ON TRIANGULABLE TENSOR PRODUCTS OF B-PAIRS AND TRIANGULINE REPRESENTATIONS

by

Laurent Berger & Giovanni Di Matteo

Abstract. — We show that if V and V' are two p-adic representations of $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ whose tensor product is trianguline, then V and V' are both potentially trianguline.

Contents

1.	Introduction	1
2.	Reminders and complements	3
3.	The ring $\mathbf{B}_{\mathrm{e},E}$	4
4.	Triangulable representations	8
5.	Cohomology of <i>B</i> -pairs	10
6.	Proof of the main theorem	11
Re	eferences	13

1. Introduction

The notion of a trianguline representation of $G_{\mathbf{Q}_p} = \operatorname{Gal}(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ was introduced by Colmez [Col08] in the context of his work on the p-adic local Langlands correspondence for $\operatorname{GL}_2(\mathbf{Q}_p)$. Examples of trianguline representations include the semi-stable representations of $G_{\mathbf{Q}_p}$ as well as the p-adic representations of $G_{\mathbf{Q}_p}$ attached to overconvergent cuspidal eigenforms of finite slope (theorem 6.3 of [Kis03] and proposition 4.3 of [Col08]). The category of all trianguline representations of $G_{\mathbf{Q}_p}$ is stable under extensions, tensor products, and duals. We refer the reader to the book [BC09] and the survey [Ber11] for a detailed discussion of trianguline representations. Let us at least mention the following analogue of the Fontaine-Mazur conjecture: if V is an irreducible 2-dimensional

2020 Mathematics Subject Classification. — 11F80 (11F33; 11S15; 11S20; 11S31; 14F30). Key words and phrases. — Trianguline representation; B-pair; p-adic Hodge theory; \mathbf{B}_e -representation.

p-adic representation of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ that is unramified at ℓ for almost all $\ell \neq p$, and whose restriction to a decomposition group at p is trianguline, then V is a twist of the Galois representation attached to an overconvergent cuspidal eigenform of finite slope. This conjecture is a theorem of Emerton (§1.2.2 of [Eme11]) under additional technical hypothesis on V. The trianguline property is in general a condition at p reflecting (conjecturally at least) the fact that a p-adic representation comes from a p-adic automorphic form. This theme is pursued, for example, in [Han17], [Ber17] and [Con21].

If K is a finite extension of \mathbf{Q}_p , we also have the notion of a trianguline representation of $G_K = \operatorname{Gal}(\overline{\mathbf{Q}}_p/K)$. We say that a representation V of G_K is potentially trianguline if there exists a finite extension L/K such that the restriction of V to G_L is trianguline. The goal of this article is to prove the following theorem.

Theorem A. — If V and V' are two non-zero p-adic representations of $G_{\mathbf{Q}_p}$ whose tensor product is trianguline, then V and V' are both potentially trianguline.

We now give more details about the contents of this article. The definition of "trianguline" can be given either in terms of (φ, Γ) -modules over the Robba ring, or in terms of B-pairs. In this article, we use the theory of B-pairs, which was introduced in $[\mathbf{Ber08}]$. We remark in passing that B-pairs are the same as G_K -equivariant bundles on the Fargues-Fontaine curve $[\mathbf{FF18}]$. Let K be a finite extension of \mathbf{Q}_p . Let $\mathbf{B}_{\mathrm{dR}}^+$, \mathbf{B}_{dR} and $\mathbf{B}_{\mathrm{e}} = (\mathbf{B}_{\mathrm{cris}})^{\varphi=1}$ be some of Fontaine's rings of p-adic periods $[\mathbf{Fon94}]$. A B-pair is a pair $W = (W_e, W_{\mathrm{dR}}^+)$ where W_e is a free \mathbf{B}_{e} -module of finite rank endowed with a continuous semi-linear action of G_K , and W_{dR}^+ is a G_K -stable $\mathbf{B}_{\mathrm{dR}}^+$ -lattice in $W_{\mathrm{dR}} = \mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{B}_{\mathrm{e}}} W_e$. If V is a p-adic representation of G_K , then $W(V) = (\mathbf{B}_{\mathrm{e}} \otimes_{\mathbf{Q}_p} V, \mathbf{B}_{\mathrm{dR}}^+ \otimes_{\mathbf{Q}_p} V)$ is a B-pair. If E is a finite extension of \mathbf{Q}_p , the definition of B-pairs can be extended to E-linear objects, and we get objects called $\mathbf{B}_{|K}^{\otimes E}$ -pairs in $[\mathbf{BC10}]$ or E-B-pairs of G_K in $[\mathbf{Nak09}]$. They are pairs $W = (W_e, W_{\mathrm{dR}}^+)$ where W_e is a free $E \otimes_{\mathbf{Q}_p} \mathbf{B}_e$ -module of finite rank endowed with a continuous semi-linear action of G_K , and W_{dR}^+ is a G_K -stable $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{dR}}^+$ -lattice in $W_{\mathrm{dR}} = (E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{dR}}) \otimes_{E \otimes_{\mathbf{Q}_p} \mathbf{B}_e} W_e$. Note that the action of G_K is E-linear.

We say (definition 1.15 of [Nak09]) that a $\mathbf{B}_{|K}^{\otimes E}$ -pair W is split triangulable if W is a successive extension of objects of rank 1, triangulable if there exists a finite extension F/E such that the $\mathbf{B}_{|K}^{\otimes F}$ -pair $F \otimes_E W$ is split triangulable, and potentially triangulable if there exists a finite extension L/K such that the $\mathbf{B}_{|L}^{\otimes E}$ -pair $W|_{G_L}$ is triangulable. If V is a p-adic representation of G_K , we say that V is triangulable if W(V) is triangulable.

Let Δ be a set of rank 1 semi-linear $E \otimes_{\mathbf{Q}_p} \mathbf{B}_e$ -representations of G_K . We say that a $\mathbf{B}_{|K}^{\otimes E}$ -pair is split Δ -triangulable if it is split triangulable, and the rank 1 $E \otimes_{\mathbf{Q}_p} \mathbf{B}_e$ -representations of G_K that come from the triangulation are all in Δ . Let $\Delta(\mathbf{Q}_p)$ be the set of rank 1 $E \otimes_{\mathbf{Q}_p} \mathbf{B}_e$ -representations of G_K that extend to $G_{\mathbf{Q}_p}$. Theorem A then results from the following more general result (theorem 6.4), applied to $K = \mathbf{Q}_p$.

Theorem B. — If X and Y are two non-zero $\mathbf{B}_{|K}^{\otimes E}$ -pairs whose tensor product is $\Delta(\mathbf{Q}_p)$ -triangulable, then X and Y are both potentially triangulable.

The proof of theorem B relies on the study of $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{e}$ -representations of G_K as well as on the study of the slopes, weights and cohomology of $\mathbf{B}_{|K}^{\otimes E}$ -pairs. The ring $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{e}$ has many non-trivial units, which makes the study of $\mathbf{B}_{|K}^{\otimes E}$ -pairs more difficult than when $E = \mathbf{Q}_p$. Note finally that some of the results of this article already appear in $[\mathbf{DM13}]$.

