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Abstract. — We show that if V and V ′ are two p-adic representations of Gal(Qp/Qp)
whose tensor product is trianguline, then V and V ′ are both potentially trianguline.
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1. Introduction

The notion of a trianguline representation of GQp = Gal(Qp/Qp) was introduced by
Colmez [Col08] in the context of his work on the p-adic local Langlands correspondence
for GL2(Qp). Examples of trianguline representations include the semi-stable represen-
tations of GQp as well as the p-adic representations of GQp attached to overconvergent
cuspidal eigenforms of finite slope (theorem 6.3 of [Kis03] and proposition 4.3 of [Col08]).
The category of all trianguline representations of GQp is stable under extensions, tensor
products, and duals. We refer the reader to the book [BC09] and the survey [Ber11]
for a detailed discussion of trianguline representations. Let us at least mention the fol-
lowing analogue of the Fontaine-Mazur conjecture: if V is an irreducible 2-dimensional
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p-adic representation of Gal(Q/Q) that is unramified at ` for almost all ` 6= p, and
whose restriction to a decomposition group at p is trianguline, then V is a twist of the
Galois representation attached to an overconvergent cuspidal eigenform of finite slope.
This conjecture is a theorem of Emerton (§1.2.2 of [Eme11]) under additional technical
hypothesis on V . The trianguline property is in general a condition at p reflecting (con-
jecturally at least) the fact that a p-adic representation comes from a p-adic automorphic
form. This theme is pursued, for example, in [Han17], [Ber17] and [Con21].

If K is a finite extension of Qp, we also have the notion of a trianguline representation
of GK = Gal(Qp/K). We say that a representation V of GK is potentially trianguline
if there exists a finite extension L/K such that the restriction of V to GL is trianguline.
The goal of this article is to prove the following theorem.

Theorem A. — If V and V ′ are two non-zero p-adic representations of GQp whose
tensor product is trianguline, then V and V ′ are both potentially trianguline.

We now give more details about the contents of this article. The definition of “tri-
anguline” can be given either in terms of (ϕ,Γ)-modules over the Robba ring, or in
terms of B-pairs. In this article, we use the theory of B-pairs, which was introduced in
[Ber08]. We remark in passing that B-pairs are the same as GK-equivariant bundles on
the Fargues-Fontaine curve [FF18]. Let K be a finite extension of Qp. Let B+

dR, BdR and
Be = (Bcris)ϕ=1 be some of Fontaine’s rings of p-adic periods [Fon94]. A B-pair is a pair
W = (We,W

+
dR) where We is a free Be-module of finite rank endowed with a continuous

semi-linear action of GK , and W+
dR is a GK-stable B+

dR-lattice in WdR = BdR ⊗Be We. If
V is a p-adic representation of GK , thenW (V ) = (Be⊗Qp V,B+

dR⊗Qp V ) is a B-pair. If E
is a finite extension of Qp, the definition of B-pairs can be extended to E-linear objects,
and we get objects called B⊗E|K -pairs in [BC10] or E-B-pairs of GK in [Nak09]. They
are pairs W = (We,W

+
dR) where We is a free E ⊗Qp Be-module of finite rank endowed

with a continuous semi-linear action of GK , and W+
dR is a GK-stable E ⊗Qp B+

dR-lattice
in WdR = (E ⊗Qp BdR)⊗E⊗QpBe We. Note that the action of GK is E-linear.

We say (definition 1.15 of [Nak09]) that a B⊗E|K -pair W is split triangulable if W is
a successive extension of objects of rank 1, triangulable if there exists a finite extension
F/E such that the B⊗F|K -pair F ⊗E W is split triangulable, and potentially triangulable
if there exists a finite extension L/K such that the B⊗E|L -pair W |GL is triangulable. If V
is a p-adic representation of GK , we say that V is trianguline if W (V ) is triangulable.
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Let ∆ be a set of rank 1 semi-linear E ⊗Qp Be-representations of GK . We say that
a B⊗E|K -pair is split ∆-triangulable if it is split triangulable, and the rank 1 E ⊗Qp Be-
representations of GK that come from the triangulation are all in ∆. Let ∆(Qp) be the
set of rank 1 E ⊗Qp Be-representations of GK that extend to GQp . Theorem A then
results from the following more general result (theorem 6.4), applied to K = Qp.

Theorem B. — If X and Y are two non-zero B⊗E|K -pairs whose tensor product is ∆(Qp)-
triangulable, then X and Y are both potentially triangulable.

