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Abstract. — Let K be a p-adic field and let F and G be two formal groups over the
integers of K. We prove that if F and G have infinitely many torsion points in common,
then F = G. This follows from a rigidity result: any bounded power series that sends
infinitely many torsion points of F to torsion points of F is an endomorphism of F .
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Introduction

Let K be a finite extension of Qp (or, more generally, a finite extension of W (k)[1/p]
where k is a perfect field of characteristic p). Let K be an algebraic closure of K and
let Cp be the p-adic completion of K. Let OK denote the ring of integers of K, and let
F (X, Y ) = X ⊕ Y ∈ OK [[X, Y ]] be a formal group law over OK . Let Tors(F ) be the set
of torsion points of F in mCp = {z ∈ Cp, |z|p < 1}. The question that motivates this
paper is: to what extent is a formal group F determined by Tors(F )? Our main result is
an “unlikely intersections” result.

Theorem A. — If F and G are two formal groups over OK and if Tors(F ) ∩ Tors(G)
is infinite, then F = G.
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If n > 2 and [n](X) denotes the multiplication by n map on F , then Tors(F ) is also the
set of preperiodic points of [n](X) in mCp . We can therefore think of Tors(F ) as the set
Preper(F ) of preperiodic points of a p-adic dynamical system attached to F . Theorem
A then becomes a statement about preperiodic points of certain dynamical systems.

Some analogues of theorem A are known in other contexts. For example, if two elliptic
curves over Q have infinitely many torsion points in common (in a suitable sense), then
they are isomorphic (Bogomolov and Tschinkel, see §4 of [BT07]). In another context,
if f and g are two rational fractions of degree at least 2 with coefficients in the complex
numbers, and if Preper(f) ∩ Preper(g) is infinite, then Preper(f) = Preper(g) (Baker
and DeMarco, theorem 1.2 of [BD11]). In this case, f and g have the same Julia set
(corollary 1.3 of ibid.). One can then show that, if f and g are polynomials of the same
degree, then in most cases they are equal up to a linear symmetry that preserves their
common Julia set (see for instance [BE87] and [SS95]).

Our proof of theorem A relies on a rigidity result for formal groups. We say that a subset
Z ⊂ md

Cp
is Zariski dense in md

Cp
if every power series h(X1, . . . , Xd) ∈ OK [[X1, . . . , Xd]]

that vanishes on Z is necessarily equal to zero. For example, if d = 1 then Z ⊂ mCp is
Zariski dense in mCp if and only if it is infinite.

Theorem B. — If F is a formal group over OK and if h(X) ∈ X · OK [[X]] is such that
h(z) ∈ Tors(F ) for infinitely many z ∈ Tors(F ), then h ∈ End(F ).
More generally, if h(X1, . . . , Xd) ∈ OK [[X1, . . . , Xd]] is such that h(0) = 0 and h(z) ∈

Tors(F ) for all z in a subset of Tors(F )d that is Zariski dense in md
Cp
, then there exists

h1, . . . , hd ∈ End(F ) such that h = h1(X1)⊕ · · · ⊕ hd(Xd).

This theorem generalizes corollary 4.2 of Hida’s [Hid14], which concerns the case
F = Gm. Our proof uses ideas coming from the theory of p-adic dynamical systems
(developed in large part by Lubin, see [Lub94]) rather than the “special subvarieties”
argument of Hida (which is in the spirit of Chai’s [Cha08]). Other kinds of “unlikely
intersections” results for certain formal groups can be found in [Ser18].

1. Formal groups

For the basic definitions and results about formal groups that we need, we refer for
instance to Lubin’s [Lub64, Lub67]. Let F (X, Y ) = X ⊕ Y ∈ OK [[X, Y ]] be a formal
group law over OK . If n ∈ Z, let [n](X) denote the multiplication by n map on F . More
generally, if a ∈ OK , let [a](X) be the unique endomorphism of F such that [a]′(0) = a

if it exists (it always does if a ∈ Zp). Let Tors(F ) be the set of torsion points of F . If F
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is of finite height, then Tors(F ) is infinite, while if F is of infinite height, then Tors(F ) is
finite and our results are vacuous. We therefore assume from now on that F is of finite
height h.

Let TpF = lim←−n
F [pn] be the Tate module of F . If F is of height h, then TpF is a

free Zp-module of rank h, equipped with an action of Gal(K/K). If we choose a basis of
TpF , this gives rise to a Galois representation ρF : Gal(K/K)→ GLh(Qp). Let E be the
fraction field of End(F ). It is a finite extension of Qp whose degree e divides h (theorem
2.3.2 of [Lub64]), so that we can view GLh/e(E) as a subgroup of GLh(Qp).