2. Reminders and complements

If K is a finite extension of \mathbf{Q}_p , let $G_K = \operatorname{Gal}(\overline{\mathbf{Q}}_p/K)$. Let E be a finite Galois extension of \mathbf{Q}_p such that $K \subset E$, and let $\Sigma = \operatorname{Gal}(E/\mathbf{Q}_p)$. Let E_0 be the maximal unramified extension of \mathbf{Q}_p inside E. Let $\mathbf{B}_{\mathrm{dR}}^+$, \mathbf{B}_{dR} , $\mathbf{B}_{\mathrm{cris}}^+$ and $\mathbf{B}_{\mathrm{cris}}$ be Fontaine's rings of p-adic periods (see for instance [Fon94]). They are all equipped with an action of $G_{\mathbf{Q}_p}$, and $\mathbf{B}_{\mathrm{cris}}^+$ and $\mathbf{B}_{\mathrm{cris}}$ have in addition a Frobenius map φ . Let $\mathbf{B}_{\mathrm{e}} = (\mathbf{B}_{\mathrm{cris}})^{\varphi=1}$ and $\mathbf{B}_{\mathrm{e},E} = E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{e}}$. The group $G_{\mathbf{Q}_p}$ acts E-linearly on $\mathbf{B}_{\mathrm{e},E}$.

Proposition 2.1. — The ring $B_{e,E}$ is a principal ideal domain.

Proof. — The ring $\mathbf{B}_{e,E}$ is a Bézout domain; for $E = \mathbf{Q}_p$ this is shown in proposition 1.1.9 of [**Ber08**], and the same argument is used to show the general case in lemma 1.6 of [**Nak09**]. By theorem 6.5.2 of [**FF18**], the ring \mathbf{B}_e is a principal ideal domain, and therefore $\mathbf{B}_{e,E}$ is a principal ideal domain as well, since it is a quotient of the polynomial ring $\mathbf{B}_e[X]$, and thus Noetherian.

Recall that a $\mathbf{B}_{|K}^{\otimes E}$ -pair is a pair $W = (W_e, W_{\mathrm{dR}}^+)$ where W_e is a free $\mathbf{B}_{\mathrm{e},E}$ -module of finite rank endowed with a continuous semi-linear action of G_K , and W_{dR}^+ is a G_K -stable $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{dR}}^+$ -lattice in $W_{\mathrm{dR}} = (E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{dR}}) \otimes_{\mathbf{B}_{\mathrm{e},E}} W_e$.

Proposition 2.2. — If W_e is a $\mathbf{B}_{e,E}$ -representation of G_K , then $(E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR}) \otimes_{\mathbf{B}_{e,E}} W_e$ admits an $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR}^+$ -lattice stable under G_K .

Proof. — See §3.5 of [Fon04]. The same argument gives an $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR}^+$ -lattice instead of a \mathbf{B}_{dR}^+ -lattice if one starts from an $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR}$ -representation.

Recall that Nakamura has classified the $\mathbf{B}_{|K}^{\otimes E}$ -pairs of rank 1, under the assumption that E contains the Galois closure of K. Given a character $\delta: K^{\times} \to E^{\times}$, he constructs in §1.4 of [Nak09] a rank 1 $\mathbf{B}_{|K}^{\otimes E}$ -pair $W(\delta)$, that we denote by $\mathbf{B}(\delta)$, and proves that every rank 1 $\mathbf{B}_{|K}^{\otimes E}$ -pair is of this form for a unique δ . We have $\mathbf{B}(\delta_1) \otimes \mathbf{B}(\delta_2) = \mathbf{B}(\delta_1 \delta_2)$ (§1.4 of [Nak09]). We denote by $\mathbf{B}(\delta)_e$ the $\mathbf{B}_{e,E}$ -component of $\mathbf{B}(\delta)$.

Recall (see for instance §2 of [**BC10**] or §1.3 of [**Nak09**]) that $\mathbf{B}_{|K}^{\otimes E}$ -pairs have slopes. This comes from the equivalence of categories between $\mathbf{B}_{|K}^{\otimes E}$ -pairs and (φ, Γ) -modules over the Robba ring, and Kedlaya's constructions and results for φ -modules over the Robba ring (see [**Ked04**]). In particular, one can define the notion of isoclinic (pure of a certain slope) $\mathbf{B}_{|K}^{\otimes E}$ -pairs. For example, if V is an E-linear representation of G_K , then $W(V) = (\mathbf{B}_{e,E} \otimes_E V, (E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR}^+) \otimes_E V)$ is pure of slope 0, and every $\mathbf{B}_{|K}^{\otimes E}$ -pair that is pure of slope 0 is of this form (proposition 2.2 of [**BC10**]).

We have the following slope filtration theorem (see theorem 2.1 of [BC10]).

Theorem 2.3. — If W is a $\mathbf{B}_{|K}^{\otimes E}$ -pair, there is a canonical filtration $\{0\} = W_0 \subset W_1 \subset \cdots \subset W_\ell = W$ by sub $\mathbf{B}_{|K}^{\otimes E}$ -pairs such that

- 1. for every $1 \leq i \leq \ell$, the quotient W_i/W_{i-1} is isoclinic;
- 2. if s_i is the slope of W_i/W_{i-1} , then $s_1 < s_2 < \cdots < s_\ell$.

The following proposition gathers the results that we need concerning slopes of $\mathbf{B}_{|K}^{\otimes E}$ pairs. Recall that $\mathrm{Hom}(X,Y) = (\mathrm{Hom}_{E\otimes_{\mathbf{Q}_p}\mathbf{B}_{\mathrm{e}}}(X_e,Y_e),\mathrm{Hom}_{E\otimes_{\mathbf{Q}_p}\mathbf{B}_{\mathrm{dR}}^+}(X_{\mathrm{dR}}^+,Y_{\mathrm{dR}}^+)).$

Proposition 2.4. — If X is pure of slope s and Y is pure of slope t, then

- 1. Hom(X,Y) is pure of slope t-s and $X\otimes Y$ is pure of slope s+t;
- 2. if X and Y have the same rank and $X \subset Y$ and s = t, then X = Y;
- 3. if Y is a direct summand of X, then s = t.

Proof. — For (1), see theorem 6.10 and proposition 5.13 of [**Ked04**]. For (2), we can take determinants and assume that X and Y are of rank 1. The claim is then proposition 2.3 of [**Ber08**]. Item (3) follows from the fact that if $X = Y \oplus Z$, then the set of slopes of X is the union of those of Y and Z (proposition 5.13 of [**Ked04**]).

3. The ring $B_{e,E}$

Recall that $\mathbf{B}_{e,E} = E \otimes_{\mathbf{Q}_p} \mathbf{B}_e$. In this section, we determine the units of $\mathbf{B}_{e,E}$ and study the rank 1 $\mathbf{B}_{e,E}$ -representations of G_E . Let $q = p^h$ be the cardinality of the residue field of \mathcal{O}_E , so that $E_0 = \mathbf{Q}_{p^h}$. Let $\varphi_E : E \otimes_{E_0} \mathbf{B}_{cris} \to E \otimes_{E_0} \mathbf{B}_{cris}$ be the map $\mathrm{Id} \otimes \varphi^h$.

Proposition 3.1. — We have an exact sequence

$$0 \to E \to \mathbf{B}_{e,E} \to (E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR})/(E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR}^+) \to 0.$$

Proof. — This follows from tensoring by E the usual fundamental exact sequence $0 \to \mathbf{Q}_p \to \mathbf{B}_e \to \mathbf{B}_{dR}/\mathbf{B}_{dR}^+ \to 0$ (proposition 1.17 of $[\mathbf{B}\mathbf{K}\mathbf{9}\mathbf{0}]$).

Proposition 3.2. — The natural map $\mathbf{B}_{e,E} \to (E \otimes_{E_0} \mathbf{B}_{cris})^{\varphi_E=1}$ is an isomorphism.