The proof of theorem B relies on the study of E ⊗Qp Be-representations of GK as well
as on the study of the slopes, weights and cohomology of B⊗E|K -pairs. The ring E ⊗Qp Be

has many non-trivial units, which makes the study of B⊗E|K -pairs more difficult than when
E = Qp. Note finally that some of the results of this article already appear in [DM13].

2. Reminders and complements

If K is a finite extension of Qp, let GK = Gal(Qp/K). Let E be a finite Galois
extension of Qp such that K ⊂ E, and let Σ = Gal(E/Qp). Let E0 be the maximal
unramified extension of Qp inside E. Let B+

dR, BdR, B+
cris and Bcris be Fontaine’s rings

of p-adic periods (see for instance [Fon94]). They are all equipped with an action of
GQp , and B+

cris and Bcris have in addition a Frobenius map ϕ. Let Be = (Bcris)ϕ=1 and
Be,E = E ⊗Qp Be. The group GQp acts E-linearly on Be,E.

Proposition 2.1. — The ring Be,E is a principal ideal domain.

Proof. — The ring Be,E is a Bézout domain; for E = Qp this is shown in proposition
1.1.9 of [Ber08], and the same argument is used to show the general case in lemma 1.6
of [Nak09]. By theorem 6.5.2 of [FF18], the ring Be is a principal ideal domain, and
therefore Be,E is a principal ideal domain as well, since it is a quotient of the polynomial
ring Be[X], and thus Noetherian.

Recall that a B⊗E|K -pair is a pair W = (We,W
+
dR) where We is a free Be,E-module of

finite rank endowed with a continuous semi-linear action of GK , and W+
dR is a GK-stable

E ⊗Qp B+
dR-lattice in WdR = (E ⊗Qp BdR)⊗Be,E We.

Proposition 2.2. — If We is a Be,E-representation of GK, then (E⊗Qp BdR)⊗Be,E We

admits an E ⊗Qp B+
dR-lattice stable under GK.

Proof. — See §3.5 of [Fon04]. The same argument gives an E ⊗Qp B+
dR-lattice instead

of a B+
dR-lattice if one starts from an E ⊗Qp BdR-representation.
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Recall that Nakamura has classified the B⊗E|K -pairs of rank 1, under the assumption
that E contains the Galois closure of K. Given a character δ : K× → E×, he constructs
in §1.4 of [Nak09] a rank 1 B⊗E|K -pair W (δ), that we denote by B(δ), and proves that
every rank 1 B⊗E|K -pair is of this form for a unique δ. We have B(δ1)⊗B(δ2) = B(δ1δ2)
(§1.4 of [Nak09]). We denote by B(δ)e the Be,E-component of B(δ).

Recall (see for instance §2 of [BC10] or §1.3 of [Nak09]) that B⊗E|K -pairs have slopes.
This comes from the equivalence of categories between B⊗E|K -pairs and (ϕ,Γ)-modules
over the Robba ring, and Kedlaya’s constructions and results for ϕ-modules over the
Robba ring (see [Ked04]). In particular, one can define the notion of isoclinic (pure of
a certain slope) B⊗E|K -pairs. For example, if V is an E-linear representation of GK , then
W (V ) = (Be,E ⊗E V, (E ⊗Qp B+

dR) ⊗E V ) is pure of slope 0, and every B⊗E|K -pair that is
pure of slope 0 is of this form (proposition 2.2 of [BC10]).

We have the following slope filtration theorem (see theorem 2.1 of [BC10]).

Theorem 2.3. — If W is a B⊗E|K -pair, there is a canonical filtration {0} = W0 ⊂ W1 ⊂
· · · ⊂ W` = W by sub B⊗E|K -pairs such that

1. for every 1 6 i 6 `, the quotient Wi/Wi−1 is isoclinic;
2. if si is the slope of Wi/Wi−1, then s1 < s2 < · · · < s`.

The following proposition gathers the results that we need concerning slopes of B⊗E|K -
pairs. Recall that Hom(X, Y ) = (HomE⊗QpBe(Xe, Ye),HomE⊗QpB+

dR
(X+

dR, Y
+

dR)).

Proposition 2.4. — If X is pure of slope s and Y is pure of slope t, then

1. Hom(X, Y ) is pure of slope t− s and X ⊗ Y is pure of slope s+ t;
2. if X and Y have the same rank and X ⊂ Y and s = t, then X = Y ;
3. if Y is a direct summand of X, then s = t.

Proof. — For (1), see theorem 6.10 and proposition 5.13 of [Ked04]. For (2), we can
take determinants and assume that X and Y are of rank 1. The claim is then proposition
2.3 of [Ber08]. Item (3) follows from the fact that if X = Y ⊕ Z, then the set of slopes
of X is the union of those of Y and Z (proposition 5.13 of [Ked04]).

