VANISHING OF $H^2(G_K, V)$

by

Laurent Berger

 \mathbf{A}

Let V be a \mathbf{Q}_p -linear representation of G_K . In this appendix we prove the following theorem.

Theorem A.1. — If V is semistable and all its Hodge-Tate weights are ≥ 2 , then $H^2(G_K, V) = 0$.

Let D(V) be Fontaine's (φ, Γ) -module attached to V [Fon90]. It comes with a Frobenius map φ and an action of Γ_K . Let $H_K = \operatorname{Gal}(\overline{K}/K(\mu_{p^{\infty}}))$ and let $I_K = \operatorname{Gal}(\overline{K}/K^{\operatorname{nr}})$. The injectivity of the restriction map $H^2(G_K, V) \to H^2(G_L, V)$ for L/K finite allows us to replace K by a finite extension, so that we can assume that $H_K I_K = G_K$ and that $\Gamma_K \simeq \mathbb{Z}_p$. Let γ be a topological generator of Γ_K . Recall (§I.5 of [CC99]) that we have a map $\psi : D(V) \to D(V)$.

Ideally, our proof of this theorem would go as follows. We use the Hochschild-Serre spectral sequence

$$H^{i}(G_{K}/I_{K}, H^{j}(I_{K}, V|_{I_{K}})) \Rightarrow H^{i+j}(G_{K}, V)$$

and, interpreting Galois cohomology in terms of (φ, Γ) -modules, we compute that $H^2(I_K, V|_{I_K}) = 0$ and $H^1(I_K, V|_{I_K}) = \hat{K}^{\operatorname{nr}} \otimes_K D_{\mathrm{dR}}(V)$. We conclude since, by Hilbert 90, $H^1(G_K/I_K, H^1(I_K, V|_{I_K})) = 0$. However, we do not, in general, have Hochschild-Serre spectral sequences for continuous cohomology. We mimic thus the above argument with direct computations on continuous cocycles (again using (φ, Γ) -modules). Laurent Berger is grateful to Kevin Buzzard for discussions related to the above spectral sequence.

Lemma A.2. 1. If V is a representation of G_K , then there is an exact sequence $0 \to D(V)^{\psi=1}/(\gamma-1) \to H^1(G_K, V) \to (D(V)/(\psi-1))^{\Gamma_K} \to 0;$ 2. We have $H^2(G_K, V) = D(V)/(\psi - 1, \gamma - 1)$.

Proof. — See I.5.5 and II.3.2 of [**CC99**].

Lemma A.3. — We have $D(V|_{I_K})/(\psi - 1) = 0$

Proof. — Since $V|_{I_K}$ corresponds to the case when k is algebraically closed, see the proof of Lemma VI.7 of [**Ber01**].

Let γ_I denote a generator of $\Gamma_{\widehat{K}^{nr}}$.

Lemma A.4. — The natural map $D(V|_{I_K})^{\psi=1}/(\gamma_I - 1) \rightarrow (D(V|_{I_K})/(\gamma_I - 1))^{\psi=1}$ is an isomorphism if $V^{I_K} = 0$.

Proof. — This map is part of the six term exact sequence that comes from the map $\gamma_I - 1$ applied to 0 → D($V|_{I_K}$)^{$\psi=1$} → D($V|_{I_K}$) $\xrightarrow{\psi-1}$ D($V|_{I_K}$) → 0. Its kernel is included in D($V|_{I_K}$)^{$\gamma_I=1$} which is 0, since $V^{I_K} = 0$ (note that the inclusion $(\widehat{K}^{nr} \otimes V)^{G_K} \subseteq (\widehat{\mathcal{E}}^{nr} \otimes V)^{G_K} = D(V)^{G_K}$ is an isomorphism).

Suppose that $x \in D(V)/(\psi - 1, \gamma - 1)$. If $\tilde{x} \in D(V)$ lifts x, then Lemma A.3 gives us an element $y \in D(V|_{I_K})$ such that $(\psi - 1)y = \tilde{x}$. Define a cocycle $\delta(x) \in Z^1(G_K/I_K, D(V|_{I_K})^{\psi=1}/(\gamma_I - 1))$ by $\delta(x) : \overline{g} \mapsto (g - 1)(y)$ if $g \in G_K$ lifts $\overline{g} \in G_K/I_K$.

Proposition A.5. — If $V^{I_K} = 0$, then the map

$$\delta : D(V)/(\psi - 1, \gamma - 1) \to H^1(G_K/I_K, (D(V|_{I_K})/(\gamma_I - 1))^{\psi = 1})$$

is well-defined and injective.

Proof. — We first check that $\delta(x)(g) \in (D(V|_{I_K})/(\gamma_I - 1))^{\psi=1}$. We have $(\psi - 1)(g - 1)(y) = (g - 1)(x)$. If we write $g = ih \in I_K H_K$, then $(g - 1)x = (ih - 1)x = (i - 1)x \in (\gamma_I - 1)D(V|_{I_K})$ since $\gamma_I - 1$ divides the image of i - 1 in $\mathbf{Z}_p[\![\Gamma_{\widehat{K}^{nr}}]\!]$. This implies that $\delta(x)(g) \in (D(V|_{I_K})/(\gamma_I - 1))^{\psi=1}$.