Proof. — Since φ_E is E-linear, we have $(E \otimes_{E_0} \mathbf{B}_{cris})^{\varphi_E=1} = E \otimes_{E_0} \mathbf{B}_{cris}^{\varphi^h=1}$ and it is therefore enough to prove that $\mathbf{B}_{cris}^{\varphi^h=1} = \mathbf{Q}_{p^h} \otimes_{\mathbf{Q}_p} \mathbf{B}_{cris}^{\varphi=1}$. The group $Gal(\mathbf{Q}_{p^h}/\mathbf{Q}_p)$ acts \mathbf{Q}_{p^h} -semi-linearly on $\mathbf{B}_{cris}^{\varphi^h=1}$ via φ , and the claim follows from Galois descent (Speiser's lemma).

Remark 3.3. — The isomorphism of proposition 3.2 is G_E -equivariant.

In addition, if $g \in G_{\mathbf{Q}_p}$ acts by $\mathrm{Id} \otimes g$ on $E \otimes_{\mathbf{Q}_p} \mathbf{B}_e$, then it acts by $\mathrm{Id} \otimes g \varphi^{-n(g)}$ on $(E \otimes_{E_0} \mathbf{B}_{\mathrm{cris}})^{\varphi_E=1}$ (where n(g) is defined below).

Let π be a uniformizer of \mathcal{O}_E , and let χ_{π} denote the Lubin-Tate character $\chi_{\pi}: G_E \to \mathcal{O}_E^{\times}$ attached to π . For each $\tau \in \Sigma = \operatorname{Gal}(E/\mathbf{Q}_p)$, let $n(\tau)$ be the element of $\{0, \ldots, h-1\}$ such that $\tau = \varphi^{n(\tau)}$ on E_0 . Let $t_{\tau} \in E \otimes_{E_0} \mathbf{B}_{\operatorname{cris}}^+$ denote the element constructed in §5 of $[\mathbf{Ber16}]$, where (in the notation of $[\mathbf{Ber16}]$) we take F = E. We have $t_{\tau} = (\tau \otimes \varphi^{n(\tau)})(t_{\operatorname{Id}})$. The element t_{Id} is also denoted by t_{π} in $[\mathbf{Ber16}]$, and it is the same as the element t_E constructed in §9 of $[\mathbf{Col02}]$. The usual t of p-adic Hodge theory is $t = t_{\mathbf{Q}_p}$ for $\pi = p$.

For each $\sigma \in \Sigma$, we have a map $E \otimes_{E_0} \mathbf{B}_{\mathrm{cris}}^+ \to \mathbf{B}_{\mathrm{dR}}^+$ given by $x \mapsto (\sigma \otimes \varphi^{n(\sigma)})(x)$, followed by the natural injection of $E \otimes_{E_0} \mathbf{B}_{\mathrm{cris}}^+$ in $\mathbf{B}_{\mathrm{dR}}^+$ (theorem 4.2.4 of [Fon94]). Finally, note that $E \cdot \widehat{\mathbf{Q}}_p^{\mathrm{nr}} = E \otimes_{E_0} \widehat{\mathbf{Q}}_p^{\mathrm{nr}}$ is contained in $E \otimes_{E_0} \mathbf{B}_{\mathrm{cris}}^+$.

Proposition 3.4. — Let the notation be as above.

- 1. We have $\varphi_E(t_\tau) = \tau(\pi) \cdot t_\tau$ and $g(t_\tau) = \tau(\chi_\pi(g)) \cdot t_\tau$ if $g \in G_E$;
- 2. the t-adic valuation of the σ -component of the image of t_{τ} via the map

$$E \otimes_{E_0} \mathbf{B}_{\mathrm{cris}}^+ \to E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{dR}} = \prod_{\sigma \in \Sigma} \mathbf{B}_{\mathrm{dR}}$$

given by $x \mapsto \{(\sigma \otimes \varphi^{n(\sigma)})(x)\}_{\sigma \in \Sigma}$ is 1 if $\sigma = \tau^{-1}$ and 0 otherwise;

3. there exists $u \in (E \cdot \widehat{\mathbf{Q}}_p^{\mathrm{nr}})^{\times}$ such that $\prod_{\tau \in \Sigma} t_{\tau} = u \cdot t$ in $E \otimes_{E_0} \mathbf{B}_{\mathrm{cris}}$.

Proof. — Since $t_{\tau} = (\tau \otimes \varphi^{n(\tau)})(t_{\text{Id}})$, it is enough to check (1) for $\tau = \text{Id}$. The corresponding statement is at the end of §3 of [**Ber16**] (page 3578). Likewise, (2) follows from the case $\tau = \text{Id}$. That case now follows from (1) and the fact that the Hodge-Tate

weight of χ_{π} is 1 at $\sigma = \text{Id}$ and 0 at $\sigma \neq \text{Id}$. Finally, we have $N_{E/\mathbb{Q}_p}(\chi_{\pi}) = \chi_{\text{cyc}}\eta$ where $\eta: G_E \to \mathbb{Q}_p^{\times}$ is unramified, and by (1), this implies (3).

Note that $t_{\tau}^{-1} \in E \otimes_{E_0} \mathbf{B}_{cris}$ since t_{τ} divides t in \mathbf{B}_{cris}^+ by (3) of proposition 3.4.

Proposition 3.5. — If $\mathbf{n} = \{n_{\tau}\}_{{\tau} \in \Sigma}$ is a tuple of integers whose sum is 0, then there exists $u_{\mathbf{n}} \in (E \cdot \widehat{\mathbf{Q}}_p^{\mathrm{nr}})^{\times}$ such that $u = \prod_{{\tau} \in \Sigma} t_{\tau}^{n_{\tau}} u_{\mathbf{n}}$ belongs to $\mathbf{B}_{\mathrm{e},E}$. The element u is a unit of $\mathbf{B}_{\mathrm{e},E}$ and every unit of $\mathbf{B}_{\mathrm{e},E}$ is of this form up to multiplication by E^{\times} .

Proof. — Let $w = \varphi_E(\prod_{\tau \in \Sigma} t_{\tau}^{n_{\tau}}) / \prod_{\tau \in \Sigma} t_{\tau}^{n_{\tau}} = \prod_{\tau \in \Sigma} \tau(\pi)^{n_{\tau}}$ by (1) of proposition 3.4. Since $\sum_{\tau \in \Sigma} n_{\tau} = 0$, we have $w \in \mathcal{O}_E^{\times}$. There exists $u_{\mathbf{n}} \in (E \cdot \widehat{\mathbf{Q}}_p^{\mathrm{nr}})^{\times}$ such that $\varphi_E(u_{\mathbf{n}}) / u_{\mathbf{n}} = w^{-1}$, and then $u = \prod_{\tau \in \Sigma} t_{\tau}^{n_{\tau}} u_{\mathbf{n}}$ belongs to $\mathbf{B}_{\mathrm{e},E}$. The inverse of u is $\prod_{\tau \in \Sigma} t_{\tau}^{-n_{\tau}} u_{\mathbf{n}}^{-1}$ which also belongs to $\mathbf{B}_{\mathrm{e},E}$, so that $u \in \mathbf{B}_{\mathrm{e},E}^{\times}$.

