mathbf{m}}) > \frac{1}{p} \cdot \frac{p}{q-1} = \frac{1}{q-1}$$

Otherwise, for at least one index i we have $\operatorname{val}_p(u_{m_i}) > 1$, and then Corollary 3.4(2) gives

$$\operatorname{val}_p(u_{\mathbf{k}}) \ge \operatorname{val}_p(u_{k_i}) > \frac{1}{p} > \frac{1}{q-1}.$$

We can now prove Theorem A.

Theorem 4.6. We have $\operatorname{val}_p(u_n) = w(n)$ for all $n \ge 0$.

Proof. We prove the stronger statement $\operatorname{val}_p(u_n) = w(n) = p \cdot \operatorname{val}_p(u_{pn})$ by induction on n. The base case n = 0 is clear, so assume $n \ge 1$. We first show that $\operatorname{val}_p(u_n) = w(n)$.

Write n = mp + i with $0 \le i \le p - 1$. Then $\operatorname{val}_p(u_i) = w(i)$ holds by Lemma 1.2. Since $n \ne 0$, we must have m < n so $\operatorname{val}_p(u_{mp}) = \frac{1}{p}w(m)$ by the inductive hypothesis. Using (4) and (5) of Proposition 2.1, we see that

$$\operatorname{val}_p(u_i u_{mp}) = \operatorname{val}_p(u_i) + \operatorname{val}_p(u_{mp}) = w(i) + \frac{1}{p}w(m) = w(pm+i) = w(n).$$

Suppose first that $n \not\equiv -1 \mod q$. Then w(n) < 1 by Proposition 2.1(2), which means that $\operatorname{val}_p(u_i u_{mp}) = w(n) < 1$. By Proposition 3.9, we have

$$u_n \equiv \binom{mp+i}{i}^{-1} u_i u_{mp} \bmod p.$$

We have $\binom{mp+i}{i} \equiv 1 \mod p$ by Lucas' theorem, and therefore $\operatorname{val}_p(u_n) = w(n)$.

Suppose now that $n \equiv -1 \mod q$. Then i = p - 1, and Proposition 3.9 tells us that

$$u_n \equiv \binom{n}{p-1}^{-1} u_{mp} \cdot u_{p-1} + p\zeta_{p-1,m} \cdot u_{n-q+1} \bmod p^2.$$

We have $\zeta_{p-1,m} \equiv 0 \mod p$ by Lemma 3.10. Hence in fact $u_n \equiv {n \choose p-1}^{-1} u_{mp} u_{p-1} \mod p^2$. Since $\operatorname{val}_p(u_{mp} u_{p-1}) = w(n) < 2$ by Proposition 2.1(1), we again conclude that

$$\operatorname{val}_p(u_n) = \operatorname{val}_p(u_{mp}) + \operatorname{val}_p(u_{p-1}) = w(n).$$

To complete the induction step, we must show that $w(n) = p \operatorname{val}_p(u_{pn}) = \operatorname{val}_p(u_{pn}^p)$. In order to do this, we compare the coefficients of Z^{qn} in the functional equation for G(Z)

$$G([p]_{\rm LT}(Z)) = [p]_{\mathbf{G}_m}(G(Z)) = (1 + G(Z))^p - 1$$

modulo p^2 . Using Corollary 3.6 and Lemma 4.3, we see that

(\$)
$$u_n \equiv C_n = \sum_{\mathbf{k} \in X_{qn}} |S_p \cdot \mathbf{k}| \ u_{\mathbf{k}} \bmod p^2.$$

Define $\mathbf{k}_0 := (pn, pn, \cdots, pn)$. We will now proceed to show that in fact

(*)
$$\operatorname{val}_p(|S_p \cdot \mathbf{k}| u_{\mathbf{k}}) > w(n) \text{ for all } \mathbf{k} \in X_{qn} \setminus \{\mathbf{k}_0\}$$

Note that w(n) < 2 by Proposition 2.1(1) and that $u_{\mathbf{k}_0} = u_{pn}^p$. Hence congruence (\diamond) together with (\star) imply that $\operatorname{val}_p(u_n - u_{np}^p) > w(n)$. Since we already know that $\operatorname{val}_p(u_n) = w(n)$ this shows that $\operatorname{val}_p(u_{np}^p) = \operatorname{val}_p(u_n) = w(n)$ and completes the proof.