Theorem 1.1. — The image of ρF has an open subgroup that is an open subgroup of a
conjugate of GLh/e(E).

Proof. — This is an unpublished theorem of Serre (see however the remark after theorem
5 on page 130 of [Ser67]), which is proved in [Sen73] (see theorem 3 on page 168 and
the remark that follows).

Corollary 1.2. — The image of ρF contains an open subgroup of Z×p · Id.

Note that if σ ∈ Gal(K/K) and a ∈ Z×p are such that ρF (σ) = a · Id, then σ(z) = [a](z)
for all z ∈ Tors(F ).

2. p-adic dynamical systems

In this §, we prove a number of results about power series that commute under com-
position (sometimes also called permutable power series). These results are all inspired
by Lubin’s theory of p-adic dynamical systems (see [Lub94]).

A power series h(X) ∈ X · K[[X]] is said to be stable if h′(0) is neither 0 nor a root
of unity. If h′(0) 6= 0, then there exists a unique power series h◦−1(X) ∈ X ·K[[X]] such
that h ◦ h◦−1 = h◦−1 ◦ h = X. If in addition h(X) ∈ X · OK [[X]] and h′(0) ∈ O×K , then
h◦−1(X) ∈ X · OK [[X]].

Theorem 2.1. — Let u(X) ∈ X ·K[[X]] be a stable power series.
A power series h(X1, . . . , Xd) ∈ K[[X1, . . . , Xd]] such that h(0) = 0 and such that

h ◦ u = u ◦ h is determined by {dh/dXi(0)}16i6d.

Proof. — Suppose that h(1) and h(2) are two such power series, and that they coincide
in degrees 6 m. Let hm be the sum of the terms of h(i) of total degree 6 m. We have
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h(i) = hm + r(i) with r(i) of degree > m+ 1, and

(hm + r(i)) ◦ u = hm ◦ u+ r(i) ◦ u ≡ hm ◦ u+ u′(0)m+1r(i) mod deg(m+ 2),

u ◦ (hm + r(i)) ≡ u ◦ hm + r(i)u′(hm) ≡ u ◦ hm + r(i)u′(0) mod deg(m+ 2).

Since u′(0)m 6= 1, the fact that h(i) ◦ u = u ◦ h(i) implies that

r(i) ≡ hm ◦ u− u ◦ hm

u′(0)− u′(0)m+1 mod deg(m+ 2).

If h(1) and h(2) coincide in degrees 6 m, they therefore have to coincide in degrees 6 m+1.
This implies the theorem by induction on m.

Let us say that an endomorphism of a formal group is stable if the corresponding power
series is stable.

Corollary 2.2. — Let F be a formal group and let u be a stable endomorphism of F .
If h(X) ∈ X · OK [[X]] is such that h ◦ u = u ◦ h, then h is an endomorphism of F .

Proof. — The power series F ◦ h and h ◦ F both commute with u, and have the same
derivatives at 0, so that F ◦ h = h ◦ F by theorem 2.1.

Corollary 2.3. — If u is a stable endomorphism of a formal group and if h(X1, . . . , Xd) ∈
OK [[X1, . . . , Xd]] is such that h(0) = 0 and h ◦ u = u ◦h, then there exists a1 . . . , ad ∈ OK

such that h(X1, . . . , Xd) = [a1](X1)⊕ · · · ⊕ [ad](Xd).

Proof. — Let hi(X) be the power series h evaluated at Xi = X and Xk = 0 for k 6= i. We
have hi ◦ u = u ◦ hi and hence by corollary 2.2, hi(X) = [ai](X) where ai = h′i(0) ∈ OK .
The two power series h(X1, . . . , Xd) and [a1](X1) ⊕ · · · ⊕ [ad](Xd) commute with u and
have the same derivatives at 0, so that they are equal by theorem 2.1.

3. Rigidity and unlikely intersections

We first recall and prove theorem B.

Theorem 3.1. — If F is a formal group over OK and if h(X1, . . . , Xd) ∈ OK [[X1, . . . , Xd]]
is such that h(0) = 0 and h(z) ∈ Tors(F ) for all z in a subset Z of Tors(F )d that is Zariski
dense in md

Cp
, then there exists h1, . . . , hd ∈ End(F ) such that h = h1(X1)⊕· · ·⊕hd(Xd).