We now show that every $u \in \mathbf{B}_{\mathrm{e},E}^{\times}$ is of this form. Let n_{τ} be the t-adic valuation in \mathbf{B}_{dR} of the τ^{-1} -component $u_{\tau^{-1}} = (\tau^{-1} \otimes \mathrm{Id})(u)$ of the image of $u \in E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{e}}$ in $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{dR}} = \prod_{\sigma \in \Sigma} \mathbf{B}_{\mathrm{dR}}$. Note that $u_{\sigma} \in \mathbf{B}_{\mathrm{e},E}^{\times}$ for all $\sigma \in \Sigma$ and that $\prod_{\sigma \in \Sigma} u_{\sigma} \in (\mathbf{B}_{\mathrm{e},E}^{\times})^{\Sigma} = \mathbf{B}_{\mathrm{e}}^{\times}$. We have $\mathbf{B}_{\mathrm{e}}^{\times} = \mathbf{Q}_{p}^{\times}$ by lemma 1.1.8 of $[\mathbf{Ber08}]$, so that $\sum_{\tau \in \Sigma} n_{\tau} = 0$. By (2) of proposition 3.4, the element $u \cdot \prod_{\tau \in \Sigma} t_{\tau}^{-n_{\tau}} u_{\mathbf{n}}^{-1}$ belongs to $(E \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\mathrm{dR}}^{+}) \cap \mathbf{B}_{\mathrm{e},E}^{\times}$, and $(E \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{\mathrm{dR}}^{+}) \cap \mathbf{B}_{\mathrm{e},E}^{\times} = E^{\times}$ by proposition 3.1.

Recall that an E-linear representation is crystalline or de Rham if the underlying \mathbf{Q}_p linear representation is crystalline or de Rham. We say that a character $\delta: G_E \to E^{\times}$ is $\mathbf{B}_{e,E}$ -admissible if there exists $y \in \mathbf{B}_{e,E} \setminus \{0\}$ such that $\delta(g) = g(y)/y$. Such a character is then crystalline, hence also de Rham.

Proposition 3.6. — If $y \in \mathbf{B}_{e,E} \setminus \{0\}$ is such that $y \cdot \mathbf{B}_{e,E}$ is stable under G_E , then $y \in \mathbf{B}_{e,E}^{\times}$ and there exists $n_{\tau} \in \mathbf{Z}$ with $\sum_{\tau \in \Sigma} n_{\tau} = 0$ and $y_0 \in (E \cdot \widehat{\mathbf{Q}}_p^{\text{nr}})^{\times}$ such that $y = \prod_{\tau \in \Sigma} t_{\tau}^{n_{\tau}} y_0$.

Proof. — If $y \cdot \mathbf{B}_{e,E}$ is stable under G_E , then $g(y)/y \in \mathbf{B}_{e,E}$ for all $g \in G_E$. Note that if $z \in \mathbf{B}_{dR}^{\times}$, then $g(z)/z \in \mathbf{B}_{dR}^{+}$. This implies that $g(y)/y \in \mathbf{B}_{e,E} \cap (E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR}^{+})$. By proposition 3.1, $g(y)/y \in E^{\times}$. The map $\delta : G_E \to E^{\times}$ given by $\delta(g) = g(y)/y$ is a crystalline character of G_E , and hence of the form $\prod_{\tau \in \Sigma} \tau(\chi_{\pi})^{n_{\tau}} \eta_0$ where $n_{\tau} \in \mathbf{Z}$ and $\eta_0 : G_E \to E^{\times}$ is unramified. This implies that there exists $y_0 \in (E \cdot \widehat{\mathbf{Q}}_p^{\mathrm{nr}})^{\times}$ such that $y = \prod_{\tau \in \Sigma} t_{\tau}^{n_{\tau}} y_0$. If $y \in \mathbf{B}_{e,E}$, then $\varphi_E(y) = y$ so that $\sum_{\tau \in \Sigma} n_{\tau} = 0$ by (1) of proposition 3.4, and hence $y \in \mathbf{B}_{e,E}^{\times}$.

Corollary 3.7. — If $\delta: G_E \to E^{\times}$ is a $\mathbf{B}_{e,E}$ -admissible character, then δ is de Rham and the sum of its weights at all $\tau \in \Sigma$ is 0. Conversely, any character $\delta: G_E \to E^{\times}$

that is de Rham with the sum of its weights at all $\tau \in \Sigma$ equal to 0 is the product of a $\mathbf{B}_{e,E}$ -admissible character by a potentially unramified character.

Proof. — The first assertion follows immediately from proposition 3.6. We now prove the second assertion. If $\delta: G_E \to E^{\times}$ is de Rham, it is of the form $\prod_{\tau \in \Sigma} \tau(\chi_{\pi})^{n_{\tau}} \eta_0$ where $n_{\tau} \in \mathbf{Z}$ and $\eta_0: G_E \to E^{\times}$ is potentially unramified. Let $\mathbf{n} = \{n_{\tau}\}_{\tau \in \Sigma}$ and u be the corresponding unit (proposition 3.5). If $g \in G_E$, then $g(u)/u = \prod_{\tau \in \Sigma} \tau(\chi_{\pi}(g))^{n_{\tau}} \eta_u(g)$ where $\eta_u: G_E \to E^{\times}$ is unramified. The second assertion then follows from this. \square

A $\mathbf{B}_{\mathrm{e},E}$ -representation of G_K is a free $\mathbf{B}_{\mathrm{e},E}$ -module of finite rank with a semi-linear and continuous action of G_K (recall that G_K acts linearly on E). If $\delta \in H^1(G_K, \mathbf{B}_{\mathrm{e},E}^{\times})$ (for example if $\delta : G_K \to E^{\times}$ is a character), we denote by $\mathbf{B}_{\mathrm{e},E}(\delta)$ the resulting rank 1 $\mathbf{B}_{\mathrm{e},E}$ -representation of G_K .

Proposition 3.8. — If W_e is a $\mathbf{B}_{e,E}$ -representation of G_K , and if X_e is a sub $\mathbf{B}_{e,E}$ -module of W_e stable under G_K , then X_e is a free $\mathbf{B}_{e,E}$ -module, and it is saturated in W_e .

Proof. — See lemma 1.10 of [Nak09].

Proposition 3.9. — If W is a rank 1 $\mathbf{B}_{e,E}$ -representation of G_E , then there exists δ : $G_E \to E^{\times}$ such that $W = \mathbf{B}_{e,E}(\delta)$.

Proof. — If we choose a basis w of W, then $g(w) = \delta(g)w$ with $\delta(g) \in \mathbf{B}_{\mathrm{e},E}^{\times}$, so that $\delta(g)$ is of the form $\prod_{\tau \in \Sigma} t_{\tau}^{n_{\tau}(g)} u_{\mathbf{n}(g)}$ by proposition 3.5. Since $\delta(gh) = \delta(g)g(\delta(h))$, (1) of proposition 3.4 implies that the maps $n_{\tau} : G_E \to \mathbf{Z}$ are continuous homomorphisms. They are therefore trivial, and this implies that $\delta(g) \in E^{\times}$.

Remark 3.10. — The character δ in proposition 3.9 is not unique, since it can be multiplied by any $\mathbf{B}_{e,E}$ -admissible character of G_E .

Remark 3.11. — If $K \neq E$, it is not necessarily true that every rank 1 $\mathbf{B}_{e,E}$ representation of G_K is of the form $\mathbf{B}_{e,E}(\delta)$ for a character $\delta: G_K \to E^{\times}$.