3. The ring Be,E

Recall that Be,E = E⊗Qp Be. In this section, we determine the units of Be,E and study
the rank 1 Be,E-representations of GE. Let q = ph be the cardinality of the residue field
of OE, so that E0 = Qph . Let ϕE : E ⊗E0 Bcris → E ⊗E0 Bcris be the map Id⊗ϕh.
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Proposition 3.1. — We have an exact sequence

0→ E → Be,E → (E ⊗Qp BdR)/(E ⊗Qp B+
dR)→ 0.

Proof. — This follows from tensoring by E the usual fundamental exact sequence 0 →
Qp → Be → BdR/B+

dR → 0 (proposition 1.17 of [BK90]).

Proposition 3.2. — The natural map Be,E → (E ⊗E0 Bcris)ϕE=1 is an isomorphism.

Proof. — Since ϕE is E-linear, we have (E ⊗E0 Bcris)ϕE=1 = E ⊗E0 Bϕh=1
cris and it is

therefore enough to prove that Bϕh=1
cris = Qph ⊗Qp Bϕ=1

cris . The group Gal(Qph/Qp) acts
Qph-semi-linearly on Bϕh=1

cris via ϕ, and the claim follows from Galois descent (Speiser’s
lemma).

Remark 3.3. — The isomorphism of proposition 3.2 is GE-equivariant.
In addition, if g ∈ GQp acts by Id⊗g on E ⊗Qp Be, then it acts by Id⊗gϕ−n(g) on

(E ⊗E0 Bcris)ϕE=1 (where n(g) is defined below).

Let π be a uniformizer of OE, and let χπ denote the Lubin-Tate character χπ : GE →
O×E attached to π. For each τ ∈ Σ = Gal(E/Qp), let n(τ) be the element of {0, . . . , h−1}
such that τ = ϕn(τ) on E0. Let tτ ∈ E ⊗E0 B+

cris denote the element constructed in §5 of
[Ber16], where (in the notation of [Ber16]) we take F = E. We have tτ = (τ⊗ϕn(τ))(tId).
The element tId is also denoted by tπ in [Ber16], and it is the same as the element tE
constructed in §9 of [Col02]. The usual t of p-adic Hodge theory is t = tQp for π = p.

For each σ ∈ Σ, we have a map E⊗E0 B+
cris → B+

dR given by x 7→ (σ⊗ϕn(σ))(x), followed
by the natural injection of E ⊗E0 B+

cris in B+
dR (theorem 4.2.4 of [Fon94]). Finally, note

that E · Q̂nr
p = E ⊗E0 Q̂nr

p is contained in E ⊗E0 B+
cris.

Proposition 3.4. — Let the notation be as above.

1. We have ϕE(tτ ) = τ(π) · tτ and g(tτ ) = τ(χπ(g)) · tτ if g ∈ GE;
2. the t-adic valuation of the σ-component of the image of tτ via the map

E ⊗E0 B+
cris → E ⊗Qp BdR =

∏
σ∈Σ

BdR

given by x 7→ {(σ ⊗ ϕn(σ))(x)}σ∈Σ is 1 if σ = τ−1 and 0 otherwise;
3. there exists u ∈ (E · Q̂nr

p )× such that ∏
τ∈Σ tτ = u · t in E ⊗E0 Bcris.

Proof. — Since tτ = (τ ⊗ ϕn(τ))(tId), it is enough to check (1) for τ = Id. The corre-
sponding statement is at the end of §3 of [Ber16] (page 3578). Likewise, (2) follows
from the case τ = Id. That case now follows from (1) and the fact that the Hodge-Tate
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weight of χπ is 1 at σ = Id and 0 at σ 6= Id. Finally, we have NE/Qp(χπ) = χcycη where
η : GE → Q×p is unramified, and by (1), this implies (3).

Note that t−1
τ ∈ E ⊗E0 Bcris since tτ divides t in B+

cris by (3) of proposition 3.4.

Proposition 3.5. — If n = {nτ}τ∈Σ is a tuple of integers whose sum is 0, then there
exists un ∈ (E · Q̂nr

p )× such that u = ∏
τ∈Σ t

nτ
τ un belongs to Be,E. The element u is a unit

of Be,E and every unit of Be,E is of this form up to multiplication by E×.