Proof. — Since Tors(F ) is infinite, F is of finite height. By corollary 1.2, there exists σ ∈
Gal(K/K) and a stable endomorphism u of F such that σ(z) = u(z) for all z ∈ Tors(F ).
If z ∈ Z, then we have σ(h(z)) = u(h(z)) as well as σ(h(z)) = h(σ(z)) = h(u(z)). The
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power series u ◦ h − h ◦ u therefore vanishes on Z. Since Z is Zariski dense in md
Cp

, we
have u ◦ h = h ◦ u. The theorem now follows from corollary 2.3.

Remark 3.2. — If Y1, . . . , Yd are infinite subsets of Tors(F ), then Y1×· · ·×Yd is Zariski
dense in md

Cp
.

We now recall and prove theorem A.

Theorem 3.3. — If F and G are two formal groups over OK and if Tors(F )∩Tors(G)
is infinite, then F = G.

Proof. — By corollary 1.2, there exists an element σ ∈ Gal(K/K) and a stable endomor-
phism u of F such that σ(z) = u(z) for all z ∈ Tors(F ). The set Λ = Tors(F ) ∩ Tors(G)
is stable under the action of Gal(K/K). If z ∈ Λ, we therefore have σ(z) ∈ Λ and hence
u(z) ∈ Tors(G) for all z ∈ Λ, since u(z) = σ(z). By theorem B applied to G, we get that
u ∈ End(G). The power series F and G commute with u and have the same linear terms,
hence F = G by theorem 2.1.

4. Generalizations and perspectives

4.1. Universal bounds. — In §4 of [BT07], Bogomolov and Tschinkel prove that two
nonisomorphic elliptic curves over Q have only finitely many torsion points in common.
In [BFT18], the authors raise the question of the existence of a universal bound for
the maximum number of torsion points that two nonisomorphic elliptic curves over Q
(or even over the complex numbers) can share. The same kind of question is raised, for
preperiodic points of rational fractions, in conjecture 1.4 of [DKY19].

The following proposition shows that in our situation, there is no straightforward re-
finement of theorem A.

Proposition 4.1. — For all n > 1, there exists a formal group F over Zp, of height 1,
such that F is not isomorphic to Gm but such that Tors(F )∩Tors(Gm) contains at least
n points.

Proof. — Take n > 1 and let u(X) = 1 + p · ((1 +X)pn − 1)/X and q(X) = (1 +X)p− 1
and f(X) = u(X)q(X). We have f(X) = p(1 + pn+1)X + O(X2) and f(X) ≡ Xp mod p.

By Lubin-Tate theory (see §1 of [LT65]) there exists a formal group F such that
[p(1 + pn+1)](X) = f(X). This group is attached to the uniformizer p(1 + pn+1) of Qp.
Likewise, Gm is attached to p. The formal group F is not isomorphic to Gm over Qp as
p 6= p(1 + pn+1) and any Lubin-Tate group attached to a uniformizer π determines π.
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However, we have f(ζp − 1) = 0 and f(ζpk − 1) = ζpk−1 − 1 for all k 6 n, so that
ζpk − 1 ∈ Tors(F ) for all k 6 n. This proves the proposition.

If Tors(F ) ∩ Tors(G) is large, then are F and G close to each other in some sense?

4.2. The logarithm of a formal group. — Using the logarithms of formals groups,
we can give a very short proof of a weaker form of theorem A, namely: if Tors(F ) =
Tors(G) (and this common set is infinite), then F = G. Indeed, LogF is holomorphic on
mCp and its zeroes are precisely the elements of Tors(F ), with multiplicity 1. In addition,
Log′F is a bounded power series since dLogF is the normalized invariant differential on
F . If Tors(F ) = Tors(G), then LogF and LogG have the same zeroes, so that they
differ by a unit u. A unit is necessarily bounded. We have LogG = u · LogF and hence
Log′G = u · Log′F + u′ · LogF . Since Log′G and Log′F and u are bounded, but not LogF ,
we must have u′ = 0 (the sup norms ‖·‖r on circles are multiplicative). This implies that
u ∈ O×K and then that u = 1 since Log′F (0) = Log′G(0) = 1, so that LogF = LogG and
F = G. The same argument gives the following characterization of the logarithm of a
formal group of finite height.