Proof. — Take $E = \mathbf{Q}_p(\sqrt{p})$ and $K = \mathbf{Q}_p$ and $W = (E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{cris}})^{\varphi = \pi} = t_{\mathrm{Id}} \cdot \mathbf{B}_{\mathrm{e},E}$. The E-linear action of $G_{\mathbf{Q}_p}$ on W is given by the map $\delta : g \mapsto g(t_{\mathrm{Id}})/t_{\mathrm{Id}}$. If $g \in G_E$, then $\delta(g) = \chi_{\pi}(g)$. If $u = t_{\mathrm{Id}}^n t_{\tau}^{-n} u_{n,-n} \in \mathbf{B}_{\mathrm{e},E}^{\times}$ as in proposition 3.5, and $g \notin G_E$, then $g(ut_{\mathrm{Id}})/ut_{\mathrm{Id}} = t_{\mathrm{Id}}^{-2n-1} t_{\tau}^{2n+1} v$ with $v \in (E \cdot \widehat{\mathbf{Q}}_p^{\mathrm{nr}})^{\times}$. Therefore, there is no character $\eta : G_{\mathbf{Q}_p} \to E^{\times}$ such that $W = \mathbf{B}_{\mathrm{e},E}(\eta)$.

Note that W is the $\mathbf{B}_{e,E}$ -component of the $\mathbf{B}_{|K}^{\otimes E}$ -pair W_0^{-1} of §1.4 of [Nak09].

Remark 3.12. — The results of this section provide a new proof of proposition 2.1.

Proof. — By theorem 6.5.2 of [**FF18**], the ring $(E \otimes_{E_0} \mathbf{B}^+_{\mathrm{cris}}[1/t_{\mathrm{Id}}])^{\varphi_E=1}$ is a PID. Since we have shown $\mathbf{B}_{\mathrm{e},E}$ is a localization of $(E \otimes_{E_0} \mathbf{B}^+_{\mathrm{cris}}[1/t_{\mathrm{Id}}])^{\varphi_E=1}$, it is a PID.

Proposition 3.13. — We have $\operatorname{Frac}(\mathbf{B}_{e,E})^{G_K} = E$.

Proof. — Take $x/y \in \operatorname{Frac}(\mathbf{B}_{e,E})^{G_K}$ with $x, y \in \mathbf{B}_{e,E}$ coprime. If $g \in G_K$, then g(x)y = xg(y) so that x divides g(x) and y divides g(y) in $\mathbf{B}_{e,E}$ (recall that $\mathbf{B}_{e,E}$ is a PID). By proposition 3.6, x and y belong to $\mathbf{B}_{e,E}^{\times}$. This implies that $x/y \in \mathbf{B}_{e,E}^{G_K} = E$.

Corollary 3.14. — If W_e is a $\mathbf{B}_{e,E}$ -representation of G_K , then $\dim_E W_e^{G_K} \leqslant \operatorname{rk} W_e$.

Proof. — By a standard argument, proposition 3.13 implies that the map $\mathbf{B}_{e,E} \otimes_E W_e^{G_K} \to W_e$ is injective. This implies the corollary.

4. Triangulable representations

In this section, we study triangulable $\mathbf{B}_{|K}^{\otimes E}$ -pairs and $\mathbf{B}_{e,E}$ -representations of G_K . We say that a $\mathbf{B}_{|K}^{\otimes E}$ -pair is irreducible if it has no non-trivial saturated sub $\mathbf{B}_{|K}^{\otimes E}$ -pair (see §2.1 of $[\mathbf{Ber08}]$).

Proposition 4.1. — If $W = (W_e, W_{dR}^+)$ is an irreducible $\mathbf{B}_{|K}^{\otimes E}$ -pair, then W_e is an irreducible $\mathbf{B}_{e,E}$ -representation of G_K .

Proof. — Let X_e be a sub-object of W_e . By proposition 3.8, it is a saturated and free submodule of W_e . The space $X_{\mathrm{dR}}^+ = X_{\mathrm{dR}} \cap W_{\mathrm{dR}}^+$ is an $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{\mathrm{dR}}^+$ lattice of X_{dR} stable under G_K . Hence $X = (X_e, X_{\mathrm{dR}}^+)$ is a saturated sub $\mathbf{B}_{|K}^{\otimes E}$ -pair of W.

Corollary 4.2. — If W is a $\mathbf{B}_{|K}^{\otimes E}$ -pair, then W is split triangulable as a $\mathbf{B}_{|K}^{\otimes E}$ -pair if and only if W_e is split triangulable as a $\mathbf{B}_{e,E}$ -representation of G_K .

Proof. — It is clear that if W is split triangulable, then so is W_e . Conversely, the proof of proposition 4.1 shows how to construct a triangulation of W from a triangulation of W_e .

Let Δ be a set of rank 1 semi-linear $\mathbf{B}_{e,E}$ -representations of G_K . Recall that a $\mathbf{B}_{|K}^{\otimes E}$ -pair is split Δ -triangulable if it is split triangulable, and the rank 1 $\mathbf{B}_{e,E}$ -representations of G_K that come from the triangulation are all in Δ .

Proposition 4.3. — If $0 \to W' \to W \to W'' \to 0$ is an exact sequence of $\mathbf{B}_{|K}^{\otimes E}$ -pairs, then W is split Δ -triangulable if and only if W' and W'' are split Δ -triangulable.

Proof. — If W' and W'' are split Δ -triangulable, then W is obviously split Δ -triangulable. We now prove the converse. If W_e admits a triangulation, then so do W'_e and W''_e . By corollary 4.2, W' and W'' are therefore split triangulable. Proposition 3.8 implies that two different triangulations of W_e give rise to two composition series of W_e (seen as a $\mathbf{B}_{e,E}$ -representation of G_K). The set of rank 1 $\mathbf{B}_{e,E}$ -representations attached to any triangulation of W_e is therefore well-defined up to permutation by the Jordan-Hölder theorem. Hence if W is split Δ -triangulable, then so are W' and W''.

Proposition 4.4. — If W_e is an irreducible $\mathbf{B}_{e,E}$ -representation of G_K , and $\delta \in H^1(G_K, \mathbf{B}_{e,E}^{\times})$, then every surjective map $\pi : \operatorname{End}(W_e) \to \mathbf{B}_{e,E}(\delta)$ of $\mathbf{B}_{e,E}$ -representations of G_K is split.

Proof. — Write $\mathbf{B}_{e,E}(\delta) = \mathbf{B}_{e,E} \cdot e_{\delta}$, where $g(e_{\delta}) = \delta(g)e_{\delta}$ with $\delta(g) \in \mathbf{B}_{e,E}^{\times}$. Recall that if A is a ring and M is a free A-module, then $\operatorname{End}_A(M)$ is its own dual, for the pairing $(f,g) \mapsto \operatorname{Tr}(fg)$. The map π is therefore of the form $f \mapsto \operatorname{Tr}(fh) \cdot e_{\delta}$ for some $h \in \operatorname{End}(W_e)$. The map h satisfies $g(h) = \delta(g)^{-1}h$, and therefore gives rise to a G_K -equivariant map $h : W_e \to W_e(\delta)$. Since W_e is irreducible, h is invertible. We can then write $\operatorname{End}(W_e) = \ker(\pi) \oplus \mathbf{B}_{e,E} \cdot h^{-1}$, which shows that π is split.

Theorem 4.5. — If W_e is an irreducible $\mathbf{B}_{e,E}$ -representation of G_K such that $\mathrm{End}(W_e)$ is split triangulable, then the triangulation of $\mathrm{End}(W_e)$ splits.

