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Abstract. — We define the resultant of two power series with coefficients in the ring of
integers of a p-adic field. In order to do this, we prove a universal version of the Weierstrass
preparation theorem.
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Introduction

Given two polynomials P and Q with coefficients in a field K, the resultant Res(P,Q)
allows us to determine whether P and Q have a common root in K. The resultant is a
polynomial function of the coefficients of P and Q, and Res(P,Q) = 0 if and only if P
and Q have a common root.

In this article, we consider a similar question for p-adic power series. Let K be a finite
extension of Qp, or more generally a finite totally ramified extension of W (k)[1/p] where
k is a perfect field of characteristic p. Let OK denote the integers of K, let mK be the
maximal ideal of OK , let k be the residue field of OK , and let π be a uniformizer of OK .
Let Cp be the completion of an algebraic closure K of K, so that mCp is the p-adic open
unit disk. A power series f(X) = f0 +f1X+ · · · ∈ OK [[X]] defines a bounded holomorphic
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function on mCp , and may have roots in this domain. Given two such power series, we
would like to know whether they have a common root. The Weierstrass degree wideg(f)
of f is the smallest integer n such that fn ∈ O×K , or +∞ if there is no such integer. If
wideg(f) = n is finite, then f has precisely n roots (counting multiplicities) in mCp . Our
main result is the following.

Theorem A. — For all n > 1, there exists a power series

Resn({Fi}i>0, {Gi}i>0) ∈ Z[Fn, F−1
n , {Fk}k>n+1, {Gk}k>0][[F0, . . . , Fn−1]]

such that for all power series f(X), g(X) ∈ OK [[X]] with wideg(f) = n, we have∏
z∈mCp

f(z)=0

g(z) = Resn({fi}i>0, {gi}i>0).

In particular, Resn({fi}i>0, {gi}i>0) = 0 if and only if f and g have a common root in
mCp.

Note that if wideg(f) = n, then f0, . . . , fn−1 ∈ mK so that the power series
Resn({fi}i>0, {gi}i>0) does converge. The main technical tool for proving theorem A
is the Weierstrass preparation theorem. We use a version due to O’Malley (see [6])
which allows us to prove the following universal Weierstrass preparation theorem.
Recall that if R is a ring and I is an ideal of R, a polynomial is said to be distin-
guished for I if it is monic and all its non-leading coefficients are in I. If n > 1, let
Rn = Z[Fn, F−1

n , {Fk}k>n+1][[F0, . . . , Fn−1]] and let In be the ideal of Rn generated by
F0, . . . , Fn−1.

Theorem B. — We can write the power series F (X) = ∑
i>0 FiX

i ∈ Rn[[X]] as F (X) =
P (X)U(X) where U(X) ∈ Rn[[X]]× and P (X) = Xn + Pn−1X

n−1 + · · · + P0 ∈ Rn[X] is
a distinguished polynomial for the ideal In.

In addition, P and U are uniquely determined by F .

Theorem B provides a universal Weierstrass preparation theorem, and the existence
part of the classical versions follows by specializing. In particular, Theorem B shows
how the coefficients of p and u depend on those of f when we write a power series
f(X) ∈ OK [[X]] as the product of a distinguished polynomial p and a unit u.

In §3, we give an application of our results to the iteration of power series in charac-
teristic p. We show that such a power series admits a lift to characteristic zero satisfying
certain properties, which strengthens a construction of Lubin (see [5]).
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We finish this article with a sketch of an analogue of our constructions that singles out
the roots of a power series in a circle, instead of in an open disk.

1. A universal Weierstrass preparation theorem

The classical Weierstrass preparation theorem over OK (see for instance [3], chapter
VII, §3, no 8) says that if f(X) ∈ OK [[X]] and wideg(f) = n, there exists a distinguished
(for the ideal mK) polynomial p(X) of degree n and a unit u(X) ∈ OK [[X]]× such that
f = pu. In addition, p and u are uniquely determined by f . The coefficients of p and
u depend on those of f . In order to make this dependence more explicit, we use the
following strengthening of the Weierstrass preparation theorem, which is theorem 2.10 of
[6].

Theorem 1.1. — Let R be a ring, and take f(X) = f0 + f1X + · · · ∈ R[[X]]. Suppose
that fn ∈ R× and that R is separated and complete for the (f0, . . . , fn−1)-adic topology.
There exists a distinguished (for the ideal (f0, . . . , fn−1)) polynomial p(X) of degree n

and u(X) ∈ R[[X]]× such that f = pu.
In addition, p and u are uniquely determined by f .