We now check that $\delta(x)$ does not depend on the choices. If we choose another lift $g' \in G_K$ of $\overline{g} \in G_K/I_K$, then g' = ig for some $i \in I_K$ and $(g'-1)y - (g-1)y = (i-1)gy \in (\gamma_I - 1)\mathbb{D}(V|_{I_K})$ since $\gamma_I - 1$ divides the image of i - 1 in $\mathbb{Z}_p[\![\Gamma_{\widehat{K}^{nr}}]\!]$. If we choose another y' such that $(\psi - 1)y' = \tilde{x}$, then $y - y' \in \mathbb{D}(V|_{I_K})^{\psi=1}$ so that δ and δ' are cohomologous. Finally, if \tilde{x}' is another lift of x, then $\tilde{x}' - \tilde{x} = (\gamma - 1)a + (\psi - 1)b$ with $a, b \in \mathbb{D}(V)$. We can then take $y' = y + b + (\gamma_G - 1)c$ where $(\psi - 1)c = a$. We then have $(g-1)y' = (g-1)y + (g-1)b + (\gamma_G - 1)(g-1)c$. Since $G_K = I_K H_K$, we can write g = ih and (g-1)b = (i-1)b. Using $G_K = I_K H_K$ once again, we see that $I_K \to G_K/H_K$ is surjective, so that we can identify γ_I and γ_G . The resulting cocycle is then cohomologous to $\delta(x)$. This proves that δ is well-defined.

We now prove that δ is injective. If $\delta(x) = 0$, then using Lemma A.4 there exists $z \in D(V|_{I_K})^{\psi=1}$ such that $\delta(x)(\overline{g})$ is the image of (g-1)(z) in $D(V|_{I_K})^{\psi=1}/(\gamma_I-1)$. This implies that $(g-1)(y-z) \in (\gamma_I-1)D(V|_{I_K})^{\psi=1}$. Applying $\psi - 1$ gives $(g-1)\tilde{x} = 0$ so that $\tilde{x} \in D(V)^{G_K} \subset V^{I_K} = 0$. The map δ is therefore injective. \Box

Lemma A.6. — If V is semistable and the weights of V are all ≥ 2 , then \exp_V : $D_{dR}(V|_{I_K}) \rightarrow H^1(I_K, V)$ is an isomorphism.

Proof. — Apply Thm. 6.8 of [**Ber02**] to $V|_{I_K}$.

Proof of Theorem A.1. — We can replace K by K_n for $n \gg 0$ and use the fact that if $H^2(G_{K_n}, V) = 0$, then $H^2(G_K, V) = 0$ since the restriction map is injective. In particular, we can assume that $H_K I_K = G_K$ and that Γ_K is isomorphic to \mathbf{Z}_p . By item (2) of Lemma A.2, we have $H^2(G_K, V) = D(V)/(\psi - 1, \gamma - 1)$, and so by Proposition A.5 above, it is enough to prove that

 $H^{1}(G_{K}/I_{K}, (D(V|_{I_{K}})/(\gamma_{I}-1))^{\psi=1}) = 0.$

Lemma A.4 tells us that $(D(V|_{I_K})/(\gamma_I - 1))^{\psi=1} = D(V|_{I_K})^{\psi=1}/(\gamma_I - 1)$. Since $D(V|_{I_K})/(\psi-1) = 0$ by Lemma A.3, item (1) of Lemma A.2 tells us that $D(V|_{I_K})^{\psi=1}/(\gamma-1) = H^1(I_K, V)$.

The map $\exp_V : D_{dR}(V|_{I_K}) \to H^1(I_K, V)$ is an isomorphism by Lemma A.6, and this isomorphism commutes with the action of G_K since it is a natural map. We therefore have $H^1(I_K, V) = \widehat{K}^{nr} \otimes_K D_{dR}(V)$ as G_K -modules. It remains to observe that the cocycle $\delta(x) \in Z^1(G_K/I_K, \widehat{K}^{nr} \otimes_K D_{dR}(V))$ is continuous and that $H^1(G_K/I_K, \widehat{K}^{nr}) = 0$ by taking a lattice, reducing modulo a uniformizer of K, and applying Hilbert 90.

References

- [Ber01] L. BERGER "Représentations *p*-adiques et équations différentielles", Ph.D. Thesis, Université Pierre et Marie Curie, 2001.
- [Ber02] L. BERGER "Représentations p-adiques et équations différentielles", Invent. Math. 148 (2002), no. 2, p. 219–284.
- [CC99] F. CHERBONNIER & P. COLMEZ "Théorie d'Iwasawa des représentations p-adiques d'un corps local", J. Amer. Math. Soc. 12 (1999), no. 1, p. 241–268.
- [Fon90] J.-M. FONTAINE "Représentations p-adiques des corps locaux. I", in The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249–309.

LAURENT BERGER, UMPA - ENS de Lyon, UMR 5669 du CNRS, IUF E-mail : laurent.berger@ens-lyon.fr • Url : perso.ens-lyon.fr/laurent.berger/