RIGIDITY AND UNLIKELY INTERSECTIONS FOR FORMAL GROUPS

by

Laurent Berger

Abstract. — Let K be a p-adic field and let F and G be two formal groups over the integers of K. We prove that if F and G have infinitely many torsion points in common, then F = G. This follows from a rigidity result: any bounded power series that sends infinitely many torsion points of F to torsion points of F is an endomorphism of F.

Contents

Introduction	1
1. Formal groups	2
2. <i>p</i> -adic dynamical systems	3
3. Rigidity and unlikely intersections	4
4. Generalizations and perspectives	5
References	8

Introduction

Let K be a finite extension of \mathbf{Q}_p (or, more generally, a finite extension of W(k)[1/p]where k is a perfect field of characteristic p). Let \overline{K} be an algebraic closure of K and let \mathbf{C}_p be the p-adic completion of \overline{K} . Let \mathcal{O}_K denote the ring of integers of K, and let $F(X,Y) = X \oplus Y \in \mathcal{O}_K[X,Y]$ be a formal group law over \mathcal{O}_K . Let $\operatorname{Tors}(F)$ be the set of torsion points of F in $\mathfrak{m}_{\mathbf{C}_p} = \{z \in \mathbf{C}_p, |z|_p < 1\}$. The question that motivates this paper is: to what extent is a formal group F determined by $\operatorname{Tors}(F)$? Our main result is an "unlikely intersections" result.

Theorem A. — If F and G are two formal groups over \mathcal{O}_K and if $\operatorname{Tors}(F) \cap \operatorname{Tors}(G)$ is infinite, then F = G.

2010 Mathematics Subject Classification. — 11S31 (11F80; 11S82; 13J05; 37P35). Key words and phrases. — Rigidity; unlikely intersections; formal groups; *p*-adic dynamical systems; preperiodic points.

LAURENT BERGER

If $n \ge 2$ and [n](X) denotes the multiplication by n map on F, then Tors(F) is also the set of preperiodic points of [n](X) in $\mathfrak{m}_{\mathbf{C}_p}$. We can therefore think of Tors(F) as the set Preper(F) of preperiodic points of a p-adic dynamical system attached to F. Theorem A then becomes a statement about preperiodic points of certain dynamical systems.

Some analogues of theorem A are known in other contexts. For example, if two elliptic curves over $\overline{\mathbf{Q}}$ have infinitely many torsion points in common (in a suitable sense), then they are isomorphic (Bogomolov and Tschinkel, see §4 of [**BT07**]). In another context, if f and g are two rational fractions of degree at least 2 with coefficients in the complex numbers, and if Preper $(f) \cap$ Preper(g) is infinite, then Preper(f) = Preper(g) (Baker and DeMarco, theorem 1.2 of [**BD11**]). In this case, f and g have the same Julia set (corollary 1.3 of ibid.). One can then show that, if f and g are polynomials of the same degree, then in most cases they are equal up to a linear symmetry that preserves their common Julia set (see for instance [**BE87**] and [**SS95**]).

Our proof of theorem A relies on a rigidity result for formal groups. We say that a subset $Z \subset \mathfrak{m}^d_{\mathbf{C}_p}$ is Zariski dense in $\mathfrak{m}^d_{\mathbf{C}_p}$ if every power series $h(X_1, \ldots, X_d) \in \mathcal{O}_K[\![X_1, \ldots, X_d]\!]$ that vanishes on Z is necessarily equal to zero. For example, if d = 1 then $Z \subset \mathfrak{m}_{\mathbf{C}_p}$ is Zariski dense in $\mathfrak{m}_{\mathbf{C}_p}$ if and only if it is infinite.

Theorem B. — If F is a formal group over \mathcal{O}_K and if $h(X) \in X \cdot \mathcal{O}_K[\![X]\!]$ is such that $h(z) \in \operatorname{Tors}(F)$ for infinitely many $z \in \operatorname{Tors}(F)$, then $h \in \operatorname{End}(F)$.

More generally, if $h(X_1, \ldots, X_d) \in \mathcal{O}_K[\![X_1, \ldots, X_d]\!]$ is such that h(0) = 0 and $h(z) \in$ Tors(F) for all z in a subset of Tors(F)^d that is Zariski dense in $\mathfrak{m}^d_{\mathbf{C}_p}$, then there exists $h_1, \ldots, h_d \in$ End(F) such that $h = h_1(X_1) \oplus \cdots \oplus h_d(X_d)$.