Proposition 4.2. — If F is a formal group of finite height, then the power series LogF

is the unique element of X + X2 ·K[[X]] that is holomorphic on mCp, whose zero set is
precisely Tors(F ), with multiplicity 1, and whose derivative is bounded.

4.3. More rigidity. — A common generalization of theorems A and B would be the
assertion that if a power series h maps infinitely many torsion points of F to torsion
points of G, then h ∈ Hom(F,G). In order to prove this using the same method as in the
proof of theorem B, we would need to show that there exists σ ∈ Gal(K/K) that acts on
Tors(F ) and Tors(G) by two power series uF and uG, satisfying some stability condition.
If G is a Lubin-Tate formal group (for some finite extension of Qp contained in K), there
is a character χG : Gal(K/K) → O×K such that σ(z) = [χG(σ)](z) for all z ∈ Tors(G)
(theorem 2 of [LT65]).

Theorem 4.3. — If F is a formal group and G is a Lubin-Tate formal group, both
defined over OK, and if h(X) ∈ X · OK [[X]] is such that h′(0) 6= 0 and h(z) ∈ Tors(G)
for infinitely many z ∈ Tors(F ), then h ∈ Hom(F,G).

Proof. — Since Tors(F ) is infinite, F is of finite height. By corollary 1.2, there exists an
element σ ∈ Gal(K/K) and a stable endomorphism uF of F such that σ(zF ) = uF (zF ) if
zF ∈ Tors(F ). Let uG(X) = [χG(σ)](X), so that σ(zG) = uG(zG) if zG ∈ Tors(G).
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If z ∈ Tors(F ) is such that h(z) ∈ Tors(G), then σ(h(z)) = uG(h(z)) and σ(h(z)) =
h(σ(z)) = h(uF (z)). The power series uG ◦h−h◦uF therefore vanishes at infinitely many
points of mCp , so that uG ◦ h = h ◦ uF . Since h′(0) 6= 0, we have u′F (0) = u′G(0) and uG

is stable. The theorem now follows from lemma 4.4 below.

Lemma 4.4. — Let F and G be two formal groups and let f and g be endomorphisms
of F and G, with g stable. If h(X) ∈ X · OK [[X]] is such that h′(0) 6= 0 and h ◦ f = g ◦ h,
then h ∈ Hom(F,G).

Proof. — Consider the power series K(X, Y ) = h ◦ F (h◦−1(X), h◦−1(Y )). We have

K ◦ g = h ◦ F ◦ h◦−1 ◦ g = h ◦ F ◦ f ◦ h◦−1 = h ◦ f ◦ F ◦ h◦−1 = g ◦ h ◦ F ◦ h◦−1 = g ◦K

Since K and G commute with g and have the same derivatives at 0, we have K = G by
theorem 2.1 and hence h ◦ F = G ◦ h, so that h ∈ Hom(F,G).

Note that the hypotheses of the lemma imply that f ′(0) = g′(0) so that if one series is
stable, then both are.

4.4. Homotheties and stable p-adic dynamical systems. — If F is a formal group
of finite height, then End(F ) is a set of power series that commute with each other under
composition. One can forget about the formal group and study certain sets D of elements
of X · OK [[X]] that commute with each other under composition. This is the object of
Lubin’s theory of p-adic dynamical systems (see [Lub94]).

Let us say that D ⊂ X · OK [[X]] is a stable p-adic dynamical system of finite height
if the elements of D commute with each other under composition, and if D contains a
stable series f such that f ′(0) ∈ mK and f(X) 6≡ 0 mod mK (i.e. f is of finite height) as
well as a stable series u such that u′(0) ∈ O×K . We can then assume that D is as large as
possible, namely that any power series g ∈ X · OK [[X]] that commutes with the elements
of D belongs to D. For example, if F is a formal group of finite height, then End(F ) is
a stable p-adic dynamical system.

Given a stable p-adic dynamical system of finite height D, the set of preperiodic points
Preper(g) is independent of the choice of a stable g ∈ D (see §3 of [Lub94]). One can
then define Preper(D) as the preperiodic set of any stable element of D. To what extent
does Preper(D) determine a stable p-adic dynamical system of finite height D?

In order to extend our results from formal groups to stable p-adic dynamical systems of
finite height, we can ask whether the consequence of corollary 1.2 holds in more generality:
for which stable p-adic dynamical systems of finite height D is there a stable power series
w ∈ D and an element σ ∈ Gal(K/K) such that σ(z) = w(z) for all z ∈ Preper(D)?
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