Although we don’t need this in the remainder of this article, we point out the following
corollary of theorem 1.1. Note that some even more general versions of the Weierstrass
preparation theorem can be found, see for instance [4].

Corollary 1.2. — Let R be a ring and let J be an ideal of R such that R is separated
and complete for the J-adic topology. Take f(X) = f0 + f1X + · · · ∈ R[[X]]. Suppose that
fn ∈ R× and that f0, . . . , fn−1 ∈ J .
There exists a distinguished (for the ideal J) polynomial p(X) of degree n and u(X) ∈

R[[X]]× such that f = pu.
In addition, p and u are uniquely determined by f .

Proof. — This follows from theorem 1.1, and the following assertion ([8], Tag 00M9,
lemma 10.95.8): if I ⊂ J are two ideals of a ring R, with I finitely generated, and if R
is separated and complete for the J-adic topology, then R is separated and complete for
the I-adic topology.

If n > 1 is fixed, we can consider the variables {Fi}i>0 and we define

Rn = Z[Fn, F−1
n , {Fk}k>n+1][[F0, . . . , Fn−1]].
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The ring Rn is separated and complete for the (F0, . . . , Fn−1)-adic topology, and the
following result (Theorem B) is an immediate consequence of theorem 1.1.

Theorem 1.3. — We can write F (X) = ∑
i>0 FiX

i ∈ Rn[[X]] as F (X) = P (X)U(X)
where U(X) ∈ Rn[[X]]× and P (X) = Xn+Pn−1X

n−1 + · · ·+P0 ∈ Rn[X] is a distinguished
polynomial for the ideal In.
In addition, P and U are uniquely determined by F .

Example 1.4. — We give an explicit formula for P (X) in theorem 1.3 when n = 1. If
n = 1, then P (X) = X + P0 and P0 ∈ R1 = Z[F1, F

−1
1 , {Fk}k>2][[F0]] is given by the

following formula (proposition 2.2 of [1]; here π(j, n) denotes the set of i1, . . . , in ∈ Z>0

such that i1 + i2 + · · ·+ in = j and i1 + 2i2 + · · ·+ nin = n):

P0 =
∑
n>0

F n+1
0

n∑
j=0

(
− 1
F1

)n+j+1 ∑
π(j,n)

(n+ j)!
(n+ 1)!i1!i2! · · · in!F

i1
2 F

i2
3 · · ·F in

n+1

= −F0

F1
− F 2

0 ·
F2

F 3
1

+ F 3
0 ·
(
F3

F 4
1
− 2F 2

2
F 5

1

)
+ O(F 4

0 ).

(We have (n+j)!/(n+1)!i1!i2! · · · in! ∈ Z if i1 +i2 +· · ·+in = j and i1 +2i2 +· · ·+nin = n;
indeed, (n+j)!/(n+1)!i1!i2! · · · in! becomes a multinomial coefficient and hence an integer
if we replace either n+ 1 by n or ik by ik − 1 for some k. If ` is a prime number, then it
cannot divide both n+ 1 and all of the ik. Hence (n+ j)!/(n+ 1)!i1!i2! · · · in! is a rational
number that is `-integral for every prime number `, and is therefore an integer).

2. Resultants and discriminants of p-adic power series

By the theory of Newton polygons, a distinguished polynomial p(X) = Xn+pn−1X
n−1+

· · ·+ p0 ∈ OK [X] of degree n has precisely n roots in mCp (counting multiplicities). Let
p(X) be such a polynomial. If g(X) = ∑

i>0 giX
i ∈ OK [[X]], we can consider ∏p(z)=0 g(z).

Proposition 2.1. — There exists a power series

ResPoln(P0, . . . , Pn−1, {Gk}k>0) ∈ Z[{Gk}k>0][[P0, . . . , Pn−1]]

such that for all g(X) = ∑
i>0 giX

i ∈ OK [[X]] and all distinguished polynomial p(X) =
Xn + pn−1X

n−1 + · · ·+ p0 ∈ OK [X] of degree n, we have∏
p(z)=0

g(z) = ResPoln(p0, . . . , pn−1, {gk}k>0).

Proof. — Let Z1, . . . , Zn denote n variables. For each n-uple d = (d1, . . . , dn) ∈ Z>0 with
d1 6 · · · 6 dn, let Zd = ∑

(e1,...,en) Z
e1
1 · · ·Zen

n where (e1, . . . , en) ranges over all distinct
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permutations of (d1, . . . , dn). There exists polynomials Sd ∈ Z[{Gk}k>0] for each d, such
that

n∏
i=1

∑
k>0

GkZ
k
i =

∑
d
Sd({Gk}k>0)Zd.