This theorem generalizes corollary 4.2 of Hida's [Hid14], which concerns the case $F = \mathbf{G}_m$. Our proof uses ideas coming from the theory of *p*-adic dynamical systems (developed in large part by Lubin, see [Lub94]) rather than the "special subvarieties" argument of Hida (which is in the spirit of Chai's [Cha08]). Other kinds of "unlikely intersections" results for certain formal groups can be found in [Ser18].

1. Formal groups

For the basic definitions and results about formal groups that we need, we refer for instance to Lubin's [Lub64, Lub67]. Let $F(X, Y) = X \oplus Y \in \mathcal{O}_K[\![X, Y]\!]$ be a formal group law over \mathcal{O}_K . If $n \in \mathbb{Z}$, let [n](X) denote the multiplication by n map on F. More generally, if $a \in \mathcal{O}_K$, let [a](X) be the unique endomorphism of F such that [a]'(0) = aif it exists (it always does if $a \in \mathbb{Z}_p$). Let $\operatorname{Tors}(F)$ be the set of torsion points of F. If F is of finite height, then Tors(F) is infinite, while if F is of infinite height, then Tors(F) is finite and our results are vacuous. We therefore assume from now on that F is of finite height h.

Let $T_pF = \varprojlim_n F[p^n]$ be the Tate module of F. If F is of height h, then T_pF is a free \mathbb{Z}_p -module of rank h, equipped with an action of $\operatorname{Gal}(\overline{K}/K)$. If we choose a basis of T_pF , this gives rise to a Galois representation $\rho_F : \operatorname{Gal}(\overline{K}/K) \to \operatorname{GL}_h(\mathbb{Q}_p)$. Let E be the fraction field of $\operatorname{End}(F)$. It is a finite extension of \mathbb{Q}_p whose degree e divides h (theorem 2.3.2 of [Lub64]), so that we can view $\operatorname{GL}_{h/e}(E)$ as a subgroup of $\operatorname{GL}_h(\mathbb{Q}_p)$.

Theorem 1.1. — The image of ρ_F has an open subgroup that is an open subgroup of a conjugate of $\operatorname{GL}_{h/e}(E)$.

Proof. — This is an unpublished theorem of Serre (see however the remark after theorem 5 on page 130 of [Ser67]), which is proved in [Sen73] (see theorem 3 on page 168 and the remark that follows). \Box

Corollary 1.2. — The image of ρ_F contains an open subgroup of $\mathbf{Z}_p^{\times} \cdot \mathrm{Id}$.

Note that if $\sigma \in \text{Gal}(\overline{K}/K)$ and $a \in \mathbb{Z}_p^{\times}$ are such that $\rho_F(\sigma) = a \cdot \text{Id}$, then $\sigma(z) = [a](z)$ for all $z \in \text{Tors}(F)$.

2. *p*-adic dynamical systems

In this §, we prove a number of results about power series that commute under composition (sometimes also called permutable power series). These results are all inspired by Lubin's theory of p-adic dynamical systems (see [Lub94]).

A power series $h(X) \in X \cdot K[X]$ is said to be stable if h'(0) is neither 0 nor a root of unity. If $h'(0) \neq 0$, then there exists a unique power series $h^{\circ -1}(X) \in X \cdot K[X]$ such that $h \circ h^{\circ -1} = h^{\circ -1} \circ h = X$. If in addition $h(X) \in X \cdot \mathcal{O}_K[X]$ and $h'(0) \in \mathcal{O}_K^{\times}$, then $h^{\circ -1}(X) \in X \cdot \mathcal{O}_K[X]$.

Theorem 2.1. — Let $u(X) \in X \cdot K[X]$ be a stable power series.

A power series $h(X_1, \ldots, X_d) \in K[\![X_1, \ldots, X_d]\!]$ such that h(0) = 0 and such that $h \circ u = u \circ h$ is determined by $\{dh/dX_i(0)\}_{1 \leq i \leq d}$.