Proof. — Write $\{0\} = X_0 \subset X_1 \subset \cdots \subset X_d = \operatorname{End}(W_e)$, and $X_i/X_{i-1} = \mathbf{B}_{e,E}(\delta_i)$ for some $\delta_i \in H^1(G_K, \mathbf{B}_{e,E}^{\times})$. By proposition 4.4, the exact sequence $0 \to X_{d-1} \to \operatorname{End}(W_e) \to \mathbf{B}_{e,E}(\delta_d) \to 0$ is split, and therefore $\operatorname{End}(W_e) = X_{d-1} \oplus \mathbf{B}_{e,E}(\delta_d)$.

Suppose that we have an isomorphism $\operatorname{End}(W_e) = X_j \oplus \mathbf{B}_{e,E}(\delta_{j+1}) \oplus \cdots \oplus \mathbf{B}_{e,E}(\delta_d)$. Let π_j denote the composition $\operatorname{End}(W_e) \to X_j \to \mathbf{B}_{e,E}(\delta_j)$. By proposition 4.4, $\operatorname{End}(W_e) = \ker(\pi_j) \oplus \mathbf{B}_{e,E}(\delta_j)$. We have $\ker(\pi_j) = X_{j-1} \oplus \mathbf{B}_{e,E}(\delta_{j+1}) \oplus \cdots \oplus \mathbf{B}_{e,E}(\delta_d)$, so that $\operatorname{End}(W_e) = X_{j-1} \oplus \mathbf{B}_{e,E}(\delta_j) \oplus \cdots \oplus \mathbf{B}_{e,E}(\delta_d)$. The claim follows by induction. \square

Remark 4.6. — Theorem 4.5 is reminiscent of the following result of Chevalley: if G is any group and if X and Y are finite dimensional semi-simple characteristic 0 representations of G, then $X \otimes Y$ is also semi-simple. The same holds for semi-linear representations and, more generally, in any Tannakian category over a field of characteristic 0 [**Del16**].

5. Cohomology of B-pairs

The cohomology of $\mathbf{B}_{|K}^{\otimes E}$ -pairs is defined and studied in §2.1 of [Nak09]. We recall what we need. Let W be a $\mathbf{B}_{|K}^{\otimes E}$ -pair. Nakamura constructs an E-vector space $H^1(G_K, W)$ that has the following properties

- 1. $H^1(G_K, W) = \operatorname{Ext}^1(\mathbf{B}, W)$ (i.e. it classifies the extensions of $\mathbf{B}_{|K}^{\otimes E}$ -pairs);
- 2. there is an exact sequence of E-vector spaces

$$W_{\mathrm{dR}}^{G_K} \to H^1(G_K, W) \to H^1(G_K, W_e) \oplus H^1(G_K, W_{\mathrm{dR}}^+).$$

If W is a rank 1 $\mathbf{B}_{|K}^{\otimes E}$ -pair with $W_e \in \Delta(\mathbf{Q}_p)$, then $W_{\mathrm{dR}}^{G_{\mathbf{Q}_p}}$ is an E-vector space of dimension 1 or 0, depending on whether W_e (extended to $G_{\mathbf{Q}_p}$) is de Rham or not. Since $W_{\mathrm{dR}}^{G_K} = K \otimes_{\mathbf{Q}_p} W_{\mathrm{dR}}^{G_{\mathbf{Q}_p}}$, this implies that $W_{\mathrm{dR}}^{G_K} = \{0\}$ if W is not de Rham. Note that if W is a rank 1 $\mathbf{B}_{|K}^{\otimes E}$ -pair with $K \neq \mathbf{Q}_p$, then W may be "partially de Rham" in the sense of $[\mathbf{Din17}]$, so that in general $W_{\mathrm{dR}}^{G_K}$ can be non-zero even if W is not de Rham.

Proposition 5.1. — If W_{dR}^+ is a free $E \otimes_{\mathbf{Q}_p} \mathbf{B}_{dR}^+$ -representation of G_K of rank 1, the map $H^1(G_K, W_{dR}^+) \to H^1(G_K, W_{dR})$ is injective.

Proof. — Since we have an exact sequence

$$W_{\mathrm{dR}}^{G_K} \to (W_{\mathrm{dR}}/W_{\mathrm{dR}}^+)^{G_K} \to H^1(G_K, W_{\mathrm{dR}}^+) \to H^1(G_K, W_{\mathrm{dR}}),$$

it is enough to show that $W_{\mathrm{dR}}^{G_K} \to (W_{\mathrm{dR}}/W_{\mathrm{dR}}^+)^{G_K}$ is surjective. To do this, we can replace K by a finite extension L, and in particular we can assume that L contains E. In this case, $W_{\mathrm{dR}}^+|_{G_L}$ is a direct sum of rank 1 $\mathbf{B}_{\mathrm{dR}}^+$ -representations of G_L .

Let X_{dR}^+ be a rank 1 $\mathbf{B}_{\mathrm{dR}}^+$ -representation of G_L . The L-vector space $X_{\mathrm{dR}}^{G_L}$ is of dimension 0 or 1. If $\dim_L X_{\mathrm{dR}}^{G_L} = 1$, then X_{dR} is de Rham, and the map $X_{\mathrm{dR}}^{G_L} \to (X_{\mathrm{dR}}/X_{\mathrm{dR}}^+)^{G_L}$ is surjective by the same argument as in lemma 3.8.1 of $[\mathbf{BK90}]$ (see lemma 2.6 of $[\mathbf{Nak09}]$). If $\dim_L X_{\mathrm{dR}}^{G_L} = 0$, then for every $i \in \mathbf{Z}$, we have $(t^i X_{\mathrm{dR}}^+/t^{i+1} X_{\mathrm{dR}}^+)^{G_L} = 0$ by proposition 3.21 of $[\mathbf{Fon04}]$. This implies that $(X_{\mathrm{dR}}/X_{\mathrm{dR}}^+)^{G_L} = 0$, so that the map $X_{\mathrm{dR}}^{G_L} \to (X_{\mathrm{dR}}/X_{\mathrm{dR}}^+)^{G_L}$ is also surjective.

Corollary 5.2. — If X is a direct sum of rank 1 $\mathbf{B}_{|K}^{\otimes E}$ -pairs, the map $H^1(G_K, X_{\mathrm{dR}}^+) \to H^1(G_K, X_{\mathrm{dR}})$ is injective.

Recall that every rank 1 $\mathbf{B}_{|K}^{\otimes E}$ -pair is of the form $\mathbf{B}(\delta)$ for a unique $\delta: K^{\times} \to E^{\times}$.

Proposition 5.3. — If a $\mathbf{B}_{|K}^{\otimes E}$ -pair W is split $\Delta(\mathbf{Q}_p)$ -triangulable, with subquotients $\{\mathbf{B}(\delta_i)\}_i$ such that $\mathbf{B}(\delta_i\delta_i^{-1})$ is not de Rham for any $i \neq j$, and if the corresponding

triangulation of W_e splits as a direct sum of 1-dimensional $\mathbf{B}_{e,E}$ -representations, then the triangulation of W splits.