If we write ∏n
i=1(X−Zi) = Xn+Pn−1X

n−1 +· · ·+P0, then by the fundamental theorem
of symmetric polynomials, each Zd belongs to Z[P0, . . . , Pn−1]. We set

ResPoln =
∑

d
Sd({Gk}k>0)Zd ∈ Z[{Gk}k>0][[P0, . . . , Pn−1]].

Note that the total degree of Zd is d1 + · · · + dn so that the degree of Zd as an element
of Z[P0, . . . , Pn−1] is at least (d1 + · · · + dn)/n. Therefore, the above sum converges for
the (P0, . . . , Pn−1)-adic topology. The proposition follows by specializing.

We can now prove Theorem A.

Theorem 2.2. — There exists a power series

Resn({Fi}i>0, {Gi}i>0) ∈ Z[Fn, F−1
n , {Fk}k>n+1, {Gk}k>0][[F0, . . . , Fn−1]]

such that for all power series f(X), g(X) ∈ OK [[X]] with wideg(f) = n, we have∏
z∈mCp

f(z)=0

g(z) = Resn({fi}i>0, {gi}i>0).

Proof. — By theorem 1.3, we can write the power series F (X) = ∑
i>0 FiX

i as F (X) =
P (X)U(X) with P (X) = Xn + Pn−1X

n−1 + · · ·+ P0, where each Pi belongs to the ideal
(F0, . . . , Fn−1) of Z[Fn, F−1

n , {Fk}k>n+1][[F0, . . . , Fn−1]]. The result follows from proposi-
tion 2.1, by setting

Resn = ResPoln(P0, . . . , Pn−1, {Gk}k>0).

If f, g ∈ OK [[X]] and wideg(f) = n, we write Resn(f, g) instead of the more cumbersome
Resn({fi}i>0, {gi}i>0).

Remark 2.3. — We have Resn(f, gh) = Resn(f, g) Resn(f, h).

Definition 2.4. — We define Discn to be the power series

Discn({Fi}i>0) = Resn(F, F ′) ∈ Z[Fn, F−1
n , {Fk}k>n+1][[F0, . . . , Fn−1]],

and likewise write Discn(f) instead of Discn({fi}i>0).

By theorem 2.2, a power series f(X) ∈ OK [[X]] with wideg(f) = n has only simple
roots in mCp if and only if Discn(f) 6= 0.
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Proposition 2.5. — The set of elements of OK [[X]] having only simple roots in mCp is
open in the p-adic topology.

Proof. — Take f(X) ∈ OK [[X]] having only simple roots in mCp . We can divide f by
an appropriate power of π and assume that wideg(f) is finite. Let n = wideg(f) and
v = valπ Discn(f).

The fact that Discn belongs to Z[Fn, F−1
n , {Fk}k>n+1][[F0, . . . , Fn−1]] implies that for

every h(X) ∈ OK [[X]], we have valπ Discn(f + πv+1h) = v, so that if g(X) ∈ OK [[X]] is
such that valπ(f − g) > v + 1, then g(X) has only simple roots in mCp .

Note that the set of elements of OK [[X]] having only simple roots in mCp is also dense in
the p-adic topology. If f = pu with p distinguished having multiple roots, then p can be
approached by distinguished polynomials having only simple roots. Indeed, the (usual)
discriminant of p(X) = Xn + pn−1X

n−1 + · · ·+ p0 is a polynomial ∆(p0, . . . , pn−1) and its
zero set is closed with empty interior.

3. Lubin’s proof of Sen’s theorem on iteration of power series

In this section, we give an application of the above constructions. In his paper [5],
Lubin gives a short and very nice proof of Sen’s theorem on iteration of power series. We
start by recalling Sen’s theorem and Lubin’s argument. Recall that k is the residue field
of OK . If w(X) = X+∑i>2 wiX

i ∈ k[[X]], let i(w) = m−1 wherem is the smallest integer
> 2 such that wm 6= 0 (or +∞ if there is no such integer). For n > 0, let in(w) = i(w◦pn).
Sen’s theorem (theorem 1 of [7]) says that in−1(w) ≡ in(w) mod pn for all n > 1 (where
the congruence holds automatically if one side is +∞).

