Sl ISR il

D) = = = = = e e e e e ©
O O 00 JO Ul WN — O

LOCAL FIELDS

by

Laurent Berger

Contents
p-adic NUMDbDETS. .. ... 2
Complete normed fields............. 2
Hensel’s lemma. ... .. 3
Extending the norm....... ... ... .. . . 4
Finite extensions. ........... i i 6
Newton polygons. ... 7
The field Cp,. ..o 8
The ramification filtration............. ... ... ... .. ... 10
Infinite Galois extensions. .......... ... i 12
. The Weierstrass preparation theorem................................ 13
. p-adic Banach spaces....... ... ... 15
. Formal groups. ... ..o 16
. The Tate module. ... ... ... . . 17
. Lubin-Tate theory. ... ... ... 18
. Local class field theory.......... ... 20
. Galois cohomology. ... 21
. The Ax-Sen-Tate theorem........... ... ... .. ... i .. 24
. Tate’s normalized traces...... ... ..o 25
. The different. ... .. 26

. Ramification in cyclotomic extensions............................... 27



2 LAURENT BERGER

1. p-adic numbers

The field R of real numbers is the completion of Q for the usual absolute value | - |.
This absolute value (norm) is not the only one that can be defined on Q. Let p be a
prime number. We have the p-adic valation val,(-) and the p-adic norm |- |, on Q. The
completion of Q for |- |, is the space Q,, of p-adic numbers. It is a complete normed field
which contains Q as a dense subset. If z, y € Q, then |z + y|, < max(|x|,,|y|,). The set
Z, = {x € Q, such that |z|, < 1} of integers of Q, is therefore a ring, and Q, = Z,[1/p].

Proposition 1.1. — The ring Z, is the completion of Z for | - |,.

Proof. — Take z € Z,,, x = limz,, with z,, € Q. Assume that |z —z,[, <p™" for n > 1.
We have |z,|, < 1 for n > 1 so that =, = a,/b, with p { b,. Let ¢, € Z be such that
bnc, = 1 mod p". We have |z — anc,|p, < p™™. O

The ring Z, contains Z, as well as any rational number a/b with p { b. If n € Z and
k > 1, we have (Z) € Z and n — (Z) is uniformly continuous (it is a polynomial) hence
it extends to a map a (Z) from Z, - Z,. If p{d, a =1/d and 1+ pzx € 1+ pZ,,
then >4 (Z) (px)* converges in Z,, to the unique dth root of 1+ pz that is congruent
to 1 mod p. For example, \/—5 € Zs.

The field Q, is an example of a complete normed field. We will study the general
properties of these objects. Before we do that, let us mention the following result of

Ostrowski. We say that a norm is ultrametric if |z + y| < max(|z|, |y|).

Theorem 1.2. — If |-| is a nontrivial ultrametric norm on Q, then |-| is equivalent to

| - |p for some prime number p.

Proof. — By induction, we see that |m| < 1 for all m € Z. If the norm is nontrivial,
there is a prime number p such that [p| < 1. If m Ap = 1, then we can write pz +my = 1
and hence |m| = 1. This implies that [p™mg| = |p|™ if p t my, so that there exists ¢ such
that |- | =] O

C
D

2. Complete normed fields

Let K be a field and let | - | be a nontrivial ultrametric norm on K, for which K is
complete. If a > 1 and if we let val(z) = — log, ||, then val(-) is a valuation on K, so we
can talk interchangeably about either norms or valuations. Given a space endowed with

an ultrametric norm, note that (1) if x = x; +--- + x,, and |z;| # |x;| whenever i # j,
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then |z| = max|z;|, (2) if z # 0 and = = limz,, then |z,| = |z| for n > 0, (3) if the
space is moreover complete, then a series >,~; x, converges if and only if x,, — 0,

Let Ox = {x € K such that |z| < 1} be the ring of integers of K, and let my = {z € K
such that |x| < 1}. If |x| = 1, then |27} = 1 so that O = OF U mg and therefore Ok
is a local ring whose maximal ideal is mg. Let kx = Ok /mg be the residue field of K.

There exists 7 € my such that mg = 7O if and only if val(K*) is a discrete subgroup
of R, ie if val(K*) = ¢ - Z. We can then take for 7 any 7 such that val(w) = ¢. Such an
element is called a uniformizer of Ox. We then let valx be normalized by valg(m) = 1.

We say that a complete discretely valued field is a local field. For example if K = Q,
we can take m = p; in this case, mq, = pZ, and kq, = Z/pZ. If K = k(X)) and
val = valy, we can take 7 = X. If K = U,>;C((X/™)) (Puiseux series), and val = valy,

then K is not discretely valued.

Proposition 2.1. — Let K be a local field, let S be a system of representatives of k in
Ok and let {m,}n>0 be a sequence of elements of Ok with valg(m,) = n. Every z € Ok

can be written as x = Y, > TnT, with x, € S, in one and only one way.

Proof. — Let s : O — S be the map such that s(z) = Z. Let xy = s(x/m). We have
x = xomo + y17m1. Assume that we can write x = xomg + -+ + T, Ty + Ynr1Tne1. We can

take #,41 = S(Yn+1) and then x = Y-, 5o x,m,. At each step, z,, is determined. O
Every element of Z, can therefore be written as 3,5 #,p" with =, € {0,...,p — 1}.
Proposition 2.2. — The map Og — @OK/W”OK is an isomorphism.

Proof. — It is injective because if x +— 0, then |z| = 0. If (Z;,),>1 € @OK/W"OK and
x, € O lifts T, then (z,),>1 is Cauchy, and hence converges to x € Ok, which lifts
(Tn)n>1- [

Corollary 2.3. — If K is a local field and k is finite, then Ok is compact.

This is the case for K = Q, and for K = k((X)) if k is finite. In general, K is a totally

disconnected topological space.

3. Hensel’s lemma

Let A be a ring and consider P(X) = aq X%+ -+ + ag € A[X]. For i >0, let

Pil(X) = (f) agXT 4+ (2) a; € A[X].
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The following formula holds
PIX+Y)=PX)+Y -PUX)+ V% PEI(X)+ ... 4 Y. Pl(X).

Note that if 7! is invertible in A, then P(X) = P®W(X)/il. Let K be a complete normed

field. The following result is (one of many results) known as Hensel’s lemma.

Theorem 3.1. — If P(X) € Ok|X] and A < 1 and oy € Ok s such that |P(ag)| <
AP () |?, there exists a unique o € O such that P(a) =0 and |a — ap] < A|P'(ap)].

Proof. — Let C' = {z such that |z — ag| < A|P'(a)|}. We have P'(ag + h) € P'(ag) +
hOk so that |P'(x)| = |P'(ap)| if € C. Define a sequence {ay,}n>0 by ni1 = a, —
P(ay,) /P (o). We claim that |P(a,)] < A2 |P'(ap)|?. Tt is true for n = 0 and

2 d
Plan:1) = Plan) — %Pm(an) " (%) PR(ay) — (P <O‘”>> Pl(a,)

(2o o

which implies the claim. This implies that {a,},>1 is a Cauchy sequence in C' and its
limit o has the required properties.

If o, B satisfy the conclusion of the theorem, then P(3) = P(a)+(8—a) P’ (a)+(S—a)?h
with h € Ok so that if a # 3, then P'(«a) € (8 —a)Ok C (o — )OOk, contradiction. [

The theorem applies in particular when |P’(ag)| = 1, ie when ag is a simple root of
P(X) in kg[X]. For instance P(X) = X? — X has p simple roots in F, so that it has p
roots in Z,. We therefore have p, 1 C Z,.

Theorem 3.2. — If K s a local field of characteristic p with uniformizer m and finite
residue field k, then K = k(()).

Proof. — Let q = card(k). By theorem 3.1, X7 — X = 0 has ¢ solutions in Ok so that

the map Ok — k has a canonical lift. The theorem now follows from proposition 2.1. [

If K is of mixed characteristic and k is finite, then in proposition 2.1 we can take for

S the solutions of X? — X, but the addition laws are very complicated.

4. Extending the norm

Let K be a complete normed field. If |- |; and | - |5 are two norms on K, we say that

they are equivalent if they define the same topology on K.
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Proposition 4.1. — If |- |1 and |- |2 are two norms on K, they are equivalent if and
only if there exists a > 0 such that |- |o = - |{.
Proof. — 1If there is a > 0 such that |- | = |-|{, then |-|; and |- |2 are clearly equivalent.