Proof. — Let $0 = W_0 \subset W_1 \subset \cdots \subset W_d = W$ be the given triangulation of W. We prove by induction on j that $W_j = \mathbf{B}(\delta_1) \oplus \cdots \oplus \mathbf{B}(\delta_j)$. This is true for j = 1, assume it holds for j - 1. Write $0 \to W_{j-1} \to W_j \to \mathbf{B}(\delta_j) \to 0$ and $W_{j-1} = \mathbf{B}(\delta_1) \oplus \cdots \oplus \mathbf{B}(\delta_{j-1})$. Let $X = W_{j-1}(\delta_j^{-1})$ and $Y = W_j(\delta_j^{-1})$. The $\mathbf{B}_{|K}^{\otimes E}$ -pair Y corresponds to a class in $H^1(G_K, X)$. The $\mathbf{B}_{e,E}$ -representation Y_e is split, and therefore so is Y_{dR} . By corollary 5.2, so is Y_{dR}^+ . The class of Y in $H^1(G_K, X)$ is therefore in the kernel of $H^1(G_K, X) \to H^1(G_K, X_e) \oplus H^1(G_K, X_{dR}^+)$. Since $X_{dR}^{G_K} = 0$ by hypothesis, Nakamura's exact sequence (2) above implies that the class of Y is trivial and hence $W_j = W_{j-1} \oplus \mathbf{B}(\delta_j)$. The proposition follows by induction.

6. Proof of the main theorem

In this section, we prove theorem B. Let F be a finite extension of E of degree ≥ 2 , and write $F \otimes_E F = \bigoplus_i F_i$. There are at least two summands since F itself is one of them.

Proposition 6.1. — Let F/E be as above, and let W be an F-linear representation of G_K . We have $F \otimes_E W = \bigoplus_i (F_i \otimes_F W)$ as F-linear representations of G_K .

Proof. — We have
$$F \otimes_E W = (F \otimes_E F) \otimes_F W = \bigoplus_i (F_i \otimes_F W)$$
.

Corollary 6.2. — If W is a $\mathbf{B}_{e,E}$ -representation of G_K that has an F-linear structure, then W becomes reducible after extending scalars from E to F.

Let us say that a $\mathbf{B}_{|K}^{\otimes E}$ -pair W is completely irreducible if $(F \otimes_E W)|_{G_L}$ is an irreducible $\mathbf{B}_{|L}^{\otimes F}$ -pair for all finite extensions F of E and L of K.

Proposition 6.3. — If K = E and if X and Y are two completely irreducible $\mathbf{B}_{|K}^{\otimes E}$ -pairs such that $\operatorname{Hom}(X,Y)$ is split $\Delta(\mathbf{Q}_p)$ -triangulable, then X and Y are of rank 1.

Proof. — Let $\{\mathbf{B}(\delta_i)\}_i$ be the rank 1 subquotients of the triangulation of $\mathrm{Hom}(X,Y)$. We have an inclusion $\mathbf{B}(\delta_1) \subset \mathrm{Hom}(X,Y)$. This gives rise to a non-zero map $X \to Y(\delta_1^{-1})$ of $\mathbf{B}_{|K}^{\otimes E}$ -pairs. Write $\mathbf{B}(\delta_1)_e = \mathbf{B}_{\mathrm{e},E}(\mu_1)$ for some $\mu_1 : G_K \to \mathbf{B}_{\mathrm{e},E}^{\times}$ (recall that K = E). Since X and Y are irreducible, X_e and Y_e are irreducible $\mathbf{B}_{\mathrm{e},E}$ -representations of G_K (proposition 4.1), and the map $X_e \to Y_e(\mu_1^{-1})$ is therefore an isomorphism. This implies that $\mathrm{Hom}(X_e, Y_e) = \mathrm{End}(X_e)(\mu_1)$, so that $\mathrm{End}(X_e)$ is split triangulable. By theorem 4.5, the triangulation of $\mathrm{End}(X_e)$ splits. The triangulation of $\mathrm{Hom}(X_e, Y_e) = \mathrm{End}(X_e)(\mu_1)$ therefore also splits. Let n be the common rank of X and Y.

Suppose that none of the $\mathbf{B}(\delta_i\delta_j^{-1})$ are de Rham for any $i \neq j$. By proposition 5.3 applied to $W = \mathrm{Hom}(X,Y)$, the triangulation of $\mathrm{Hom}(X,Y)$ splits. We can therefore write $\mathrm{Hom}(X,Y) = \bigoplus_i \mathbf{B}(\delta_i)$. Since X and Y are both irreducible, they are pure of some slopes s and t by theorem 2.3. The $\mathbf{B}_{|K}^{\otimes E}$ -pair $\mathrm{Hom}(X,Y)$ is then pure of slope t-s by (1) of proposition 2.4. By (3) of ibid, each of the $\mathbf{B}(\delta_i)$ is also pure of slope t-s. Each $\mathbf{B}(\delta_i)$ gives rise to a map $X \to Y(\delta_i^{-1})$, which is an isomorphism of $\mathbf{B}_{|K}^{\otimes E}$ -pairs by (2) of ibid, since X and $Y(\delta_i^{-1})$ are both pure of slope s. By taking determinants, we get $\delta_i^n = \det(Y) \det(X)^{-1}$ for every i. This implies that $(\delta_i \delta_j^{-1})^n = 1$ so that $\delta_i \delta_j^{-1}$ is of finite order, and $\mathbf{B}(\delta_i \delta_j^{-1})$ is de Rham (lemma 4.1 of $[\mathbf{Nak09}]$), contradicting our assumption.

Therefore, one of the $\mathbf{B}(\delta_i\delta_j^{-1})$ is de Rham for some $i \neq j$. Write $\mathbf{B}(\delta_k)_e = \mathbf{B}_{e,E}(\mu_k)$ where the μ_k are characters $G_K \to E^\times$ (recall that K = E), so that $\mathrm{End}(X_e)(\mu_1) = \bigoplus_k \mathbf{B}_{e,E}(\mu_k)$ as $\mathbf{B}_{e,E}$ -representations of G_K . The fact that $\mathbf{B}(\delta_i\delta_j^{-1})$ is de Rham implies that $\mu_i\mu_j^{-1}$ is de Rham. We then have $X_e = X_e(\mu_1\mu_i^{-1}) = X_e(\mu_1\mu_j^{-1})$, so that $X_e = X_e(\mu_i\mu_j^{-1})$. By taking determinants, we find that $\mathbf{B}_{e,E}((\mu_i\mu_j^{-1})^n) = \mathbf{B}_{e,E}$ and therefore by corollary 3.7, $(\mu_i\mu_j^{-1})^n : G_K \to E^\times$ is de Rham and the sum of its weights is 0. This implies that the sum of the weights of $\mu_i\mu_j^{-1} : G_K \to E^\times$ is 0. By corollary 3.7, $\mu_i\mu_j^{-1} = \chi\eta$ with $\chi : G_K \to E^\times$ a $\mathbf{B}_{e,E}$ -admissible character and $\eta : G_K \to E^\times$ potentially unramified. Since $X_e(\chi\eta) = X_e$ and $X_e(\chi) = X_e$, we get $X_e(\eta) = X_e$. By taking determinants, we get that η^n is $\mathbf{B}_{e,E}$ -admissible. Since η^n is also potentially unramified, and $\mathbf{B}_{e,E} \cap (\overline{\mathbf{Q}}_p \cdot \widehat{\mathbf{Q}}_p^{\mathrm{nr}}) = E$, it is trivial. Hence η is a character of finite order of G_K , and so there exists a finite extension L of K such that $\mu_i = \chi \mu_j$ on G_L .