Proof. — Let w = ϕE(∏
τ∈Σ t

nτ
τ )/∏

τ∈Σ t
nτ
τ = ∏

τ∈Σ τ(π)nτ by (1) of proposition 3.4. Since∑
τ∈Σ nτ = 0, we have w ∈ O×E . There exists un ∈ (E ·Q̂nr

p )× such that ϕE(un)/un = w−1,
and then u = ∏

τ∈Σ t
nτ
τ un belongs to Be,E. The inverse of u is ∏

τ∈Σ t
−nτ
τ u−1

n which also
belongs to Be,E, so that u ∈ B×e,E.

We now show that every u ∈ B×e,E is of this form. Let nτ be the t-adic valuation in BdR

of the τ−1-component uτ−1 = (τ−1⊗ Id)(u) of the image of u ∈ E⊗Qp Be in E⊗Qp BdR =∏
σ∈Σ BdR. Note that uσ ∈ B×e,E for all σ ∈ Σ and that ∏

σ∈Σ uσ ∈ (B×e,E)Σ = B×e . We have
B×e = Q×p by lemma 1.1.8 of [Ber08], so that ∑

τ∈Σ nτ = 0. By (2) of proposition 3.4, the
element u ·∏τ∈Σ t

−nτ
τ u−1

n belongs to (E ⊗Qp B+
dR) ∩B×e,E, and (E ⊗Qp B+

dR) ∩B×e,E = E×

by proposition 3.1.

Recall that an E-linear representation is crystalline or de Rham if the underlying Qp-
linear representation is crystalline or de Rham. We say that a character δ : GE → E× is
Be,E-admissible if there exists y ∈ Be,E \ {0} such that δ(g) = g(y)/y. Such a character
is then crystalline, hence also de Rham.

Proposition 3.6. — If y ∈ Be,E \ {0} is such that y · Be,E is stable under GE, then
y ∈ B×e,E and there exists nτ ∈ Z with ∑

τ∈Σ nτ = 0 and y0 ∈ (E · Q̂nr
p )× such that

y = ∏
τ∈Σ t

nτ
τ y0.

Proof. — If y · Be,E is stable under GE, then g(y)/y ∈ Be,E for all g ∈ GE. Note that
if z ∈ B×dR, then g(z)/z ∈ B+

dR. This implies that g(y)/y ∈ Be,E ∩ (E ⊗Qp B+
dR). By

proposition 3.1, g(y)/y ∈ E×. The map δ : GE → E× given by δ(g) = g(y)/y is a
crystalline character of GE, and hence of the form ∏

τ∈Σ τ(χπ)nτη0 where nτ ∈ Z and
η0 : GE → E× is unramified. This implies that there exists y0 ∈ (E · Q̂nr

p )× such that
y = ∏

τ∈Σ t
nτ
τ y0. If y ∈ Be,E, then ϕE(y) = y so that ∑

τ∈Σ nτ = 0 by (1) of proposition
3.4, and hence y ∈ B×e,E.

Corollary 3.7. — If δ : GE → E× is a Be,E-admissible character, then δ is de Rham
and the sum of its weights at all τ ∈ Σ is 0. Conversely, any character δ : GE → E×
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that is de Rham with the sum of its weights at all τ ∈ Σ equal to 0 is the product of a
Be,E-admissible character by a potentially unramified character.

Proof. — The first assertion follows immediately from proposition 3.6. We now prove
the second assertion. If δ : GE → E× is de Rham, it is of the form ∏

τ∈Σ τ(χπ)nτη0 where
nτ ∈ Z and η0 : GE → E× is potentially unramified. Let n = {nτ}τ∈Σ and u be the
corresponding unit (proposition 3.5). If g ∈ GE, then g(u)/u = ∏

τ∈Σ τ(χπ(g))nτηu(g)
where ηu : GE → E× is unramified. The second assertion then follows from this.

A Be,E-representation of GK is a free Be,E-module of finite rank with a semi-linear
and continuous action of GK (recall that GK acts linearly on E). If δ ∈ H1(GK ,B×e,E)
(for example if δ : GK → E× is a character), we denote by Be,E(δ) the resulting rank 1
Be,E-representation of GK .

Proposition 3.8. — If We is a Be,E-representation of GK, and if Xe is a sub Be,E-
module of We stable under GK, then Xe is a free Be,E-module, and it is saturated in
We.

Proof. — See lemma 1.10 of [Nak09].

Proposition 3.9. — If W is a rank 1 Be,E-representation of GE, then there exists δ :
GE → E× such that W = Be,E(δ).