Assume that | - |; and | - |2 are equivalent. If y € K, then y" — 0 if and only if |y| < 1
and hence |y|; < 1 if and only if |y|o < 1. Fix y € K such that |y|; # 1; if v € K,
then |z™y~"|; < 1 if and only if |2y "|s < 1 and hence |z|; < |y|?/m if and only if
]y < |y|3’™. We find that if s € R, then |z|; = |y[; if and only if |z], = |y|§ so that if
lyla = |yl|f, then ||y = |z|§ for all z € K. O

Theorem 4.2. — IfV is a finite dimensional K -vector space, then all norms on 'V are

equivalent, and V is complete for any of them.

Proof. — Let ey, ..., e4 be a basis of V and let || - || be the corresponding sup norm (for
which V' is indeed complete). We’ll show by induction on dim(V') that any norm || - || on
V is equivalent to || - ||o. If d = 1, this is obvious. We also have ||x1e; + - - 4+ zqeq4| <
sup [zi] - (X [lea]]) so that [lz]] < Cllz(je with €' =3 |lei]].

Let us show that there exists D such that x|« < D|z| for all z. If not, there is
a sequence {uy,}n>1 With [|u,|le > 1 but |Ju,| — 0. Write u,, = Ve + - 4 :zrgln)ed.
For each n, one of the ]:cﬁ"’\ is > 1 and we can assume that ]zﬁ”)\ > 1 for all n. Let
Uy = un/xgn) = e+ --- and let W = Span(es, ..., eq). We have [|v,|| — 0 so that the
sequence {v, — ej},>1 is Cauchy in W. By induction, W is complete for || - ||, so there

exists w € W such that v, — e; + w, so that e; € W, impossible. O

Corollary 4.3. — If K is a complete normed field, and L is a finite extension of K,

then the norm on K has at most one extension to L.

Proof. — Let | - | be one such norm. The field L is a finite dimensional K-vector space,
so by theorem 4.2 all the norms on L are equivalent to | - |. By proposition 4.1 applied

to L, they are of the form |- |* and since they coincide on K, they are equal. O]

Theorem 4.4. — If K is a local field and L/K is a finite extension, the norm on K

extends to a norm on L. The normed field L is also a local field.

Proof. — Assume first that L/K is separable. Let A be the integral closure of Ok in
L. By the same reasoning as in the number field case, A is a finite Ox-module, hence a
Dedekind domain. Let 7 be a uniformizer of Ok. The ideal 7A is a product P;*--- P¢.
Let valg denote the valuation normalized by valg(m) = 1. For each i, let val;(-) be the
function on A defined by zA = P;’ ah(@ . Py The function val;(+)/e; extends valg.
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If L/K is purely inseparable, then there exists ¢ such that if z € L, then 27 € K and
then we can set |z| = |27)'/9. This finishes the extension of the norm.
The field L is complete by theorem 4.2. m

Corollary 4.5. — If L/K is finite Galois and g € Gal(L/K), then g is an isometry.

If K28 denotes an algebraic closure of K, the norm on K extends uniquely to K.

5. Finite extensions

By the preceding section, if K is a local field and L/K is a finite extension, then L is
also a complete normed field. If z € L*, then Ny x(z) € K* and | Np ke (2)] = 2|5 so
that e(L/K) = [val(L*) : val(K*)] divides [L : K|, and L is a local field.

Theorem 5.1. — Let {u;};cr be elements of O whose images give a basis of ki over

kx and let w be a uniformizer of Op. We have O = @ig,ogjge,lumj - Ok.

Proof. — Let Sk be a set of representatives of kx in Ok and let S, = U;eru; Sk, which
is a set of representatives of k;, in Op. Let mx be a uniformizer of Og. If n > 0, write

n = ge + r. The theorem follows from applying proposition 2.1 with 7, = 7" 7. O
Let f(L/K) = kg : kk].

Corollary 5.2. — We have e(L/K)f(L/K) = [L : K].
Note that e(L/F) = e(L/K)e(K/F) and f(L/F) = f(L/K)f(K/F).

Corollary 5.3. — If ki is finite, then there exists x € Of such that O = Ok|z].

Proof. — Let q = card(kr). Take y € O whose image is a primitive element for k/kx
and such that y? = y. Theorem 5.1 implies that O = Ok[y, 7r]. Let = y + mp. We
have 29" — y so that y € Og[z] and therefore 7, € Ok[z] as well. O

We say that L/K is unramified if e(L/K) = 1, and totally ramified if f(L/K) = 1.

Proposition 5.4. — If L/K is totally ramified and 7y, is a uniformizer of Op, then

O = Ok|[rr| and 7y, satisfies an Eisenstein polynomial over Ok .

Proof. — If L/K is totally ramified, then k;, = ki and theorem 5.1 implies that Op =
Oxl[rz]. Let val = valg so that val(wy) = 1/e. If v = ag + a17p + -+ + ae_17$ ', then
val(z) = min val(a;7% ) as the vals are pairwise distinct. Hence if 7¢ = ag + a1, + - -+ +

ae_1m¢ !, then val(ag) = val(§) = val(mx) so that 7, satisfies an Eisenstein equation. [
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Conversely, if P(X) € Ok[X] is an Eisenstein polynomial, and P(7y) = 0, then 7, is

a uniformizer of L = K (), which is totally ramified over K.

Proposition 5.5. — If ky [k is separable, there exists a unique subextension Ly such
that Lo/ K is unramified and L/ Ly is totally ramified.

Proof. — Take 7 such that k; = kx(y), and let P(X) € Og[X] be a monic lift of its
minimal polynomial. By Hensel’s lemma, there is a y € Oy, that lifts ¥ with P(y) = 0.
The extension K (y)/K is of degree < deg(P) and [kk(,) : kx| = deg(P) so that K(y)/K
is unramified, and L/K (y) is totally ramified. We can take Lo = K(y).

If Ly is another such subextension, then the above contruction of y shows that y € Lj
so that Lj = Ly. O

Proposition 5.6. — If ki is finite and ¢ = card(kg) and f > 1, then K has ezactly

one unramified extension of degree f, namely K(pgr_1).

Proof. — If L/K is unramified of degree f, then [k : kx| = f so that k; = F s and
L = K (j,r—1) by Hensel’s lemma. O

6. Newton polygons

The theory of Newton polygons allows us to compute the valuations of the roots of a
polynomial from the valuations of its coefficients. Let K be a complete normed field, and
choose a valuation val(-).

If P(X)=ap+a; X +---+agX? € K[X], then the Newton polygon NP(P) is the lower
convex hull of the points (0, val(ay)), (1,val(a1)), ..., (d,val(as)). The Newton polygon
NP(P) is therefore a finite union of segments of increasing slopes, starting at (0, val(ao))
and finishing at (d, val(ag)). The first segment can possibly be of slope —oo (if ay = 0).
A slope of NP(P) is the slope of one of these segments, and the length of a segment is

the length of its component along the z-axis.

Theorem 6.1. — If P(X) € K[X], then the number of roots of P in K& with valuation
A is equal to the length of the segment of NP(P) with slope —\.

Proof. — We can divide P(X) by a4 and assume that P(X) is monic. Assume that P
has d; roots of valuation A; and ds roots of valuation Ag, etc, dj roots of valuation Ay

with Ay > --- > A\z. The coefficient a; is + the sum of all possible products of d — i roots.
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In particular, ag4,+...4q,_, is the sum of a term of valuation dsAs + - - - + dp A\ and of terms
which are all of valuation > d,A; + - - - + di\; so that

Val(ad1+...+ds_l) = ds)\s + 4 dk)\k
Likewise, if 0 <1 < d,, then
val(ad1+...+ds_1+,-) Z (ds — Z)/\s + d8+1)\5+1 + -+ dkz)\k

with equality if ¢ = 0 or if ¢ = d so that NP(P) has a segment of slope —\,; and length
ds. O

Proposition 6.2. — If P(X) € K[X] is irreducible, then all its roots have the same

valuation.

Proof. — Let P be irreducible and let L = K[X]/P. This is a field, which can be
embedded in K& by X ~ « for each root o of P. If two roots had different norms, this

would give two different norms on L, which would contradict corollary 4.3. [

Corollary 6.3. — If P(X) = X%+ ag X%t + .- + ag is irreducible and ag € Ok,
then a; € Ok for all i.