Lubin’s argument is to show that for each n > 0 such that in(w) 6= +∞, there exists
a finite extension L of K and a power series fn(X) ∈ X · OL[[X]] such that the image of
fn(X) in kL[[X]] is w(X) and such that all the roots of f ◦pn

n (X) −X in mCp are simple.
We then have

in(w)− in−1(w) = wideg
(
f ◦p

n

n (X)−X
f ◦p

n−1
n (X)−X

)
,

so that in(w)−in−1(w) is the number of points ofmCp whose orbit under fn is of cardinality
pn. This number is clearly divisible by pn, which implies Sen’s theorem.

Using our methods, we can improve Lubin’s result. We prove that there is one lift f
of w that works for all n, and has coefficients in OK .
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Theorem 3.1. — Take w(X) = X+∑
i>2 wiX

i ∈ k[[X]] and let N ⊂ Z>0 be the set of n
such that in(w) is finite. There exists f(X) ∈ X · OK [[X]] whose image in k[[X]] is w(X)
and such that for all n ∈ N , the roots of f ◦pn(X)−X in mCp are simple.

Proof. — Let W be the set of f(X) ∈ X · OK [[X]] whose image in k[[X]] is w(X), and let
Wn be the set of elements ofW such that the roots of f ◦pn(X)−X in mCp are simple. We
prove that if n ∈ N , then Wn is open and dense in W for the p-adic topology. Since W
is a complete metric space, the theorem follows from this assertion and Baire’s theorem,
which implies that ∩n∈NWn is dense in W and hence non-empty.

Fix an element w̃ ∈ W . We have W = {w̃ + h, h ∈ πX · OK [[X]]}.
If F (X) = ∑

j>1 FjX
j, write F ◦pn(X) − X = ∑

j>1 F
(n)
j Xj. Take n ∈ N and let

i = in(w) + 1. Let F (X) = ∑
j>1(w̃j + Hj)Xj, where {Hj}j>1 are variables. For all

j > 1, F (n)
j ∈ OK [H1, . . . , Hj]. Since F (n)

i (0) = w̃
(n)
i ∈ O×K , F

(n)
i has an inverse (F (n)

i )−1 ∈
OK [[H1, . . . , Hi]]. If j 6 i− 1, then w̃(n)

j ∈ mK , and so F (n)
j is in the ideal (π,H1, . . . , Hj)

of OK [H1, . . . , Hj]. The power series

Disci(F ◦p
n(X)−X) ∈ Z[F (n)

i , (F (n)
i )−1, {F (n)

j }j>i+1][[F (n)
1 , . . . , F

(n)
i−1]]

therefore gives rise to an element Dn({Hj}j>1) ∈ OK [{Hj}j>i+1][[H1, . . . , Hi]].
Let us first show that Wn is open in W . If f = w̃ + h ∈ Wn, with h ∈ πX · OK [[X]],

then Dn(h) 6= 0 by definition. If v = valπ(Dn(h)) and g(X) is in X · OK [[X]], then
Dn(h + πv+1g) ≡ Dn(h) mod πv+1 so that valπ(Dn(h + πv+1g)) = v. Hence f + h′ ∈ Wn

for all h′ ∈ πX · OK [[X]] such that valπ(h− h′) > v + 1, and therefore Wn is open in W .
We now show that Wn is dense in W . If this is not the case, its complement has

non-empty interior. Suppose therefore that there exists f = w̃ + h ∈ W and v > 1 such
that Dn(h+ πvg) = 0 for all g ∈ X · OK [[X]]. We can write

Dn({Hj}j>1) =
∑

d∈Zi
>0

Pd({Hj}j>i+1)Hd1
1 · · ·H

di
i

where d = (d1, . . . , di) and the Pd are polynomials with coefficients in OK . The fact that
Dn(h + πvg) = 0 for all g ∈ X · OK [[X]] implies that for all fixed values of {gj}j>i+1,
the corresponding power series in H1, . . . , Hi is zero on the set (h1, . . . , hi) + πvOiK . It
is therefore the zero power series. This in turn implies that for each d, the polynomial
Pd({Hj}j>i+1) is zero on the set {(hj + πvOK)}j>i+1 and therefore Pd = 0.