Proof. — If we choose a basis w of W , then g(w) = δ(g)w with δ(g) ∈ B×e,E, so that
δ(g) is of the form ∏

τ∈Σ t
nτ (g)
τ un(g) by proposition 3.5. Since δ(gh) = δ(g)g(δ(h)), (1)

of proposition 3.4 implies that the maps nτ : GE → Z are continuous homomorphisms.
They are therefore trivial, and this implies that δ(g) ∈ E×.

Remark 3.10. — The character δ in proposition 3.9 is not unique, since it can be
multiplied by any Be,E-admissible character of GE.

Remark 3.11. — If K 6= E, it is not necessarily true that every rank 1 Be,E-
representation of GK is of the form Be,E(δ) for a character δ : GK → E×.

Proof. — Take E = Qp(
√
p) and K = Qp and W = (E ⊗Qp Bcris)ϕ=π = tId · Be,E.

The E-linear action of GQp on W is given by the map δ : g 7→ g(tId)/tId. If g ∈ GE,
then δ(g) = χπ(g). If u = tnIdt

−n
τ un,−n ∈ B×e,E as in proposition 3.5, and g /∈ GE,

then g(utId)/utId = t−2n−1
Id t2n+1

τ v with v ∈ (E · Q̂nr
p )×. Therefore, there is no character

η : GQp → E× such that W = Be,E(η).
Note that W is the Be,E-component of the B⊗E|K -pair W−1

0 of §1.4 of [Nak09].
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Remark 3.12. — The results of this section provide a new proof of proposition 2.1.

Proof. — By theorem 6.5.2 of [FF18], the ring (E ⊗E0 B+
cris[1/tId])ϕE=1 is a PID. Since

we have shown Be,E is a localization of (E ⊗E0 B+
cris[1/tId])ϕE=1, it is a PID.

Proposition 3.13. — We have Frac(Be,E)GK = E.

Proof. — Take x/y ∈ Frac(Be,E)GK with x, y ∈ Be,E coprime. If g ∈ GK , then g(x)y =
xg(y) so that x divides g(x) and y divides g(y) in Be,E (recall that Be,E is a PID). By
proposition 3.6, x and y belong to B×e,E. This implies that x/y ∈ BGK

e,E = E.

Corollary 3.14. — If We is a Be,E-representation of GK, then dimEW
GK
e 6 rkWe.

Proof. — By a standard argument, proposition 3.13 implies that the map Be,E⊗EWGK
e →

We is injective. This implies the corollary.

4. Triangulable representations

In this section, we study triangulable B⊗E|K -pairs and Be,E-representations of GK . We
say that a B⊗E|K -pair is irreducible if it has no non-trivial saturated sub B⊗E|K -pair (see
§2.1 of [Ber08]).

Proposition 4.1. — If W = (We,W
+
dR) is an irreducible B⊗E|K -pair, then We is an irre-

ducible Be,E-representation of GK.

Proof. — Let Xe be a sub-object of We. By proposition 3.8, it is a saturated and free
submodule of We. The space X+

dR = XdR ∩W+
dR is an E ⊗Qp B+

dR lattice of XdR stable
under GK . Hence X = (Xe, X

+
dR) is a saturated sub B⊗E|K -pair of W .

Corollary 4.2. — If W is a B⊗E|K -pair, then W is split triangulable as a B⊗E|K -pair if
and only if We is split triangulable as a Be,E-representation of GK.

Proof. — It is clear that if W is split triangulable, then so is We. Conversely, the proof
of proposition 4.1 shows how to construct a triangulation of W from a triangulation of
We.

Let ∆ be a set of rank 1 semi-linear Be,E-representations of GK . Recall that a B⊗E|K -pair
is split ∆-triangulable if it is split triangulable, and the rank 1 Be,E-representations of
GK that come from the triangulation are all in ∆.

Proposition 4.3. — If 0 → W ′ → W → W ′′ → 0 is an exact sequence of B⊗E|K -pairs,
then W is split ∆-triangulable if and only if W ′ and W ′′ are split ∆-triangulable.
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Proof. — IfW ′ andW ′′ are split ∆-triangulable, thenW is obviously split ∆-triangulable.
We now prove the converse. If We admits a triangulation, then so do W ′

e and W ′′
e . By

corollary 4.2, W ′ and W ′′ are therefore split triangulable. Proposition 3.8 implies that
two different triangulations of We give rise to two composition series of We (seen as
a Be,E-representation of GK). The set of rank 1 Be,E-representations attached to any
triangulation of We is therefore well-defined up to permutation by the Jordan-Hölder
theorem. Hence if W is split ∆-triangulable, then so are W ′ and W ′′.