Proposition 6.4. — Assume that val(K*) C Z. If NP(P) has only one slope, a/b in
lowest terms, then b divides deg(P) and if b = deg(P), then P is irreducible.

Proof. — We have X\ = val(ag)/ deg(P) so that b | deg(P). If P = QR is reducible, all
the roots of @ and R have the same valuation so NP((Q) has one slope val(q)/ deg(Q),
hence deg(Q) = deg(P). O

Corollary 6.5. — An FEisenstein polynomial is irreducible.

7. The field C,
Let Qp denote an algebraic closure of Q,.
Theorem 7.1. — Ifd > 1, then Q, has only finitely many extensions of degree d.

For example, if d = 2, then every quadratic extension of Q,, is of the form Q,(,/y) and

we need to show that Q/(Q,)? is finite, which is easy, given the following result.

Lemma 7.2. — If p # 2, then QF = p? X 1 X (14 pZy); forp =2, Q5 = 2% x
(41} x (1 +4Z).

The result below is known as Krasner’s lemma.
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Theorem 7.3. — If F' is a finite extension of Q, and if o, B € Qp are such | — | <
o — | fori=2,...,n where the a; are the conjugates of a over F (with oy = «), then

Fla) C F(B).

Proof. — Let K be a finite Galois extension of F' containing o and 3, and take o €
Gal(K/F(B)). We have |o(a) — a| < max(|o(a) —a(p)|, |a—5]) = |a—8]. If o(a) # «,
then |a — | < |o(a) — af, a contradiction. Hence o(«) = « for all o € Gal(K/F(/3)) and
so a € F (). O

If P(X)=ap+- +asX? € K[X], let |P|g = max |a;]. The lemma below follows from

the continuity of the roots of a polynomial in terms of the coefficients.

Lemma 7.4. — If P(X) € F[X] is monic of degree d with no double root and € > 0,
then there exists & > 0 such that : if Q(X) € F[X] is monic of degree d with |P—Q|a < 6,
then for each root x of P in Qp there ezists a root y of Q) such that |z — y| < €.

Proof of theorem 7.1. — If K is an extension of Q, of degree d and K| is the maximal
unramified subextension of K, then Ky = Q(j,r_1) with f | d and so it is enough to
prove that if F'is a finite extension of Q, and e > 1, then F' has only finitely many totally
ramified extensions of degree e.

Given an e-tuple a = {ag,...,a.1} € Il = (mp \ m%) x m% ', one can attach to it
the e extensions of F' generated by the e roots of the Eisenstein polynomial P(X) =
X4 ae1 X1+ -+ ap, and by proposition 5.4, all of them arise this way.

An Eisenstein polynomial is irreducible, and so has no double roots. We can therefore
apply lemma 7.4 with ¢ < min(a; — a;) where the {o;} are the roots of P(X). If b € II
is another e-tuple such that |a; — b;| < 4, then the polynomial Q(X) attached to b has
e roots {f;} that we can reorder so that |3; — ;| < €. Theorem 7.3 now implies that
F(5;) = F(«;) and therefore that in an open neighborhood of a € II, the e extensions of

F attached to b are the same. Since II is compact, the theorem follows. O]
Corollary 7.5. — The field Qp is mot complete.

Proof. — The theorem implies that Qp is an extension of Q, of countable degree, and so

cannot be complete by Baire’s theorem. O

We let C, denote the p-adic completion of Qp.

Theorem 7.6. — The field C, is algebraically closed.
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Proof. — We prove by induction on deg(P) that every polynomial P(X) € C,[X] of
degree > 1 has a root. We may assume that P(X) € Oc,[X] is monic. Write P(X) =
lim P,,(X) with P,(X) € Q,[X], and let o, € Q,, be a root of P,(X) so that P(ay) — 0.

If P'(av,,) does not converge to 0, then Hensel’s lemma implies that for n > 0, a,, gives
rise to a root of P(X). If P'(«;,) — 0, then by induction P'(X) decomposes in C,[X]

and then «,, converges to one of its roots, which is then also a root of P(X). ]

The field C, is the smallest complete and algebraically closed field containing Q,. It
is known as the field of p-adic complex numbers. We have Valp(C;) = Q. The ring Oc¢,
is the p-adic unit disk and mc, is the p-adic open unit disk.

8. The ramification filtration

In this section, L/K is a finite Galois extension of local fields, with kg of characteristic
p and kr,/kk separable (and hence Galois), and valy, is the valuation on L* normalized by
valp(L*) =Z. If g € Gal(L/K), let ir(g) = inf,co, valr(g(a) — a). Note that if z € O,
is such that O = Ok|[z], then iy (g) = valy(g(x) — x).

Proposition 8.1. — If g, h € Gal(L/K), then
L ig(ghg™") = ir(h);
2. iy (gh) > win(iz(g), i (h)) with equality if ir(g) # i1 (h);
3. ir(g) =irlg™)

Proof. — 1t O = Ok|x], then O, = Ok[g~'(x)] and hence

ir(ghg™") = valp(ghg ' (z) — x) = valy(hg *(z) — g ' () = ir(h)
which shows (1). Next, ir(gh) = valy(gh(z) — z) = val;(gh(z) — h(z) + h(z) — z) which
implies (2), and (3) is clear. O

If G = Gal(L/K) and v € Z>_4, then let G, = {g € G such that i5(g) > u + 1}.
Proposition 8.1 implies that G, is a normal subgroup of G. We have G_; = G and if
u > maxyz i1(g), then G, = {1}. Let Ly be the maximal unramified subsextension of

L/K as in proposition 5.5.
Lemma 8.2. — The group Gy is the inertia subgroup 1(L/K) of G, and Ly = L€°.

Proof. — By definition, I(L/K) = ker(Gal(L/K) — Gal(kL/kk)) and it is therefore the
set of g € G such that g(a) —a € my, for all a € Op, that is Gy.
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In the notation of the proof of proposition 5.5, we have Ly = K(y) where y is the
unique root of P lifting 7. If g € Gy, then g(y) is also a root of P lifting 7, so that
g(y) =y and Ly C LY. By comparing degrees, we get Ly = L. O

If 77, is a uniformizer of L, then L = Lg[ny] so that iy (g) = valy(g(mp)/mp — 1) + 1 if
g € Gy. Hence if u > 0, then G, = {g € Gy such that valy(g(7r)/7, — 1) > u}.

Lemma 8.3. — If u>1 then G? C Gyi1.
Proof. — 1f g € G, then we can write g(7p)/7m, = 1 + a with € m¥} and

g"(m) _ g(me) g*(me)  g"(me) _ (1+a)(l+g(a)) (144" ()

L m, g(mL) g (L)
Since g € G, we have g(a) — a € m%™ and hence ¢P(r;) /7, = 1+ pa = 1 mod m¥™! so
that ¢” € Gyi1. O

Proposition 8.4. — The group Gy is the unique p-Sylow subgroup of Gy.

Proof. — Lemma 8.3 above shows that G C Gy, and hence that GY = {1} if n. > 0
which shows that (7 is a p-group. We now show that for each g € GGy such that ¢ € Gy,
we have g € G;. If g is such an element, we can write g(7m;)/m, = a € Of and
since Gy is the inertia subgroup of G, we see that ¢*(mp)/7m;, = 1 mod my, if and only if

a? =1 mod my, that is if and only if @« = 1 mod my,. ]
If L/K is a totally ramified extension, we say that it is tamely ramified if p t e(L/K).

Proposition 8.5. — If L/K is a totally ramified Galois extension, and if we write e =

e(L/K) = p*n with p{n, then there is a unique subextension Ly such that [Ly : K] =n.
Proof. — By Galois theory, we have L; = L&, O

More generally, the ramification filtration on Gal(L/K) gives a tower of subextensions

K C LyC Ly C---C L where ramification becomes increasingly complicated.

Proposition 8.6. — If u > 0, then the map g — g(mr)/7 induces an injective group
homomorphism G, /Gyi1 — 1 +m% /1 +métt

Proof. — If g(mwp) /7, = 1+ o, and h(np)/m, = 14 oy, with oy, ap € my, then g(ap,) =

aj, mod m¥* so that:
h(m
T _ (14 glan))(1+ ) = (14 )1+ ) mod m*
L
so that the map is indeed a group homomorphism. It is clearly injective. O]

Corollary 8.7. — The group Gq is hyper-solvable.
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Proof. — The group Go/G injects into O] /14+my, ~ k] by proposition 8.6, and if u > 1,
then 1+m%/1+my"™ ~ k, so that G,,/G,11 is a finite dimensional F,-vector space. [

Exzample 8.8. — Let K = Q, and K,, = Q,(p,n) with n > 1, which is a totally ramified
extension of K, of degree p"~!(p — 1), with uniformizer 1 — (pn.