Proof. — Suppose that $h^{(1)}$ and $h^{(2)}$ are two such power series, and that they coincide in degrees $\leq m$. Let h_m be the sum of the terms of $h^{(i)}$ of total degree $\leq m$. We have $h^{(i)} = h_m + r^{(i)}$ with $r^{(i)}$ of degree $\geq m + 1$, and

$$(h_m + r^{(i)}) \circ u = h_m \circ u + r^{(i)} \circ u \equiv h_m \circ u + u'(0)^{m+1} r^{(i)} \mod \deg(m+2),$$
$$u \circ (h_m + r^{(i)}) \equiv u \circ h_m + r^{(i)} u'(h_m) \equiv u \circ h_m + r^{(i)} u'(0) \mod \deg(m+2).$$

Since $u'(0)^m \neq 1$, the fact that $h^{(i)} \circ u = u \circ h^{(i)}$ implies that

$$r^{(i)} \equiv \frac{h_m \circ u - u \circ h_m}{u'(0) - u'(0)^{m+1}} \mod \deg(m+2).$$

If $h^{(1)}$ and $h^{(2)}$ coincide in degrees $\leq m$, they therefore have to coincide in degrees $\leq m+1$. This implies the theorem by induction on m.

Let us say that an endomorphism of a formal group is stable if the corresponding power series is stable.

Corollary 2.2. — Let F be a formal group and let u be a stable endomorphism of F. If $h(X) \in X \cdot \mathcal{O}_K[\![X]\!]$ is such that $h \circ u = u \circ h$, then h is an endomorphism of F.

Proof. — The power series $F \circ h$ and $h \circ F$ both commute with u, and have the same derivatives at 0, so that $F \circ h = h \circ F$ by theorem 2.1.

Corollary 2.3. — If u is a stable endomorphism of a formal group and if $h(X_1, \ldots, X_d) \in \mathcal{O}_K[\![X_1, \ldots, X_d]\!]$ is such that h(0) = 0 and $h \circ u = u \circ h$, then there exists $a_1 \ldots, a_d \in \mathcal{O}_K$ such that $h(X_1, \ldots, X_d) = [a_1](X_1) \oplus \cdots \oplus [a_d](X_d)$.

Proof. — Let $h_i(X)$ be the power series h evaluated at $X_i = X$ and $X_k = 0$ for $k \neq i$. We have $h_i \circ u = u \circ h_i$ and hence by corollary 2.2, $h_i(X) = [a_i](X)$ where $a_i = h'_i(0) \in \mathcal{O}_K$. The two power series $h(X_1, \ldots, X_d)$ and $[a_1](X_1) \oplus \cdots \oplus [a_d](X_d)$ commute with u and have the same derivatives at 0, so that they are equal by theorem 2.1.

3. Rigidity and unlikely intersections

We first recall and prove theorem B.

Theorem 3.1. — If F is a formal group over \mathcal{O}_K and if $h(X_1, \ldots, X_d) \in \mathcal{O}_K[\![X_1, \ldots, X_d]\!]$ is such that h(0) = 0 and $h(z) \in \operatorname{Tors}(F)$ for all z in a subset Z of $\operatorname{Tors}(F)^d$ that is Zariski dense in $\mathfrak{m}^d_{\mathbf{C}_p}$, then there exists $h_1, \ldots, h_d \in \operatorname{End}(F)$ such that $h = h_1(X_1) \oplus \cdots \oplus h_d(X_d)$.

Proof. — Since $\operatorname{Tors}(F)$ is infinite, F is of finite height. By corollary 1.2, there exists $\sigma \in \operatorname{Gal}(\overline{K}/K)$ and a stable endomorphism u of F such that $\sigma(z) = u(z)$ for all $z \in \operatorname{Tors}(F)$. If $z \in Z$, then we have $\sigma(h(z)) = u(h(z))$ as well as $\sigma(h(z)) = h(\sigma(z)) = h(u(z))$. The

 $\mathbf{5}$

power series $u \circ h - h \circ u$ therefore vanishes on Z. Since Z is Zariski dense in $\mathfrak{m}^d_{\mathbf{C}_p}$, we have $u \circ h = h \circ u$. The theorem now follows from corollary 2.3.

Remark 3.2. — If Y_1, \ldots, Y_d are infinite subsets of Tors(F), then $Y_1 \times \cdots \times Y_d$ is Zariski dense in $\mathfrak{m}^d_{\mathbf{C}_p}$.

We now recall and prove theorem A.

Theorem 3.3. — If F and G are two formal groups over \mathcal{O}_K and if $\operatorname{Tors}(F) \cap \operatorname{Tors}(G)$ is infinite, then F = G.