Proposition 4.4. — If We is an irreducible Be,E-representation of GK, and δ ∈
H1(GK ,B×e,E), then every surjective map π : End(We)→ Be,E(δ) of Be,E-representations
of GK is split.

Proof. — Write Be,E(δ) = Be,E · eδ, where g(eδ) = δ(g)eδ with δ(g) ∈ B×e,E. Recall
that if A is a ring and M is a free A-module, then EndA(M) is its own dual, for the
pairing (f, g) 7→ Tr(fg). The map π is therefore of the form f 7→ Tr(fh) · eδ for some
h ∈ End(We). The map h satisfies g(h) = δ(g)−1h, and therefore gives rise to a GK-
equivariant map h : We → We(δ). Since We is irreducible, h is invertible. We can then
write End(We) = ker(π)⊕Be,E · h−1, which shows that π is split.

Theorem 4.5. — If We is an irreducible Be,E-representation of GK such that End(We)
is split triangulable, then the triangulation of End(We) splits.

Proof. — Write {0} = X0 ⊂ X1 ⊂ · · · ⊂ Xd = End(We), and Xi/Xi−1 = Be,E(δi)
for some δi ∈ H1(GK ,B×e,E). By proposition 4.4, the exact sequence 0 → Xd−1 →
End(We)→ Be,E(δd)→ 0 is split, and therefore End(We) = Xd−1 ⊕Be,E(δd).

Suppose that we have an isomorphism End(We) = Xj⊕Be,E(δj+1)⊕· · ·⊕Be,E(δd). Let
πj denote the composition End(We) → Xj → Be,E(δj). By proposition 4.4, End(We) =
ker(πj) ⊕ Be,E(δj). We have ker(πj) = Xj−1 ⊕ Be,E(δj+1) ⊕ · · · ⊕ Be,E(δd), so that
End(We) = Xj−1 ⊕Be,E(δj)⊕ · · · ⊕Be,E(δd). The claim follows by induction.

Remark 4.6. — Theorem 4.5 is reminiscent of the following result of Chevalley: if G is
any group and if X and Y are finite dimensional semi-simple characteristic 0 representa-
tions of G, then X⊗Y is also semi-simple. The same holds for semi-linear representations
and, more generally, in any Tannakian category over a field of characteristic 0 [Del16].
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5. Cohomology of B-pairs

The cohomology of B⊗E|K -pairs is defined and studied in §2.1 of [Nak09]. We recall what
we need. Let W be a B⊗E|K -pair. Nakamura constructs an E-vector space H1(GK ,W )
that has the following properties

1. H1(GK ,W ) = Ext1(B,W ) (i.e. it classifies the extensions of B⊗E|K -pairs);
2. there is an exact sequence of E-vector spaces

WGK
dR → H1(GK ,W )→ H1(GK ,We)⊕H1(GK ,W

+
dR).

If W is a rank 1 B⊗E|K -pair with We ∈ ∆(Qp), then W
GQp
dR is an E-vector space of

dimension 1 or 0, depending on whether We (extended to GQp) is de Rham or not. Since
WGK

dR = K ⊗Qp W
GQp
dR , this implies that WGK

dR = {0} if W is not de Rham. Note that if
W is a rank 1 B⊗E|K -pair with K 6= Qp, then W may be “partially de Rham” in the sense
of [Din17], so that in general WGK

dR can be non-zero even if W is not de Rham.

Proposition 5.1. — If W+
dR is a free E ⊗Qp B+

dR-representation of GK of rank 1, the
map H1(GK ,W

+
dR)→ H1(GK ,WdR) is injective.

Proof. — Since we have an exact sequence

WGK
dR → (WdR/W

+
dR)GK → H1(GK ,W

+
dR)→ H1(GK ,WdR),

it is enough to show thatWGK
dR → (WdR/W

+
dR)GK is surjective. To do this, we can replace

K by a finite extension L, and in particular we can assume that L contains E. In this
case, W+

dR|GL is a direct sum of rank 1 B+
dR-representations of GL.

LetX+
dR be a rank 1 B+

dR-representation of GL. The L-vector spaceXGL
dR is of dimension

0 or 1. If dimLX
GL
dR = 1, then XdR is de Rham, and the map XGL

dR → (XdR/X
+
dR)GL

is surjective by the same argument as in lemma 3.8.1 of [BK90] (see lemma 2.6 of
[Nak09]). If dimLX

GL
dR = 0, then for every i ∈ Z, we have (tiX+

dR/t
i+1X+

dR)GL = 0
by proposition 3.21 of [Fon04]. This implies that (XdR/X

+
dR)GL = 0, so that the map

XGL
dR → (XdR/X

+
dR)GL is also surjective.