If1<j<nandp ' <u<p —1, then Gal(K,/K), = Gal(K,/Kj).
Define a function ¢y x : Rs_1 = Rx_1 by ¢/ (u) = [¢'[Go : G~ dt.

Proposition 8.9. — The function ¢k : R>_1 — R>_1 is piecewise linear, continu-

ous, increasing, concave, and a homeomorphism R>_1 — R>_;.

Let ¥r/k : R>_1 — R>_; denote the inverse of ¢k, and let G* = GwL/K(u)- This is
the upper ramification filtration of G. For example, if K = Q,, and K,, = Q,(p,») with
n > 1, then G* = Gal(K,,/K;). The following is Herbrand’s theorem.

Theorem 8.10. — If G = Gal(L/K) and H is a distinguished subgroup of G, then
(G/H)"=G“H/H.

9. Infinite Galois extensions

Let K be a field and let L be an algebraic extension. We say that L/K is Galois if and
only if it is the union of finite Galois extensions of K. If ¢ is a K-automorphism of L
and F is a finite Galois extension of K contained in L, then o(F) = E. Conversely, if L
is a union of Galois extensions E//K and {og} is a compatible family of automorphisms,
then it gives rise to an automorphism o of L. If Gal(L/K) denotes the group of K-
automorphisms of L, then we therefore have an isomorphism Gal(L/K) ~ Jim Gal(E/K).
We give Gal(L/K) the group topology, so that it is a compact topological group. Galois
theory extends to a bijection between closed subgroups of Gal(L/K') and Galois extensions
of K contained in L, given by H <+ L¥. The extension L /K is then finite if and only if
H is an open subgroup of Gal(L/K). For example, we can consider Gal(Q,,/Q,), which
is a large compact group.

For example, if K = Q, and K,, = Q,(uy~) then K¢ = U,>1 K, is the cyclotomic
extension of Q,, and Gal(K®°/K) = Z) via the cyclotomic character. If K is a finite
extension of Q,, then every unramified extension of K is of the form K(p,s_,) for some
f > 1. The union of these extensions is the maximal unramified extension K" of K.
We have Gal(K (pgr_1)/K) = Z/fZ so that Gal(K"™ /K) = Z. The compositum of the

extensions K¢ and K" is an abelian extension of K. When K = Q,, it is the maximal
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abelian extension of Q,, by a p-adic analogue of the Kronecker-Weber theorem. We’ll see
later on how to construct the maximal abelian extension of a finite extension of Q,,.
The upper ramification filtration is compatible with quotients by theorem 8.10 and
can therefore be extended to the Galois groups of infinite extensions. If K = Q, and
K, = Qp(ppn), then Gal(K¥°/K) ~ ZX and Gal(K%°/K)" = Gal(K%°/K;) ~ 1 + p'Z,,

10. The Weierstrass preparation theorem

Let K be a finite extension of Q,, let m be a uniformizer of O, and let O [X] denote
the set of power series with coefficients in Og. If f(X) € Og[X] and z € m¢,, we can
evaluate f(X) at z. What can we say about the zeroes of f(X)?

If f(X)=fo+ X +---, let wideg(f) be the smallest i such that f; € O%, so that
wideg(f) = +oo if and only if f(X) € 7 - Og[X]. A function f(X) € Og[X] is a
unit if and only if fy € O, ie if and only if wideg(f) = 0. We also have wideg(fg) =
wideg(f) + wideg(g).

Proposition 10.1. — Take f(X) € Ok[X] such that wideg(f) = n is finite. If g(X) €
Ok[X], then there exists a series q(X) € Ok[X] and a polynomial r(X) € Ok[X] of
degree < n—1, such that g(X) = f(X)q(X)+r(X), and g and r are uniquely determined.

We prove the existence of ¢ and r by applying a standard method, summarized in the

lemma below, whose variants are known as “Nakayama’s lemma”.

Lemma 10.2. — Let M and N be two Og-modules, such that

1. M is complete for the m-adic topology (ie Y i>¢ w*my always converges in M)
2. N is separated for the w-adic topology (ie Ngsom™N = {0}).

If f € Home, (M, N) is such that f : M — N/wN is surjective, then f is surjective.

Proof. — Take n € N. There exists my € M and n; € N such that n = f(mg) + mny.
We prove by induction that there exists m; € M and ny € N such that n = f(mg +
m™my + -+ kak) + 781, 1. This is true for £ = 0 and the case k + 1 follows from k
by writing ngy1 = f(mrg1) + k0.

Let m = 350 m°my,. We have n — f(m) € Ny>om"N = {0} so that n = f(m). O

Proof of proposition 10.1. — Let M = Ok[X] X Ok[X]deg<n—1 and N = Ok[X] and
consider the map (¢, 7) — ¢f +r. By lemma 10.2, it is enough to prove that this map is
surjective mod 7. Take g(X) € k[X]. We can write g(X) = go+- -+ gn_1 X" 1+ X" (X)
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and f(X) = X" x u(X) where u is a unit so that we can write g = fq + r with r =
go+ -+ gna X
We now prove unicity. If ¢f +r = 0, then reducing mod 7, we get that = divides r and

hence ¢. By induction, this shows that ¢ =r = 0. [

Corollary 10.3. — If a € mg and f(a) =0, then f(X) = (X — a)q(X) with ¢(X) €
Ok[X].

A polynomial P(X) € Ok[X] is called distinguished if P(X) = X" +a, 1 X" '+ -+ag
with a; € mg for all 0 < ¢ < n — 1. By theorem 6.1, a distinguished polynomial has

exactly deg(P) roots in mc, .

Theorem 10.4. — If f(X) € Ok[X] and n = wideg(f) is finite, there exists a unique
distinguished polynomial p of degree n such that f(X) = p(X)u(X) where u is a unit.

Proof. — 1f we apply proposition 10.1 to g(X) = X", we find ¢ and r such that X" =
F(X)q(X)+r(X). Wesee that r =0 mod 7, so that p(X) = X" —r(X) is distinguished,
and f(X)q(X) = p(X). We have wideg(q) = 0 so that ¢ is a unit and f(X) = p(X)u(X)
with u(X) = ¢(X)™*.

The series f therefore has precisely wideg(f) roots in mg,. If f = pyu; = paug, then

p1 and po are distinguished and have the same roots, so that they are equal. O

Corollary 10.5. — If f(X) € Ok[X], then

1. we can write f(X) = wp(X)u(X) where p is distinguished and u is a unit;
2. if f(X) #0, then f(X) has finitely many zeroes in mc,.

Furthermore, the theory of Newton polygons extends to Ok [X].

Theorem 10.6. — The ring Ok[X] is a noetherian local ring, with mazimal ideal
(7, X), whose other prime ideals are (0), (7), and (p(X)) with p distinguished and irre-
ducible.

Proof. — Let us prove that Ok [X] is noetherian. If I = ({f;};), we can write f; = 7"ip;u;
and I = ({7*p;};). The ring Ok [X] is noetherian, and therefore so is Ox[X].

Let I be a prime ideal and take f = 7m#pu € I with p of least degree. Since [ is prime,
either m € I or p € I. If both are in I, then I = (m,p) = (7, X™) so that I = (7, X).

If 7 € I and I # (m), then by the above I = (7, X). If p € [ and 7 ¢ I and
g=m"qu € I, then q € I, and q € (p) by euclidean division so that I = (p). O
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11. p-adic Banach spaces

Let K be a finite extension of Q,, with residue field k. A p-adic Banach space is a
topological K-vector space E whose topology comes from an ultrametric norm ||-|| : B —
R, for which it is complete. We say that E satisfies condition (N) if ||E|| = |K|. If E
does not satisfy condition (N), then the norm | - || defined by ||z||’ = |x|~t2=(lzD] ig
equivalent to || - || and satisfies condition (N). The unit ball Og of E is an Og-module,
and kg = Op/mg is a k-vector space.

The following are p-adic Banach spaces:

any finite dimensional K-vector space;

C,, for which k¢, = F;

CY%(X, E), where X is a compact metric space and E is a Banach space;

- W o

If I is a set and €% (I) = {a;}ic; where a; € K and for every € > 0, the set of 4 such

that |a;| > ¢ is finite, then (2 (1) is a Banach space with ||a|| = sup;¢; |ai|.