Proof. — By corollary 1.2, there exists an element $\sigma \in \operatorname{Gal}(\overline{K}/K)$ and a stable endomorphism u of F such that $\sigma(z) = u(z)$ for all $z \in \operatorname{Tors}(F)$. The set $\Lambda = \operatorname{Tors}(F) \cap \operatorname{Tors}(G)$ is stable under the action of $\operatorname{Gal}(\overline{K}/K)$. If $z \in \Lambda$, we therefore have $\sigma(z) \in \Lambda$ and hence $u(z) \in \operatorname{Tors}(G)$ for all $z \in \Lambda$, since $u(z) = \sigma(z)$. By theorem B applied to G, we get that $u \in \operatorname{End}(G)$. The power series F and G commute with u and have the same linear terms, hence F = G by theorem 2.1.

4. Generalizations and perspectives

4.1. Universal bounds. — In §4 of [**BT07**], Bogomolov and Tschinkel prove that two nonisomorphic elliptic curves over $\overline{\mathbf{Q}}$ have only finitely many torsion points in common. In [**BFT18**], the authors raise the question of the existence of a universal bound for the maximum number of torsion points that two nonisomorphic elliptic curves over $\overline{\mathbf{Q}}$ (or even over the complex numbers) can share. The same kind of question is raised, for preperiodic points of rational fractions, in conjecture 1.4 of [**DKY19**].

The following proposition shows that in our situation, there is no straightforward refinement of theorem A.

Proposition 4.1. — For all $n \ge 1$, there exists a formal group F over \mathbb{Z}_p , of height 1, such that F is not isomorphic to \mathbb{G}_m but such that $\operatorname{Tors}(F) \cap \operatorname{Tors}(\mathbb{G}_m)$ contains at least n points.

Proof. — Take $n \ge 1$ and let $u(X) = 1 + p \cdot ((1+X)^{p^n} - 1)/X$ and $q(X) = (1+X)^p - 1$ and f(X) = u(X)q(X). We have $f(X) = p(1+p^{n+1})X + O(X^2)$ and $f(X) \equiv X^p \mod p$.

By Lubin-Tate theory (see §1 of [**LT65**]) there exists a formal group F such that $[p(1 + p^{n+1})](X) = f(X)$. This group is attached to the uniformizer $p(1 + p^{n+1})$ of \mathbf{Q}_p . Likewise, \mathbf{G}_m is attached to p. The formal group F is not isomorphic to \mathbf{G}_m over \mathbf{Q}_p as $p \neq p(1 + p^{n+1})$ and any Lubin-Tate group attached to a uniformizer π determines π .

LAURENT BERGER

However, we have $f(\zeta_p - 1) = 0$ and $f(\zeta_{p^k} - 1) = \zeta_{p^{k-1}} - 1$ for all $k \leq n$, so that $\zeta_{p^k} - 1 \in \text{Tors}(F)$ for all $k \leq n$. This proves the proposition.

If $Tors(F) \cap Tors(G)$ is large, then are F and G close to each other in some sense?

4.2. The logarithm of a formal group. — Using the logarithms of formals groups, we can give a very short proof of a weaker form of theorem A, namely: if $\operatorname{Tors}(F) = \operatorname{Tors}(G)$ (and this common set is infinite), then F = G. Indeed, Log_F is holomorphic on $\mathfrak{m}_{\mathbf{C}_P}$ and its zeroes are precisely the elements of $\operatorname{Tors}(F)$, with multiplicity 1. In addition, Log'_F is a bounded power series since dLog_F is the normalized invariant differential on F. If $\operatorname{Tors}(F) = \operatorname{Tors}(G)$, then Log_F and Log_G have the same zeroes, so that they differ by a unit u. A unit is necessarily bounded. We have $\operatorname{Log}_G = u \cdot \operatorname{Log}_F$ and hence $\operatorname{Log}'_G = u \cdot \operatorname{Log}'_F + u' \cdot \operatorname{Log}_F$. Since Log'_G and Log'_F and u are bounded, but not Log_F , we must have u' = 0 (the sup norms $\|\cdot\|_r$ on circles are multiplicative). This implies that $u \in \mathcal{O}_K^{\times}$ and then that u = 1 since $\operatorname{Log}'_F(0) = \operatorname{Log}'_G(0) = 1$, so that $\operatorname{Log}_F = \operatorname{Log}_G$ and F = G. The same argument gives the following characterization of the logarithm of a formal group of finite height.