Corollary 5.2. — If X is a direct sum of rank 1 B⊗E|K -pairs, the map H1(GK , X
+
dR)→

H1(GK , XdR) is injective.

Recall that every rank 1 B⊗E|K -pair is of the form B(δ) for a unique δ : K× → E×.

Proposition 5.3. — If a B⊗E|K -pair W is split ∆(Qp)-triangulable, with subquotients
{B(δi)}i such that B(δiδ−1

j ) is not de Rham for any i 6= j, and if the corresponding
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triangulation of We splits as a direct sum of 1-dimensional Be,E-representations, then the
triangulation of W splits.

Proof. — Let 0 = W0 ⊂ W1 ⊂ · · · ⊂ Wd = W be the given triangulation of W . We
prove by induction on j that Wj = B(δ1)⊕ · · · ⊕B(δj). This is true for j = 1, assume it
holds for j − 1. Write 0→ Wj−1 → Wj → B(δj)→ 0 and Wj−1 = B(δ1)⊕ · · · ⊕B(δj−1).
Let X = Wj−1(δ−1

j ) and Y = Wj(δ−1
j ). The B⊗E|K -pair Y corresponds to a class in

H1(GK , X). The Be,E-representation Ye is split, and therefore so is YdR. By corollary
5.2, so is Y +

dR. The class of Y in H1(GK , X) is therefore in the kernel of H1(GK , X) →
H1(GK , Xe)⊕H1(GK , X

+
dR). Since XGK

dR = 0 by hypothesis, Nakamura’s exact sequence
(2) above implies that the class of Y is trivial and hence Wj = Wj−1 ⊕ B(δj). The
proposition follows by induction.

6. Proof of the main theorem

In this section, we prove theorem B. Let F be a finite extension of E of degree > 2,
and write F ⊗E F = ⊕iFi. There are at least two summands since F itself is one of them.

Proposition 6.1. — Let F/E be as above, and let W be an F -linear representation of
GK. We have F ⊗E W = ⊕i(Fi ⊗F W ) as F -linear representations of GK.

Proof. — We have F ⊗E W = (F ⊗E F )⊗F W = ⊕i(Fi ⊗F W ).

Corollary 6.2. — If W is a Be,E-representation of GK that has an F -linear structure,
then W becomes reducible after extending scalars from E to F .

Let us say that a B⊗E|K -pairW is completely irreducible if (F⊗EW )|GL is an irreducible
B⊗F|L -pair for all finite extensions F of E and L of K.

Proposition 6.3. — If K = E and if X and Y are two completely irreducible B⊗E|K -pairs
such that Hom(X, Y ) is split ∆(Qp)-triangulable, then X and Y are of rank 1.

Proof. — Let {B(δi)}i be the rank 1 subquotients of the triangulation of Hom(X, Y ). We
have an inclusion B(δ1) ⊂ Hom(X, Y ). This gives rise to a non-zero map X → Y (δ−1

1 )
of B⊗E|K -pairs. Write B(δ1)e = Be,E(µ1) for some µ1 : GK → B×e,E (recall that K = E).
Since X and Y are irreducible, Xe and Ye are irreducible Be,E-representations of GK

(proposition 4.1), and the map Xe → Ye(µ−1
1 ) is therefore an isomorphism. This implies

that Hom(Xe, Ye) = End(Xe)(µ1), so that End(Xe) is split triangulable. By theorem 4.5,
the triangulation of End(Xe) splits. The triangulation of Hom(Xe, Ye) = End(Xe)(µ1)
therefore also splits. Let n be the common rank of X and Y .
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Suppose that none of the B(δiδ−1
j ) are de Rham for any i 6= j. By proposition 5.3

applied to W = Hom(X, Y ), the triangulation of Hom(X, Y ) splits. We can therefore
write Hom(X, Y ) = ⊕iB(δi). Since X and Y are both irreducible, they are pure of some
slopes s and t by theorem 2.3. The B⊗E|K -pair Hom(X, Y ) is then pure of slope t − s by
(1) of proposition 2.4. By (3) of ibid, each of the B(δi) is also pure of slope t− s. Each
B(δi) gives rise to a map X → Y (δ−1

i ), which is an isomorphism of B⊗E|K -pairs by (2)
of ibid, since X and Y (δ−1

i ) are both pure of slope s. By taking determinants, we get
δni = det(Y ) det(X)−1 for every i. This implies that (δiδ−1

j )n = 1 so that δiδ−1
j is of finite

order, and B(δiδ−1
j ) is de Rham (lemma 4.1 of [Nak09]), contradicting our assumption.