This implies that Dn is the zero power series, and therefore that for any extension L/K
and any f(X) ∈ X · OL[[X]] such that wideg(f ◦pn(X) −X) = i, the roots of f ◦pn(X) −
X in mCp are not simple. This contradicts Lubin’s result in [5] (the aforementioned
construction of the power series fn).
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4. A universal Hensel factorization theorem

In this section, we sketch an analogue of our constructions that singles out the roots
of a power series in a circle {z ∈ Cp, |z| = r} instead of in an open disk as in §1 and §2.
Let OK{X} denote the ring of restricted power series (power series f(X) = ∑

n>0 fnX
n

with fn ∈ OK and fn → 0 as n → +∞). An element of OK{X} converges on the
closed unit disk {z ∈ Cp, |z| 6 1}. We are interested in the roots of f in the unit circle
{z ∈ Cp, |z| = 1}. Take f(X) = ∑

n>0 fnX
n ∈ OK{X}, one of whose coefficients is in

O×K . Let µmin(f) = min{i > 0, fi ∈ O×K} and let µmax(f) = max{i > 0, fi ∈ O×K}. If
n = µmin(f) and n+ d = µmax(f), we have the factorization f = p · u in k[X], with

p(X) = f
−1
n+d · (fn + fn+1X + · · ·+ fn+dX

d) and u(X) = fn+d ·Xn.

Hensel’s factorization theorem ([3], chapter III, §4, no 3) implies that there exist p(X) ∈
OK [X] and u(X) ∈ OK{X} such that f = pu, the polynomial p is monic of degree
d, p(0) ∈ O×K , and µmax(u) = µmin(u). This analogue of the Weierstrass preparation
theorem, along with the theory of Newton polygons, implies that f has precisely µmax(f)−
µmin(f) roots (counting multiplicities) in the unit circle.

Let {Fi}i>0 be variables, take n, d > 0, and let

Sn,d = Z[{Fn+j}06j6d, F
−1
n , F−1

n+d][[F0, . . . , Fn−1, {Fn+d+k}k>1]].

Our definition of a power series ring in infinitely many variables is the “large” one (for
instance, ∑k>0 Fk belongs to Sn,d), see chapter IV, §4 of [2]. Let In,d be the ideal of
Sn,d generated by F0, . . . , Fn−1, {Fn+d+k}k>1. The following result is a universal Hensel
factorization theorem.

Theorem 4.1. — We can write the power series F (X) = ∑
i>0 FiX

i ∈ Sn,d[[X]] as
F (X) = P (X)U(X) where P (X) ∈ Sn,d[X] is monic of degree d, P (0) ∈ S×n,d, and
U(X) ≡ Fn+dX

n mod In,d.
In addition, P and U are uniquely determined by F .

Proof. — The ring Sn,d is separated and complete for the In,d-adic topology. The poly-
nomials P (X) = F−1

n+d · (Fn + Fn+1X + · · · + Fn+dX
d) and U(X) = Fn+d · Xn generate

the unit ideal in Sn,d/In,d[X], since Fn, Fn+d ∈ S×n,d. Indeed, a descending induction on
n− 1 > m > 0 shows that Xm ∈ (P ,U) by considering XmP .

The theorem therefore results from Hensel’s factorization theorem (see [3], chapter III,
§4, no 3, and the discussion at the beginning of no 5 of ibid.).
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We now give an application to the slope factorization of polynomials. Take a nonzero
polynomial P (X) ∈ K[X] and let c be its leading coefficient. We can write P (X) =
c · ∏r Pr(X) where for each r, the polynomial Pr(X) is monic and all of its roots are of
valuation r ∈ Q. By Galois theory, each Pr(X) belongs to K[X]. The decomposition
P (X) = c ·∏r Pr(X) is the slope factorization of P (X), and Pr(X) is the slope r factor
of P (X).

Corollary 4.2. — Given F (X) ∈ OK [X], one of whose coefficients is in O×K, there are
universal formulas, depending only on µmin(F ), µmax(F ) and deg(F ), for the coefficients
of the slope 0 factor of F in its slope factorization, in terms of the coefficients of F .

Proof. — Let F = F0F6=0 be the factorization of F as the product of a monic polynomial
of slope 0 and of a polynomial of slopes 6= 0. The polynomial F 6=0 has no roots in the
unit circle, so that if we view F as an element of OK{X}, then P = F0 and U = F 6=0.

Theorem 4.1 can also be used, as in §2, to produce resultant power series Resn,d,
that will detect whether two restricted power series f and g, with µmin(f) = n and
µmax(f) = n+ d, have roots in common in the unit circle.

We end this article with the following question.

Question 4.3. — The classical resultant of two polynomials P and Q can be defined
using either the product ∏P (z)=0 Q(z) or the determinant of the Sylvester matrix. Both
approaches give the same formula, after a suitable normalization. In this article, we follow
the first approach. Is it possible to view our resultants as the (generalized) determinants
of some operators on some p-adic Banach spaces?

Acknowledgements. I thank Sandra Rozensztajn for her help when I was writing the
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