Proposition 4.2. — If F is a formal group of finite height, then the power series Log_F is the unique element of $X + X^2 \cdot K[X]$ that is holomorphic on $\mathfrak{m}_{\mathbf{C}_p}$, whose zero set is precisely Tors(F), with multiplicity 1, and whose derivative is bounded.

4.3. More rigidity. — A common generalization of theorems A and B would be the assertion that if a power series h maps infinitely many torsion points of F to torsion points of G, then $h \in \text{Hom}(F, G)$. In order to prove this using the same method as in the proof of theorem B, we would need to show that there exists $\sigma \in \text{Gal}(\overline{K}/K)$ that acts on Tors(F) and Tors(G) by two power series u_F and u_G , satisfying some stability condition. If G is a Lubin-Tate formal group (for some finite extension of \mathbf{Q}_p contained in K), there is a character $\chi_G : \text{Gal}(\overline{K}/K) \to \mathcal{O}_K^{\times}$ such that $\sigma(z) = [\chi_G(\sigma)](z)$ for all $z \in \text{Tors}(G)$ (theorem 2 of [LT65]).

Theorem 4.3. — If F is a formal group and G is a Lubin-Tate formal group, both defined over \mathcal{O}_K , and if $h(X) \in X \cdot \mathcal{O}_K[X]$ is such that $h'(0) \neq 0$ and $h(z) \in \text{Tors}(G)$ for infinitely many $z \in \text{Tors}(F)$, then $h \in \text{Hom}(F, G)$.

Proof. — Since $\operatorname{Tors}(F)$ is infinite, F is of finite height. By corollary 1.2, there exists an element $\sigma \in \operatorname{Gal}(\overline{K}/K)$ and a stable endomorphism u_F of F such that $\sigma(z_F) = u_F(z_F)$ if $z_F \in \operatorname{Tors}(F)$. Let $u_G(X) = [\chi_G(\sigma)](X)$, so that $\sigma(z_G) = u_G(z_G)$ if $z_G \in \operatorname{Tors}(G)$.

If $z \in \text{Tors}(F)$ is such that $h(z) \in \text{Tors}(G)$, then $\sigma(h(z)) = u_G(h(z))$ and $\sigma(h(z)) = h(\sigma(z)) = h(u_F(z))$. The power series $u_G \circ h - h \circ u_F$ therefore vanishes at infinitely many points of $\mathfrak{m}_{\mathbf{C}_p}$, so that $u_G \circ h = h \circ u_F$. Since $h'(0) \neq 0$, we have $u'_F(0) = u'_G(0)$ and u_G is stable. The theorem now follows from lemma 4.4 below. \Box

Lemma 4.4. — Let F and G be two formal groups and let f and g be endomorphisms of F and G, with g stable. If $h(X) \in X \cdot \mathcal{O}_K[X]$ is such that $h'(0) \neq 0$ and $h \circ f = g \circ h$, then $h \in \text{Hom}(F, G)$.

Proof. — Consider the power series $K(X, Y) = h \circ F(h^{\circ -1}(X), h^{\circ -1}(Y))$. We have $K \circ g = h \circ F \circ h^{\circ -1} \circ g = h \circ F \circ f \circ h^{\circ -1} = h \circ f \circ F \circ h^{\circ -1} = g \circ h \circ F \circ h^{\circ -1} = g \circ K$ Since K and G commute with g and have the same derivatives at 0, we have K = G by theorem 2.1 and hence $h \circ F = G \circ h$, so that $h \in \text{Hom}(F, G)$.

Note that the hypotheses of the lemma imply that f'(0) = g'(0) so that if one series is stable, then both are.

4.4. Homotheties and stable *p*-adic dynamical systems. — If *F* is a formal group of finite height, then $\operatorname{End}(F)$ is a set of power series that commute with each other under composition. One can forget about the formal group and study certain sets \mathcal{D} of elements of $X \cdot \mathcal{O}_K[X]$ that commute with each other under composition. This is the object of Lubin's theory of *p*-adic dynamical systems (see [Lub94]).