Therefore, one of the B(δiδ−1
j ) is de Rham for some i 6= j. Write B(δk)e = Be,E(µk)

where the µk are characters GK → E× (recall that K = E), so that End(Xe)(µ1) =
⊕kBe,E(µk) as Be,E-representations of GK . The fact that B(δiδ−1

j ) is de Rham implies
that µiµ−1

j is de Rham. We then have Xe = Xe(µ1µ
−1
i ) = Xe(µ1µ

−1
j ), so that Xe =

Xe(µiµ−1
j ). By taking determinants, we find that Be,E((µiµ−1

j )n) = Be,E and therefore
by corollary 3.7, (µiµ−1

j )n : GK → E× is de Rham and the sum of its weights is 0.
This implies that the sum of the weights of µiµ−1

j : GK → E× is 0. By corollary 3.7,
µiµ

−1
j = χη with χ : GK → E× a Be,E-admissible character and η : GK → E× potentially

unramified. Since Xe(χη) = Xe and Xe(χ) = Xe, we get Xe(η) = Xe. By taking
determinants, we get that ηn is Be,E-admissible. Since ηn is also potentially unramified,
and Be,E ∩ (Qp · Q̂nr

p ) = E, it is trivial. Hence η is a character of finite order of GK , and
so there exists a finite extension L of K such that µi = χµj on GL.

The space End(Xe)(µ1) contains Be,E(µj)⊕Be,E(µi), which is isomorphic to Be,E(µj)⊕
Be,E(µj) after restricting to GL. Let f and g be the two resulting isomorphisms Xe →
Xe(µ1µ

−1
j ). The map h = f−1 ◦ g : Xe → Xe is GL-equivariant and is not in E× · Id since

f and g are Be,E-linearly independent. Therefore, End(Xe)GL is strictly larger than E.
Since Xe|GL is irreducible, Schur’s lemma and corollary 3.14 imply that End(Xe)GL

contains a field F such that [F : E] > 2 (for example, F = E[h]). Hence Xe|GL has an
F -linear structure. Corollary 6.2 implies that (F ⊗E Xe)|GL is reducible. By proposition
4.1, X is not completely irreducible. This is a contradiction, so X had to be of rank 1.
Since X and Y have the same rank, we are done.

We now recall and prove theorem B. A strict sub-quotient of a B⊗E|K -pair is a quotient
of a saturated sub B⊗E|K -pair.

Theorem 6.4. — If X and Y are two non-zero B⊗E|K -pairs whose tensor product is
∆(Qp)-triangulable, then X and Y are both potentially triangulable.
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Proof. — We can replace E and K by finite extensions F and L if necessary, and write
X and Y as successive extensions of completely irreducible B⊗F|L -pairs with F = L. If X ′

and Y ′ are two strict sub-quotients of X and Y , then X ′ ⊗ Y ′ is a strict sub-quotient of
X⊗Y , and it is ∆(Qp)-triangulable by proposition 4.3. Proposition 6.3, applied to (X ′)∗

and Y ′ so that X ′ ⊗ Y ′ = Hom((X ′)∗, Y ′), tells us that X ′ and Y ′ are of rank 1.
Hence the B⊗F|L -pairs (F ⊗E X)|GL and (F ⊗E Y )|GL are split triangulable.

Corollary 6.5. — If Xe and Ye are two Be,E-representations of GK whose tensor prod-
uct is triangulable, with the rank 1 sub-quotients extending to Be,E-representations of
GQp, then Xe and Ye are both potentially triangulable.

Proof. — By proposition 2.2, Xe and Ye extend to B⊗E|K -pairs. The result follows from
corollary 4.2 and theorem 6.4.

We finish with an example of a representation V such that V ⊗EV is trianguline, but V
itself is not trianguline. This shows that the “potentially” in the statement of theorem A
cannot be avoided. Let Q8 denote the quaternion group. If p ≡ 3 mod 4, there is a Galois
extension K/Qp such that Gal(K/Qp) = Q8 (see II.3.6 of [JY88]). Choose such a p and
K, and let E be a finite extension of Qp containing

√
−1. The group Q8 has a (unique)

irreducible 2-dimensional E-linear representation, which we inflate to a representation V
of GQp . One can check that V ⊗E V is a direct sum of characters, hence trianguline, and
that the semi-linear representation Frac(Be,E) ⊗E V is irreducible. This holds for all E
as above, so that V is not trianguline.

Acknowledgements: We thank Léo Poyeton and Sandra Rozensztajn for their com-
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