If F is a Banach space and {e;};cs is a bounded family of elements, then there is a
continuous map s : (°_(I) — E given by a — 3 ,c; a;e;. We say that {e;};c; is a Banach
basis if s is an isometry. If s is merely an isomorphism of Banach spaces, we say that

{e;}icr is a pseudo Banach basis.

Proposition 11.1. — If E satisfies condition (N), then a family {e;}ic; of O is a

Banach basis if and only if {€;}ic; is a basis of the k-vector space k.

Proof. — One implication is clear, so take a family {e;};c; that gives a basis of the k-
vector space kg. The map s : Op_ (1) — Op given by a — 37,1 a;e; is surjective modulo

7, so by lemma 10.2, it is surjective. If s(a) = 0, then 7 divides a; for all i, and by

iterating this, we get a = 0. If ||a|| = 1, then s(a) # 0, so that ||s(a)|| = 1. This shows

that s is an isometry, since E satisfies condition (N). O

Example 11.2. — The set {(2) }n>0 is a Banach basis of the Banach space C°(Z,, K).
Proof. — We show that {(Z) }n>o 18 a basis of C%(Z,, k). If f(z) = ag (g)—l—- ctap (z) =0,
then f(0) = ap =0, and then f(1) =a; =0, ..., f(n) = a, = 0. Hence the set {(2)}@0

is linearly independent over k.

We now show that the {(Z) bnso generate C°(Z,, k) over k. If f € C°(Z,, k), then f is
locally constant so that there exists m > 1 such that f(z) = Y2 f(a) Idyspmz, (z). Tt

is therefore enough to show that if a € Z,, and m > 1, then in C%(Z,,Z,), we can write
Idgipmz, () = 2,50 an (z) with a, € Z and a,, — 0. Let us work in L = Q,,(pm).
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If v € Zy, then 3, ,m_; n® = p™ if p™ | z and 0 otherwise. Therefore,

1 —a 1 —a X
doipmz, (¥) = —> 0" " =—>"n"(1+(n—1))
P pm

= ;n;n_a > (i) (m=1"=> <Z>;n;”_a(” —1)"

n>0 n>0

It remains to check that p~™ 3=, n7%(n — 1)" belongs to Z and — 0 as n — +o0. [

The following properties of (real and complex) Banach spaces also hold for p-adic
Banach spaces: the open mapping theorem (a continuous bijection between two Banach
spaces is a homeomorphism) and the Banach-Steinhaus theorem. The next two results

are specific to the p-adic situation.

Proposition 11.3. — If F is a closed subspace of a p-adic Banach space E, then F has

a closed complement.

Proof. — We can change the norm so that it satisfies condition (N). In this case, kg has
basis of the form Bp LI C, where Bp gives rise to a Banach basis of F'. The set C' then

gives rise to a Banach basis of a closed complement of F' in F. O]

Corollary 11.4. — If f : E — F is a continuous and surjective map of Banach spaces,
then it has a continuous splitting s : F' — F.

Proof. — Let S be a closed complement of ker(f). The map f :S — F is a continuous

bijection, hence a homeomorphism. Its inverse s : F' — S C FE is a splitting of f. O]

12. Formal groups

Let R be a ring, such as k or Ok or K where K is a finite extension of Q,. A formal
group (law) over R is a power series FI(X,Y) € R[X,Y] such that

I FIX,)Y)=X+Y +deg > 2;

2. F(X,F(Y,Z))=F(F(X,Y), Z);

3. F(X,Y)=F(Y,X);

4. there exists i(X) € R[X] such that F(X,i(X)) =0.

A formal group law over Ok can be used to define a new commutative group structure

over my, for any extension L of K, by x @ y = F(x,y). Examples of formal groups are
G, given by FI(X,Y) =X +Y and G,, given by FI(X,Y) =X +Y + XY

Lemma 12.1. — Item (4) follows from (1).
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Proof. — If i1(X) = —X, then F(X,i;(X)) = O(X?) by (1). Assume that we have
in(X) such that F(X,i,(X)) = ¢X"™ + O(X"*?). We have F(X,i,(X) — cX") =
F(X,in(X)) — X" Fy (X, i(X)) + O(X20 D)) = O(X7™*2) and (X)) = limi,(X). O

Note that (1) and (2) imply that F'(X,0) = X and F(0,Y) =Y. Indeed if A(X) =
F(X,0), then A(X) = X + O(X?) by (1) and A(A(X)) = A(X) so that A(X) = X by

lemma 12.2 below.

Lemma 12.2. — If f(X) € X-R[X] and f'(0) € R*, then there exists g(X) € X-R[X]
such that fog(X)=go f(X)=X.

A homomorphism h : F' — G between two formal groups is a power series h(X) €
X - R[X] such that h(F(X,Y)) = G(h(X),h(Y)). By lemma 12.2, it is an isomorphism
if and only if A'(0) € R*. For example, let F' be a formal group and let [n](X) be defined
by [1](X) = X and [n + 1](X) = F(X,[n](X)) for n > 1 and [-1](X) = i(X) and
[n—1](X) = F(i(X),[n](X)) for n < —1. These are endomorphisms of F.

A differential form on F'is an element w(X) = p(X)dX of R[X]dX. If f(X) € XR[X],
then w(f(X)) = p(f(X))f(X)dX. It is invariant if w o f = w where f(X) = F(X,Y)
with Y seen as a constant, ie if p(F(X,Y)) - Fx(X,Y) = p(X). By setting X = 0, we
get p(Y) = p(0)/Fx(0,Y) so that if w is invariant, then w(X) = a - dX/Fx(0,X). Let
wr(X) = dX/Fx(0,X) be the normalized invariant differential form. If F' are G formal
groups and h € Hom(F,G), then wg o h = h'(0) - wp.

If R=K,let logp(X) = [wp(X) (with logx(0) = 0). This is the logarithm of F'.

Proposition 12.3. — We have logp(F(X,Y)) = logp(X) + logp(Y), so that logy :

F — G, is an isomorphism over K.

Proof. — Let E(X) =logp(F(X,Y)) —logp(X). We have d/dX(FE(X)) = 0 since wp is
invariant, so that E(X) = E(0) = logx(Y). O

For example, logg = log(l + X). Over K, any two formal groups are therefore
isomorphic. Over O, this is not the case. For example, mc, with the law coming from

G, is torsion free, but not mg, with the law coming from G,,.

13. The Tate module

Let k be a field of characteristic p, and let F', G be formal groups over k. If f €
Hom(F, G), then the height ht(f) of f is the largest integer h such that f(X) = g(X?").

Proposition 18.1. — If f(X) = g(X*") with h = ht(f), then ¢'(0) # 0.
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Proof. — We first show that if f € Hom(F,G) and f’(0) = 0, then f(X) is of the form
g(X?). We have wg o f = f'(0) - wp = 0 so that f'(X) = 0. Since k is of char p, this
implies that f(X) = g(X?).

Write F(X,Y) = Y a; X'Y7 and let FM(X,Y) = Zaf;Xin. This is a new formal
group, since x — z? is a ring homomorphism of &, and if f € Hom(F,G) and f(X) =
g(X?"), then g € Hom(F®,G). The proposition now follows from the above claim. [J

Let K be a finite extension of Q, and let I’ be a formal group over Og. The height of
F is the height of [p](X) € Hom(F,F). If F comes from an elliptic curve, then it is of
height 1 or 2. If h = ht(F) is finite, then wideg([p](X)) = p". If y € mc,, the equation
[p](2) = y then has p" solutions. Since wr o [p] = p - wp, we have [p](X) = p(1 + O(X)),
and the solutions of [p|(z) = y are distinct.

Let M, = {z € mg, such that [p"](z) = 0}. This set has p"* elements, it is a Z/p"Z-
module, and [p] : M,,;1 — M, is surjective. Let M = @n M,,. This is a Z,-module, and
since M — M is onto, M is generated by h elements. We have M/p"M = M, for all
n > 1, so that M is free of rank h over Z,. This is the Tate module of F’, also denoted
by T,F. Let V,FF = Q, ®z, T,F'. This is a Q,-vector space of dimension h. The group
Gal(Q,/K) acts on V,F' : this is the p-adic representation attached to F. If we choose
a basis of T,F, we get a map Gal(Qp/K) — GLn(Z,). For example, if ' = G,,, then
ht(F) =1 and the resulting map Gal(Q,/Q,) — Z is the cyclotomic character.