Let us say that $\mathcal{D} \subset X \cdot \mathcal{O}_K[\![X]\!]$ is a stable *p*-adic dynamical system of finite height if the elements of \mathcal{D} commute with each other under composition, and if \mathcal{D} contains a stable series *f* such that $f'(0) \in \mathfrak{m}_K$ and $f(X) \not\equiv 0 \mod \mathfrak{m}_K$ (i.e. *f* is of finite height) as well as a stable series *u* such that $u'(0) \in \mathcal{O}_K^{\times}$. We can then assume that \mathcal{D} is as large as possible, namely that any power series $g \in X \cdot \mathcal{O}_K[\![X]\!]$ that commutes with the elements of \mathcal{D} belongs to \mathcal{D} . For example, if *F* is a formal group of finite height, then $\operatorname{End}(F)$ is a stable *p*-adic dynamical system.

Given a stable *p*-adic dynamical system of finite height \mathcal{D} , the set of preperiodic points Preper(*g*) is independent of the choice of a stable $g \in \mathcal{D}$ (see §3 of [Lub94]). One can then define Preper(\mathcal{D}) as the preperiodic set of any stable element of \mathcal{D} . To what extent does Preper(\mathcal{D}) determine a stable *p*-adic dynamical system of finite height \mathcal{D} ?

In order to extend our results from formal groups to stable *p*-adic dynamical systems of finite height, we can ask whether the consequence of corollary 1.2 holds in more generality: for which stable *p*-adic dynamical systems of finite height \mathcal{D} is there a stable power series $w \in \mathcal{D}$ and an element $\sigma \in \text{Gal}(\overline{K}/K)$ such that $\sigma(z) = w(z)$ for all $z \in \text{Preper}(\mathcal{D})$?

LAURENT BERGER

Acknowledgements. — This paper is motivated by Holly Krieger's talk "A dynamical approach to common torsion points" at the CNTA XV meeting. I am grateful to Holly Krieger for useful discussions and to the organizers of CNTA XV for inviting me. I also thank Dario Antolini for useful comments.

References

- [BD11] M. BAKER & L. DEMARCO – "Preperiodic points and unlikely intersections", Duke *Math. J.* **159** (2011), no. 1, p. 1–29.
- I. N. BAKER & A. ERËMENKO "A problem on Julia sets", Ann. Acad. Sci. Fenn. [BE87] Ser. A I Math. 12 (1987), no. 2, p. 229–236.
- F. BOGOMOLOV, H. FU & Y. TSCHINKEL "Torsion of elliptic curves and unlikely [BFT18] intersections", in Geometry and Physics: Volume I. A Festschrift in honour of Nigel Hitchin, Oxford University Press, 2018, p. 19–38.
- F. BOGOMOLOV & Y. TSCHINKEL "Algebraic varieties over small fields", in Dio-[BT07] phantine geometry, CRM Series, vol. 4, Ed. Norm., Pisa, 2007, p. 73–91.
- [Cha08]C.-L. CHAI – "A rigidity result for p-divisible formal groups", Asian J. Math. 12 (2008), no. 2, p. 193–202.
- [DKY19] L. DEMARCO, H. KRIEGER & H. YE "Common preperiodic points for quadratic polynomials", preprint, 2019.
- H. HIDA "Hecke fields of Hilbert modular analytic families", in Automorphic forms [Hid14] and related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol. 614, Amer. Math. Soc., Providence, RI, 2014, p. 97–137.
- [LT65] J. LUBIN & J. TATE – "Formal complex multiplication in local fields", Ann. of Math. (2) **81** (1965), p. 380–387.
- [Lub64] J. LUBIN - "One-parameter formal Lie groups over p-adic integer rings", Ann. of Math. (2) 80 (1964), p. 464–484.
- [Lub67] _____, "Finite subgroups and isogenies of one-parameter formal Lie groups", Ann. of Math. (2) 85 (1967), p. 296–302.
- _____, "Nonarchimedean dynamical systems", Compositio Math. 94 (1994), no. 3, [Lub94] p. 321-346.
- S. SEN "Lie algebras of Galois groups arising from Hodge-Tate modules", Ann. of [Sen73] *Math. (2)* **97** (1973), p. 160–170.
- [Ser67] J.-P. SERRE – "Sur les groupes de Galois attachés aux groupes p-divisibles", in Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, p. 118–131.
- V. SERBAN "An infinitesimal *p*-adic multiplicative Manin-Mumford conjecture", J. [Ser18] Théor. Nombres Bordeaux **30** (2018), no. 2, p. 393–408.
- [SS95] W. SCHMIDT & N. STEINMETZ – "The polynomials associated with a Julia set", Bull. London Math. Soc. 27 (1995), no. 3, p. 239–241.

8

LAURENT BERGER