Since at least two entries of **k** must be distinct when $\mathbf{k} \neq \mathbf{k}_0$, we have $\operatorname{val}_p(|S_p \cdot \mathbf{k}|) = 1$ by Lemma 4.4, so we're reduced to showing that

$$(\star\star) \qquad \qquad \operatorname{val}_p(u_{\mathbf{k}}) > w(n) - 1 \quad \text{for all} \quad \mathbf{k} \in X_{qn} \setminus \{\mathbf{k}_0\}.$$

Fix $\mathbf{k} \in X_{qn} \setminus \{\mathbf{k}_0\}$. When $\mathbf{k} \notin q\mathbf{N}^p$, $(\star\star)$ is precisely the conclusion of Lemma 4.5, so we may assume that $\mathbf{k} \in q\mathbf{N}^p$. Write $\mathbf{k} = q\mathbf{m}$ for some $\mathbf{m} \in \mathbf{N}^p$, so that $|\mathbf{m}| = \frac{1}{q}|\mathbf{k}| = \frac{qn}{q} = n$. We first consider the case where $m_i < n$ for all i, so that by the inductive hypothesis we have $\operatorname{val}_p(u_{pm_i}) = w(m_i)/p$. Suppose that $\operatorname{val}_p(u_{pm_i}) > 1$ for some i. Then by Corollary 3.4(2) and Proposition 2.1(1),

$$\operatorname{val}_{p}(u_{\mathbf{k}}) \ge \operatorname{val}_{p}(u_{k_{i}}) = \operatorname{val}_{p}(u_{qm_{i}}) > \frac{1}{p} > \frac{1}{q-1} > w(n) - 1$$

and $(\star\star)$ holds. Otherwise, $\operatorname{val}_p(u_{pm_i}) \leq 1$ for all i and then by Corollary 3.4(1) we have

$$\operatorname{val}_p(u_{k_i}) = \operatorname{val}_p(u_{qm_i}) = \frac{1}{p} \operatorname{val}_p(u_{pm_i}) = \frac{1}{q} w(m_i).$$

Since $|\mathbf{m}| = n$, Proposition 2.1(6) gives

$$\operatorname{val}_p(u_{\mathbf{k}}) \ge \frac{1}{q} \sum w(m_i) \ge \frac{1}{q} \cdot w(n) > w(n) - 1$$

because w(n) < 1 + 1/(q-1) by Proposition 2.1(1). Hence $(\star\star)$ follows.

We're left with the case where at least one m_i is equal to n. But then since $|\mathbf{m}| = n$, all other m_j 's are zero and such \mathbf{m} 's form a single S_p -orbit of size p. Hence we have to show (**) holds when $\mathbf{k} = (0, 0, \dots, qn)$.

The congruence (\diamond) together with our estimates above implies

$$\operatorname{val}_p(u_n - (u_{np}^p + pu_{nq})) > w(n).$$

Now, $u_{np} \equiv u_{nq}^p \mod p$ by Corollary 3.3 so that $u_{np}^p \equiv u_{nq}^q \mod p^2$. Therefore

$$\operatorname{val}_p(u_n - (u_{nq}^q + pu_{nq})) > w(n).$$

Since we already know that $\operatorname{val}_p(u_n) = w(n)$, we get that

$$\operatorname{val}_p(u_{nq}^q + pu_{nq}) = w(n)$$

We will now see that $\operatorname{val}_p(pu_{nq}) \leq w(n)$ is not possible. Indeed, if $\operatorname{val}_p(pu_{nq}) = w(n)$, then $\operatorname{val}_p(u_{nq}^q) \geq w(n)$ so that $\operatorname{val}_p(u_{nq}) \geq w(n)/q$ and $\operatorname{val}_p(pu_{nq}) \geq 1 + w(n)/q > w(n)$. And if $\operatorname{val}_p(pu_{nq}) < w(n)$ then $\operatorname{val}_p(pu_{nq}) = \operatorname{val}_p(u_{nq}^q)$, so $\operatorname{val}_p(u_{nq}) = 1/(q-1)$. But then $\operatorname{val}_p(pu_{nq}) > 1 + 1/(q-1) > w(n)$ by Proposition 2.1(1).

Hence $\operatorname{val}_p(pu_{nq}) > w(n)$ after all, which is $(\star\star)$ for $\mathbf{k} = (0, 0, \cdots, 0, qn)$.

References

- [AB24] K. Ardakov and L. Berger, Bounded functions on the character variety, Münster J. Math. (2024), to appear.
- [Haz12] M. Hazewinkel, Formal groups and applications, AMS Chelsea Publishing, Providence, RI, 2012, Corrected reprint of the 1978 original.
- [Mon52] A. F. Monna, Sur une transformation simple des nombres p-adiques en nombres réels, Indag. Math. 14 (1952), 1–9, Nederl. Akad. Wetensch. Proc. Ser. A 55.

[ST01] P. Schneider and J. Teitelbaum, *p-adic Fourier theory*, Doc. Math. 6 (2001), 447–481.

KONSTANTIN ARDAKOV, MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD Email address: ardakov@maths.ox.ac.uk URL: http://people.maths.ox.ac.uk/ardakov/

LAURENT BERGER, UMPA, ENS DE LYON, UMR 5669 DU CNRS Email address: laurent.berger@ens-lyon.fr URL: https://perso.ens-lyon.fr/laurent.berger/