14. Lubin-Tate theory

Let K be a finite extension of Q,, with residue field % of cardinality ¢. A formal Og-
module is a formal group F' over Ok along with a ring homomorphism Ox — Ende,. (F),
a — [a](X), such that [a](X) = aX + O(X?). The space mc, is then equipped with an
Ogk-module structure. Fix a uniformizer m of Ok and let £, be the set of power series
©(X) such that (X) =7X + O(X?) and p(X) = X9 mod 7.

Theorem 14.1. — If ¢ € L, then there exists a formal Og-module F such that
[7](X) = o(X). The isomorphism class of F' only depends on m, not on ¢ € L.

For example, if K = Q, and 7 = p and ¢(X) = (1 + X)? — 1, then F' = G,,,. In order

to prove the theorem, we need a general lemma.

Lemma 14.2. — If p, Y € L, and a = (aq,...,qy,) € OF, then there exists a unique
H?Y € Ok Xy, ..., X,] such that

L HSY(Xy, .0, X)) = Xy + -+ @, X, + deg > 2;
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2. 9o HPY(Xy, ..., Xy) = HEV(0(X1), ..., ¥(Xa)).

Proof. — Takeany H(X1,...,X,) = a; X1+ -+0, X, +0O(X?). Note that poH; —H; o
only has terms of degree > 2. We construct a sequence {H;}; of power series with
coefficients in Ok such that ¢ o H; — H; o % only has terms of degree > ¢ + 1 and such
that H; = H;;1 modulo terms of degree > ¢ + 1. Given H;, let

1

Hip = Hi‘i‘ﬂ_iT

_W(gpoHi—Hioqﬁ).

We have p o H; — H; o) = Hy(Xy,..., X)) — Hy(X{,..., X?) = 0 mod 7, so that H; 4
has coefficients in Og. Write p o H; — H; o 1) = ¢ X!, We have

cXiH it ‘
¢0H¢+1—Hi+10¢:¢<Hi+m>—Hi0¢—iﬁ+O(Xz+2)
Tl — Tl
Xi+1 ) CX’L'+1 )
— . - . ol i+2
_gpon—i—ﬂﬁiH_ﬂ Hiotp—m 7Ti+1_7r+O(X )

= O(X"?).

The power series { H;}; then converge to a series H9¥ satisying (1) and (2). Furthermore,
H; 1 mod X is uniquely determined by H; mod X**! so that HY is unique. O

Proof of theorem 14.1. — Let F(X,Y) = H{{(X,Y). It is easy to check (1)—(4) in the
definition of a formal group. For instance, F'(X, F'(Y, Z)) = H{Y, = F(F(X,Y),Z) and
i(X) = H??(X). For a € Ok let [a](X) = H?¥(X). We show the same way that they
are endomorphisms of F'. Finally if , ¢ € L, then HY ¥ gives an isomorphism between
F, and F. [l

Remark 14.3. — The group F is of height [K : Q,).

We are interested in the field K¢ generated by the 7"-torsion points of F,. Note that
if 2 € F[n"], then H{""(2) € Fy[r"]. The field K¢ is therefore independent of the choice
of ¢, so we can take ¢(X) = 7X + X9. Note that ¢'(X) = ¢X? ' 4+ 7 so that if z € mc,,
the roots of (X ) — z are all simple. The set F[7"] is a finite subgroup of (mc,,®). Since
[7](X) = ¢(X), the theory of Newton polygons tells us that F[n"] has ¢" elements. Let
K, = K(F[r")) and Ko = Upso K.

Theorem 14.4. — The extension K /K is totally ramified, and Gal(Ky/K) ~ Of.

Proof. — Let Ag = {0} and for n > 1, let A, be the set of z € m¢, such that [7"](z) =0
and [7"71](2) # 0. We have F[r"] = AgU---U A, and A, has ¢"'(q — 1) elements. If
y € Ay and [7](2) =y, then z € Apyq, so that K, = K(A,).
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The group Ok acts on A, by a-z = [a(z). We have a-z = z if and only if [a—1](z) = 0,
that is if « € 1+ 7"Ok. Since O /1 + 7" Ok has ¢" (¢ — 1) elements, it acts freely and
transitively on A,,. Hence K,, = K(z) for any z € A,,. Let Q(X) = X% '+x. The element
z is a oot of Q o p°»~1(X), which is an Eisenstein polynomial of degree ¢"~!(q — 1), so
that K, is totally ramified, z is a uniformizer of Ok, , and Gal(K,,/K) ~ Ok /1 + 1Ok
via the map g — x.(g) determined by g(z) = [xx(9)](2)-

The extension K, /K is therefore totally ramified, and Gal(K,/K) ~ O, via the
map g — X~(g) determined by g(2) = [x«(g)](z) for all z € F[r*]. O

Remark 14.5. — The Tate module T,F is isomorphic to @n F[r"], and the corre-
sponding Galois representation is given by Gal(Q,/K) X O < GLik.q,)(Zy).

Remark 14.6. — The element z above is a root of @ o ¢°V(X) whose constant

coefficient is 7, so that 7 is the norm of an element of K,, for all n > 1.

Remark 14.7. — If1 < j<nand ¢ ' <u<¢ -1, then Gal(K,/K), = Gal(K,/K;).
If n >0, then Gal(K/K)" =1+ n"Ok.

15. Local class field theory

Let K7 denote the extension of K constructed above. It is an abelian totally ramified
extension of K. The extension K" /K is also abelian, with Gal(K"™/K) = Gal(F,/k)
We have Gal(F,/k) = Z, generated by Fr, : © — 2% Let Fr, denote the corresponding
element of Gal(K"™/K).

Let Art : K* — Gal(KZ - K"™/K) = Gal(KZ /K) x Gal(K"™ /K) be the map given
by 7+ Fr, and u — x;'(u™') where x, : Gal(KT /K) — O} is the above isomorphism.

Theorem 15.1. — 1. The extension K= - K"™ is the mazimal abelian extension K
of K, and the map Art : K* — Gal(K®/K) is independent of all the choices.
2. If L/K is a finite abelian extension, then Art gives rise to an isomorphism between
Gal(L/K) and K*/Np g (L*).
3. This gives a bijection between the set of closed (resp. open) subgroups of K* and the
set of (resp. finite) abelian extensions of K.

4. If L/K is any finite extension, then the following diagram commutes

Arty,

L* Ay Gal(L*b/L)

NL/KJ, Jres

K* AU Gal(K*b/K).
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16. Galois cohomology

Let G and M be topological groups, with a continuous action of G on M. We define
H°(G, M) = M€, the set of fixed points in M under the action of G.
A cocyle on G with values in M is a continuous map ¢ : G — M such that ¢(gh) =

c(g) - g(c(h)). If ¢ is a cocyle and m € M, then g — m™*

-c(g) - g(m) is another cocycle
which is said to be cohomologous to c¢. This defines an equivalence relation on the set of
cocyles, and H'(G, M) is the set of equivalence classes of cocyles under this equivalence
relation. An element of H'(G, M) is trivial if it is in the class of the cocycle g — 1, that
is if it can be represented by a cocyle of the form g — m - g(m)~! for some m € M. If M
is abelian, then H'(G, M) is a group, otherwise it is a pointed set.

Suppose that R is a topological ring with a continuous action of G, that X is a free
R-module of finite rank d with a semilinear action of G and that e = {e1,...,e4} is a
basis of X. If we denote by Mat.(g) the matrix of ¢ € G in the basis e, then g — Mat.(g)
is a cocyle on G with values in GL4(R). Furthermore, if f is another basis of X and if
P is the matrix of f in e, then Mat;(g) = P~ - Mat.(g) - g(P). In this way, one can
associate to the semilinear representation X a well-defined class [X]| € H'(G,GLg(R)).
This way, we get a natural bijection between H'(G,GL4(R)) and the set of isomorphism
classes of semilinear representations of G on free R-modules of rank d.

Suppose that M is an R-module with a linear action of GG, and that F is an extension
of R by M, that is an R-module with an action of G that sits in an exact sequence
0—+M—FE— R—0. Ife € Fisan element of E that maps to 1 € R and g € GG, then
e —g(e) € M and the map g — e — g(e) is a cocyle on G with values in M. If we choose
a different e, then we get a cohomologous cocyle, and therefore we can associate to E a
class [E] € H'(G, M). This way, we get a natural bijection between H'(G, M) and the
set of isomorphism classes of extensions R by M.

