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Let V' be a Q,-linear representation of Gk. In this appendix we prove the following
theorem.

Theorem A.1. — If V is semistable and all its Hodge-Tate weights are > 2, then
H*(Gg,V)=0.

Let D(V') be Fontaine’s (p,I')-module attached to V' [Fon90]. It comes with a Frobe-
nius map ¢ and an action of I'y. Let Hgx = Gal(K /K (up=)) and let I = Gal(K/K™).
The injectivity of the restriction map H?*(Gg,V) — H*(Gr,V) for L/K finite allows us
to replace K by a finite extension, so that we can assume that Hxlx = Gk and that
'k ~ Z,. Let v be a topological generator of I'x. Recall (§1.5 of [CC99]) that we have
amap ¢ : D(V) — D(V).

Ideally, our proof of this theorem would go as follows. We use the Hochschild-Serre
spectral sequence

H'(G /I, H (I, V1)) = H(Gg, V)
and, interpreting Galois cohomology in terms of (¢,I')-modules, we compute that
H2(Ig,V|;,.) = 0 and H'(Ix,V|;,.) = K™ ®k Dar(V). We conclude since, by Hilbert
90, HY(Gk /I, H (I, V]s,)) = 0. However, we do not, in general, have Hochschild-
Serre spectral sequences for continuous cohomology. We mimic thus the above argument
with direct computations on continuous cocycles (again using (@, I')-modules). Laurent

Berger is grateful to Kevin Buzzard for discussions related to the above spectral sequence.

Lemma A.2. — 1. If V is a representation of G, then there is an exact sequence

0= D(V)"=!/(y=1) = H'(Gk, V) = (D(V)/(¥ = 1)) = 0;
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2. We have H*(Gg,V)=D(V)/(¢p — 1,7 —1).
Proof. — See 1.5.5 and 11.3.2 of [CC99]. O
Lemma A.3. — We have D(V|;.)/(¢p —1) =0

Proof. — Since V|;,. corresponds to the case when k is algebraically closed, see the proof
of Lemma VI.7 of [Ber01]. O

Let v; denote a generator of ', .

Lemma A.4. — The natural map D(V |1, )¢/ (v —1) = (D(V|1.) /(v — 1))¥=t is an
isomorphism if VIx = 0.

Proof. — This map is part of the six term exact sequence that comes from the map
v — 1 applied to 0 — D(V|[1,.)*=! = D(V|1,.) =5 D(V]1,) — 0. Its kernel is included
in D(V|;, )= which is 0, since V& = 0 (note that the inclusion (K™ ® V)% C
(E™ @ V)6x = D(V)Cx is an isomorphism). O

Suppose that x € D(V)/(¢v — 1,y —1). If & €
gives us an element y € D(V|;.) such that (¢ — 1)y
-1

ZNGr /1, D(V 1)Y= /(71 = 1)) by d(2) : g = (9 — 1)(y)
Proposition A.5. — If VI =0, then the map
6:D(V)/( =1,y =1) = H' (G /I, (D(V]1.) /(i = 1))*7")

is well-defined and injective.

lifts x, then Lemma A.3
Define a cocycle 6(x) €
€ GK lifts gc GK/IK

D(V)
- fé

Proof. — We first check that §(z)(g) € (D(V]1.)/(vr — 1))¥='. We have (¢ — 1)(g —
D(y) = (g — 1)(x). If we write g =ih € IxH, then (g — 1)z = (th—1)x = (i — 1)z €
(v — 1)D(Vy,) since vy — 1 d1v1des the image of i — 1 in Z,[I" This implies that

0(x)(g9) € DV )/ (v = 1)"=

We now check that §(z) does not depend on the choices. If we choose another lift

Knr]]

g € Gk of § € Gg/Ik, then ¢ = ig for some i € I and (¢ — 1)y — (9 — )y =
(i —1)gy € (yr — 1)D(V1,) since 47 — 1 divides the image of i — 1 in Z,[I'%,.]. If we
choose another ¢’ such that (¢ — 1)y’ = Z, then y — ¢’ € D(V|;,,)¥="! so that § and ¢’ are
cohomologous. Finally, if #’ is another lift of z, then &’ — & = (v — 1)a + (¢» — 1)b with
a,b € D(V). We can then take y' = y + b+ (¢ — 1)c where (¢ — 1)c = a. We then have
(g—1)y =(g—Dy+(g—1)b+(y¢—1)(g—1)c. Since Gx = Ix Hy, we can write g = ih
and (g — 1)b = (i — 1)b. Using G = IxHy once again, we see that Ix — Gg/H is
surjective, so that we can identify v; and 7. The resulting cocycle is then cohomologous
to d(z). This proves that ¢ is well-defined.
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We now prove that ¢ is injective. If d(z) = 0, then using Lemma A.4 there exists
z € D(V|z,)¥=! such that §(x)(g) is the image of (g —1)(z) in D(V|;,)¥=/(vy; —1). This
implies that (¢ — 1)(y — 2) € (y7 — 1)D(V;,)¥=. Applying ¢ — 1 gives (g — 1)Z = 0 so
that ¥ € D(V)9< C VIx = (0. The map ¢ is therefore injective. O

Lemma A.6. — If V is semistable and the weights of V are all > 2, then expy :
Dar (V1) = H'(Ix,V) is an isomorphism.

Proof. — Apply Thm. 6.8 of [Ber02] to V.. O

Proof of Theorem A.1. — We can replace K by K, for n > 0 and use the fact that if
H?(Gg,,V) =0, then H?(Gg, V) = 0 since the restriction map is injective. In particular,
we can assume that HxIx = G and that I'k is isomorphic to Z,. By item (2) of Lemma
A.2, we have H*(G,V) =D(V)/(¥» — 1,7 — 1), and so by Proposition A.5 above, it is
enough to prove that

HYGg /I, (D(V 1)/ (r = 1))"71) = 0.
Lemma A.4 tells us that (D(V|.)/(vy — 1)Y= = D(V|1)*"/(y7 — 1). Since
D(V|r.)/(—1) = 0 by Lemma A.3, item (1) of Lemma A.2 tells us that D(V|;,.)¥=/(v—
1) = H'(Ig,V).

The map expy : Dgr(V|1.) — H'(Ix,V) is an isomorphism by Lemma A.6, and this
isomorphism commutes with the action of Gk since it is a natural map. We therefore
have H (I, V) = K™ @y Dgr (V) as G g-modules. It remains to observe that the cocycle
5(z) € ZY(Gx/Ix, K@k Dar(V)) is continuous and that H* (G /I, K™) = 0 by taking
a lattice, reducing modulo a uniformizer of K, and applying Hilbert 90. O]
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