The space $\operatorname{End}(X_e)(\mu_1)$ contains $\mathbf{B}_{e,E}(\mu_j) \oplus \mathbf{B}_{e,E}(\mu_i)$, which is isomorphic to $\mathbf{B}_{e,E}(\mu_j) \oplus \mathbf{B}_{e,E}(\mu_j)$ after restricting to G_L . Let f and g be the two resulting isomorphisms $X_e \to X_e(\mu_1\mu_j^{-1})$. The map $h = f^{-1} \circ g : X_e \to X_e$ is G_L -equivariant and is not in E^\times · Id since f and g are $\mathbf{B}_{e,E}$ -linearly independent. Therefore, $\operatorname{End}(X_e)^{G_L}$ is strictly larger than E. Since $X_e|_{G_L}$ is irreducible, Schur's lemma and corollary 3.14 imply that $\operatorname{End}(X_e)^{G_L}$ contains a field F such that $[F:E] \geqslant 2$ (for example, F=E[h]). Hence $X_e|_{G_L}$ has an F-linear structure. Corollary 6.2 implies that $(F \otimes_E X_e)|_{G_L}$ is reducible. By proposition 4.1, X is not completely irreducible. This is a contradiction, so X had to be of rank 1. Since X and Y have the same rank, we are done.

We now recall and prove theorem B. A strict sub-quotient of a $\mathbf{B}_{|K}^{\otimes E}$ -pair is a quotient of a saturated sub $\mathbf{B}_{|K}^{\otimes E}$ -pair.

Theorem 6.4. — If X and Y are two non-zero $\mathbf{B}_{|K}^{\otimes E}$ -pairs whose tensor product is $\Delta(\mathbf{Q}_p)$ -triangulable, then X and Y are both potentially triangulable.

Proof. — We can replace E and K by finite extensions F and L if necessary, and write X and Y as successive extensions of completely irreducible $\mathbf{B}_{|L}^{\otimes F}$ -pairs with F = L. If X' and Y' are two strict sub-quotients of X and Y, then $X' \otimes Y'$ is a strict sub-quotient of $X \otimes Y$, and it is $\Delta(\mathbf{Q}_p)$ -triangulable by proposition 4.3. Proposition 6.3, applied to $(X')^*$ and Y' so that $X' \otimes Y' = \mathrm{Hom}((X')^*, Y')$, tells us that X' and Y' are of rank 1.

Hence the $\mathbf{B}_{|L}^{\otimes F}$ -pairs $(F \otimes_E X)|_{G_L}$ and $(F \otimes_E Y)|_{G_L}$ are split triangulable.

Corollary 6.5. — If X_e and Y_e are two $\mathbf{B}_{e,E}$ -representations of G_K whose tensor product is triangulable, with the rank 1 sub-quotients extending to $\mathbf{B}_{e,E}$ -representations of $G_{\mathbf{Q}_p}$, then X_e and Y_e are both potentially triangulable.

Proof. — By proposition 2.2, X_e and Y_e extend to $\mathbf{B}_{|K}^{\otimes E}$ -pairs. The result follows from corollary 4.2 and theorem 6.4.

We finish with an example of a representation V such that $V \otimes_E V$ is trianguline, but V itself is not trianguline. This shows that the "potentially" in the statement of theorem A cannot be avoided. Let Q_8 denote the quaternion group. If $p \equiv 3 \mod 4$, there is a Galois extension K/\mathbb{Q}_p such that $\mathrm{Gal}(K/\mathbb{Q}_p) = Q_8$ (see II.3.6 of [JY88]). Choose such a p and K, and let E be a finite extension of \mathbb{Q}_p containing $\sqrt{-1}$. The group Q_8 has a (unique) irreducible 2-dimensional E-linear representation, which we inflate to a representation V of $G_{\mathbb{Q}_p}$. One can check that $V \otimes_E V$ is a direct sum of characters, hence trianguline, and that the semi-linear representation $\mathrm{Frac}(\mathbb{B}_{\mathrm{e},E}) \otimes_E V$ is irreducible. This holds for all E as above, so that V is not trianguline.

Acknowledgements: We thank Léo Poyeton and Sandra Rozensztajn for their comments, and David Hansen and Andrea Conti for their questions and useful discussions.

References

- [BC09] Joël Bellaïche and Gaëtan Chenevier, Families of Galois representations and Selmer groups, Astérisque (2009), no. 324, xii+314.
- [BC10] Laurent Berger and Gaëtan Chenevier, Représentations potentiellement triangulines de dimension 2, J. Théor. Nombres Bordeaux 22 (2010), no. 3, 557–574.
- [Ber08] Laurent Berger, Construction de (φ, Γ) -modules: représentations p-adiques et B-paires, Algebra Number Theory 2 (2008), no. 1, 91–120.
- [Ber11] _____, Trianguline representations, Bull. Lond. Math. Soc. 43 (2011), no. 4, 619–635.
- [Ber16] _____, Multivariable (φ, Γ) -modules and locally analytic vectors, Duke Math. J. **165** (2016), no. 18, 3567–3595.
- [Ber17] John Bergdall, Paraboline variation over p-adic families of (φ, Γ) -modules, Compos. Math. **153** (2017), no. 1, 132–174.

- [BK90] Spencer Bloch and Kazuya Kato, *L-functions and Tamagawa numbers of motives*, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400.
- [Col02] Pierre Colmez, Espaces de Banach de dimension finie, J. Inst. Math. Jussieu 1 (2002), no. 3, 331–439.
- [Col08] _____, Représentations triangulines de dimension 2, Astérisque (2008), no. 319, 213–258, Représentations p-adiques de groupes p-adiques. I. Représentations galoisiennes et (φ, Γ) -modules.
- [Con21] Andrea Conti, Lifting trianguline Galois representations, arXiv:2101.02189, January 2021.
- [Del16] Pierre Deligne, email to Giovanni Di Matteo, April 2016.
- [Din17] Yiwen Ding, *L*-invariants, partially de Rham families, and local-global compatibility, Ann. Inst. Fourier (Grenoble) **67** (2017), no. 4, 1457–1519.
- [DM13] Giovanni Di Matteo, Produits tensoriels en théorie de Hodge p-adique, Ph.D. thesis, ENS de Lyon, December 2013.
- [Eme11] Matthew Emerton, Local-global compatibility in the p-adic Langlands programme for GL_2/\mathbb{Q} , preprint, March 2011.
- [FF18] Laurent Fargues and Jean-Marc Fontaine, Courbes et fibrés vectoriels en théorie de Hodge p-adique, Astérisque (2018), no. 406, xiii+382, With a preface by Pierre Colmez.
- [Fon94] Jean-Marc Fontaine, Le corps des périodes p-adiques, Astérisque (1994), no. 223, 59–111, With an appendix by Pierre Colmez, Périodes p-adiques (Bures-sur-Yvette, 1988).
- [Fon04] _____, Arithmétique des représentations galoisiennes p-adiques, Astérisque (2004), no. 295, xi, 1–115, Cohomologies p-adiques et applications arithmétiques. III.
- [Han17] David Hansen, Universal eigenvarieties, trianguline Galois representations, and p-adic Langlands functoriality, J. Reine Angew. Math. **730** (2017), 1–64, With an appendix by James Newton.
- [JY88] Christian U. Jensen and Noriko Yui, *Quaternion extensions*, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp. 155–182.
- [Ked04] Kiran S. Kedlaya, A p-adic local monodromy theorem, Ann. of Math. (2) **160** (2004), no. 1, 93–184.
- [Kis03] Mark Kisin, Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math. 153 (2003), no. 2, 373–454.
- [Nak09] Kentaro Nakamura, Classification of two-dimensional split trianguline representations of p-adic fields, Compos. Math. 145 (2009), no. 4, 865–914.

Laurent Berger Giovanni Di Matteo