Other examples are: if M is abelian and G acts trivially on M, then H'(G, M) =
Hom(G, M). If G is finite cyclic generated by g and M is abelian, then H'(G, M) =
ker(N)/(1 — g)M where N(x) = > g(x). If G is infinite topologically generated by g,
and M is abelian and finite, then H'(G, M) = M/(1 — g)M.

If0o—- X —- FE — Y — 0is an exact sequence of R-modules with a continuous
action of G, then we have a long exact sequence 0 — X¢ — E¢ — Y¢ 2 HY (G, X) —
HY(G,E) — HYG,Y), where the map § : Y — HY(G, X) is defined as follows : if
y € Y is the image of e € E, then §(y)(g) = e — g(e).
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Finally, note that if M is an abelian group, we can define cohomology groups H'(G, M)
for all 7 > 0. They are spaces of cocycles, which are certain maps ¢ : G* — M, modulo
an equivalence relation.

Let G and M be topological groups as above and let H be a closed normal subgroup of
G. We then have a restriction map res : H'(G, M) — H'(H, M) defined by res(c)(h) =
c(h) and an inflation map inf : H'(G/H, M) — H'(G, M) defined by inf(c)(g) = c(g).
Note that G acts on H*(H, M) by g(c)(h) = g(c(¢g~'hg) and that the action of H C G
on H'(H, M) is trivial so that G/H acts on H'(H, M).

Theorem 16.1. — If G, M and H are as above, then :
1. res(HY(G,M)) C H'(H,M)%/H;
2. res(c) = 0 if and only if c € inf(H'(G/H, M™));
3. ifinf(c) =0, then ¢ = 0.
In other words, there is an exact sequence of pointed sets :
0— HY(G/H, M"Y 2 HY(G, M) == H'(H, M)/

Proof. — If ¢ € HY(G,M) and g € G, then g(c)(h) = c(g)"'c(h)h(c(g)) so that g(c)
is cohomologous to ¢ and therefore c(g) € H'(H, M)/ which proves (1). We have
(resoinf)(c)(h) = ¢(1) = 1 so that resoinf = 0, and conversely if res(c) = 0 then we can

assume that c¢ is actually trivial on H and then ¢(gh) = ¢(g) so that ¢ is inflated from
G/H and h(c(g)) = c(h)tc(hg) = c(g) so that ¢ € inf(H'(G/H, M™)). O

Theorem 16.2. — If L/K is a finite Galois extension and G = Gal(L/K), then :
2. HY(G, L) = {0}.

Lemma 16.3. — If L is an infinite field and if o1,...,0, are the elements of a finite

group of automorphisms of L, then oy, ..., 0, are algebraically independant over L.
Proof. — This is Artin’s theorem on the algebraic independance of characters. See for
instance Lang’s Algebra, chapter VI, theorem 12.2 for a proof. O

Proof of theorem 16.2. — Choose some U € H'(G,GL4(L)). For a € L, define P(a) =
>hea M(@)U(h). The cocyle relation gives us U(g) - g(P(a)) = P(«) so that in order to
prove (1), it is enough to show that there exists some « € L such that P(«) is invertible.

We do this in the case when L is infinite (the case of a finite field is an exercise). Let
{X, }4ec be aset of variables indexed by the elements of G, and consider the multivariable

polynomial Q({Xg}seq) = det(X e XgU(g)). This polynomial is nonzero because the
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U(g)’s are invertible, and lemma 16.3 then gives us the existence of an o € L such that
Q({g(a)}g4ec) # 0 so that P(a) is invertible, which proves (1).

In order to prove (2), choose some f € H'(G, L) and consider the cocyle [U : g —
(é f(19)>] € H'(G,GLy(L)). Item (1) gives us a matrix M = (%) such that U(g)-g(M) =
M. Since M is invertible, either ¢ or d is # 0, say c¢. The relation U(g) - g(M) = M tells
us that g(c) = c for all g € G so that ¢ € K and also that g(a) + f(g)g(c) = a so that
f(g) =a/c—g(a/c) and f is indeed trivial. O

Corollary 16.4. — Let L/K be a Galois extension with G = Gal(L/K) and give L the
discrete topology. If we consider only continuous cocycles, then H'(G,GL4(L)) = {1}
and H'(G, L) = {0}.

Proof. — In both cases, such a cocyle factors through a finite quotient Gal(M/K) of
Gal(L/K) and the field generated over K by all the possible values of the cocycle is also

a finite extension of K so that we are in the situation of theorem 16.2. OJ

Ezample 16.5. — Let L = K and G = Gal(L/K). We have an exact sequence
% x—=x”

0— p, - L* —— L* — 0. The resulting long exact sequence and theorem 16.2 give
us HY(G, ) = K>/ (K*)™

Let K be a finite extension of Q,, with uniformizer 7, and let G = Gal(K"™™/K). Recall
that G = Gal(F,/k). Let K" denote the p-adic completion of K™ so that K™ C C,.
The group G acts on K" by continuous automorphisms. Let H'(G, GL4(Opn)) denote

the set of continuous cocycles modulo equivalence.
Proposition 16.6. — The set H'(G,GLy(Og..)) is trivial.

Proof. — Let A = Oz, so that there is a map = + T from A to Fp. Since Fp is a field,
GL,4(F,) is generated by transvections and diagonal matrices, so that the map GL4(A) —
GL4(F,) is surjective. If U € H'(G,GLg(A)) then U € H' (G, GL4(F,)) so that by the
triviality of H'(G,GL4(F,)) and the surjectivity of the map GL4(A) — GL4(F,), there
exists a matrix My € GLy(A) with My' - U(g) - g(Mp) € Id +7 Mg(A). Assume that we
have constructed matrices Moy, ..., My_; with M; € Id +m/ My(A) such that

Mty Mgt U(g) - g(Mo -+ - My_y) = 1d +7°C(g) € 1d +7* My(A),
and note that C € H'(G, My(F,)). If we write M;, = Id +7* R}, then

Mt MY U(g) - g(My -+~ My) = 1d+7%(C(g) + Ry — g(Ry,)) + O(x*1),
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and the triviality of H'(G,F,) allows us to find Ry such that
M7 e Myt U(g) - g(My - - M) € Id +7" My(A).

The infinite product [[}2) M}, converges to a matrix M such that M~1-U(g)-g(M) = Id,
which proves that H'(G, GL4(A)) is indeed trivial. The proof of the triviality of H'(G, A)

is similar (and easier). O

Corollary 16.7. — If n : Gal(Q,/K) — Z) is an unramified character, then there

exists x € O%m such that g(x) = n(g) - for all g € Gal(Q,/K).

Such an element is called a period of the character 7. One motivating question for what

follows is: is there a period in C, for the cyclotomic character x : Gal(Q,/Q,) — ;7

17. The Ax-Sen-Tate theorem

Let K be an extension of Q, contained in Q,, and let Gx = Gal(Q,/K). By Galois
theory, we have K = QSK. What can we say about CI?K ?

Theorem 17.1. — We have CEK =K.
Before we prove this theorem, we need to establish two lemmas.

Lemma 17.2. — Let P(X) € Q,[X] be a monic polynomial of degree n, all of whose
roots satisfy val,(a) > ¢ for some constant c.
1. If n = p*d with d > 2 and p t d and q = p*, then P'D(X) has a root B satisfying
val,(8) > c.
2. If n = pF*! and q = p*, then P9 (X) has a root B satisfying
1
pHp—1)
Proof. — If we write P(X) = X" +a, 1 X" ' + -+ + ag then val,(a;) > (n —1) - ¢ and
1/q! - PO(X) = 207 (";i)an_iX”_i_q. The product of the roots of P@(X) is then
+a,/ (Z) so that there is at least one root 3 satisfying

niq ((n—q)c—valp (Z)) |

The lemma follows from the fact that in case (1), we have val,( (Z)) = 0 while in case (2),
we have Valp(@)) =1. O

val,(8) > ¢ —

val,(8) >

If o € Q) let Ag () = infyeq, val,(g(a) — ).
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Lemma 17.3. — If a € Q,, then there exists § € K such that val,(o — §) > Ag(a) —
p/(p—1)%

Proof. — We prove by induction on n = [K(«) : K| that we can find such a § with
U 1
valy,(v — 0) > Ag (o) — ];)pik(p Y
where p™*! is the largest power of p which is < n.

Let Q(X) be the minimal polynomial of o over K. Lemma 17.2 applied to P(X) =
Q(X + «) gives us an element o' = 4 « such that val,(¢/ —a) > ¢ or val,(a/ — a) >
¢ —1/pF(p — 1) depending on the nature of n. We then have [K (/) : K| < [K(«) : K]
while either Ag(a’) > Ag(a) or Ag () > Ag(a) —1/pF(p—1). This allows us to finish
the proof by induction. O

Proof of theorem 17.1. — If a € C, then we can write o = lim«,, with o, € Qp. We
then have Ag(a,) — +00 and lemma 17.3 gives us a sequence {d, },>; with d,, € K and

val, (o, — d,) — +00 so that « is a limit of elements of K. O

18. Tate’s normalized traces

Let F = Qpand F,, = Q,(ypn) and Foy = U1 F),. If v € Fy and n > 1, then z € F, 1y,
for k > 0 and R,(x) = p *Trp,,,/r,(z) does not depend on such a k. This defines a
F,-linear projection R, : F,, — F, which commutes with the action of Gr. Note also
that R, o Ry, = Ruin(m,n)-

Lemma 18.1. — Ifk >0 andn > 1, then

0 fl1<j<p"-—1

Proof. — The formula follows from the fact that Trg, ,, /5, (C]‘an) = an+k Xk . O

The above lemma along with the fact that Op, ,, = Op, [(,n+x] implies that R, (O, ) C
OpF, and that R, (7 Op_) C @ OF, (where m, = (,n — 1 is a uniformizer of F},) so that

n

we have the following continuity estimate for the R,,’s.
Corollary 18.2. — If x € F then val,(R,(z)) > val,(z) — val,((,» — 1).

In particular, the maps R, extend by uniform continuity to maps R, : F. — F,
satisfying the above properties. If © € F, then R,(z) = x if n > 0 so that if z € k.
then R,(x) — = as n — oo.
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Theorem 18.3. — If v : Gal(F/F) — Z,) is of infinite order, and if x € C, is such
that g(z) = ¥(g) - « for all g € Gp, then x = 0.

Proof. — If h € Gal(Q,/F), then h(z) = z, so that = € CSal(Q”/Fw). By theorem

17.1, this implies that © € Fy. If ¢ € Gp, then g(z) = ¥(g) - = so that if n > 1, then
g(Rn(x)) = ¥(g) - Ru(z). If Ry(x) # 0, then ¢ is trivial on Gp,. Since ¢ is of infinite
order, we have R,(z) =0 for all n > 0 and hence z = lim R,,(z) = 0. O

19. The different

Let K be a finite extension of Q, and let L be a finite extension of K. The bilinear
form L x L — K given by (z,y) — Tr/k(vy) is non-degenerate and if I is a fractional
ideal of L, we set [ = {y € L such that Tr; x(zy) € Ok for all x € I}. The different of
the extension L/K is the ideal 07/ = (@L)_l. Note that O, contains Oy, so that /K

is an ideal of Op. Let valk(-) and val(-) denote the normalized valuations on K and L.

Proposition 19.1. — 1. If I is an ideal of Oy, then I = 1_102/110'
2. If Ix and Iy, are ideals of Ok and Oy, then Trp k(1) C Ix iff I, C [KDZ/lK;'
3. ValK(TI'L/K(I)) = LV&IK(I : oL/K)J

Proof. — If I = 7} Oy, then [ = WZTéL = 710, . This proves (1). We have Trp, k(1) C
Ic iff Trp i (Ig'Iy) C Ok iff I C DZ}K, which proves (2). In particular, Trz k(1) is
the smallest ideal J of Ok such that J - Oy, contains I - 91/, which implies (3). O

Corollary 19.2. — If L/K/F is a tower of extensions, then 0p/p = dr/k - Vg /F-

Proof. — If x € Oy, then x € DZ}F iff Trp/p(2Or) C Op iff Trg/p Tryk(xOr) C Op iff

TI'L/K(I'OL) C D;(}F iff ZL’OL C DL/lKaI_(}F‘ ]

Theorem 19.3. — If Op = Ok|a], then 0y /x = P,

min,o

(Oé) . OL.

Proof. — Let P = Pino and let oy = a, o, ..., aq be the roots of P. We have
1 zd: 1

P(T) N P(a;)(T — ;)

i=1

Write P(T) =T + pg1 T + -+ +po = TH1 + pa_1 /T + - - + po/T?%). We have
1 1 1 Pd—1 1

P(T)  TUL+par/T+ -+ po/T% = qall == +1) € OklF);
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so that
d 1 1 d ak—l
z; P(a;)T(1 = ou/T) ;%:1 g ; P'(ay)
1 k=t 1 Dd—1 1
— @ | it Oxl=].
= 2 g Truw (P’(a)) pal = ) € Oxly]

This tells us that Try /(a1 /P'(a)) =0if k=1,...,d — 1 and Try k(a1 /P'(a)) =1
if k = d and Trpx(a*!/P'(a)) € Ok for all k > 1, so that P'(a)~'Of, C Oy.

Take y € Op and write y = yo/P' (@) + y1a/P'(a) + - -+ + ya_10%1/P'(a) with
yi € K. We have Trr/x(y) = ya—1 so that ys_1 € Ok, and then Try/x(ay) = yi—2 +
TrL/K(yd_lozd/P’(oz)) so that y;_o € Ok, and by induction y; € O for all i. This shows
that O, C P'(a)~'Oy. O

Corollary 19.4. — IfL/K is a Galois extension and G = Gal(L/K), then valp(0r/k) =
Ygriecin(g) = [2(|Gy| = 1)dt.
Proof. — We have valp(0r/x) = valL(P'(a)) = Yy z1eqvalr(g(a) —a) = Y s1eqin(g).

Next, note that iy (g) =i+ 1 if and only if g € G; \ Gi41, and the second formula follows,
by integrating by parts. O

Corollary 19.5. — We have valg(0r/x) = [53(1 — 1/|G"|)du

Proof. — By the previous corollary, valy,(0,/x) = [Z7(|G¢| —1)dt. Let t = 1 x(u) where
Y K is the function defined after proposition 8.9. We have v}, / x(u) =[G%: GY], so that
val,(0r/k) = [21(|G¥| — 1)|G°|/|G¥|du. The corollary follows, since |G°| = e(L/K) and
valp(+) = e(L/K) valg(-). O

If L/K is a Galois extension, let L% = LG/ 1f [/K is not Galois, and L is
contained in some Galois extension M of K, then L* = M" N L does not depend on M
by Herbrand’s theorem. Corollaries 19.2 and 19.5 then imply the following.

Theorem 19.6. — We have
00 1
)= [ (1= )

20. Ramification in cyclotomic extensions

Let F = Q, and F,, = Q,((y») for n > 1. We know that F, is a totally ramified
extension of F' of degree p"~!(p— 1) and that Op, = Z,[(;n]. If K is a finite extension of

Q, and K,, = K((pn) for n > 1, the above properties are no longer necessarily true.
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Proposition 20.1. — If K is a finite extension of Q,, there exists n(K) > 1 such that
if n > n(K), then

1. [Kn—i-l . Fn+1] = [Kn . Fn];

2. K,11/K, is totally ramified of degree p;

3. x: Gal(Ko/Ky) = 1+ p"Z, is an isomorphism.

Proof. — Since K, 11 = K, F, 11, the sequence {[K,, : F,,]},>1 is decreasing, and therefore
equal to d = [K : Fi] for n > ng(K). Since F,, C K,,, we have f(K,/F) = f(K,/F,) <
K, : F,], so that f(K,/F) <dand f(K,/F) is equal to f(K./F) for n > ny(K).
Take n > max(ng(K),n1(K)). We have [K,11 : Fyi1] = [K, : F,] so that [K,41 :
K,| = [Fuy1 ¢ F,] = p. In addition, f(K,1/K,) = f(Kw1/F)/f(K,/F) =1 so that
K, 1/ K, is totally ramified. The extension K,/ F, is then the compositum of the disjoint
extensions F../F, and K, /F, so that Gal(K./K,) = Gal(F/F},). O

Theorem 20.2. — If K is a finite extension of F' = Qp, then {p"val,(0x,/r,)}n>1 is
bounded.

Proof. — Applying theorem 19.6, we get
(K s Flval, e, ) = [ ([ F) =[£G Fl)du,

K, : Flval,(0p, /) = /_ O;([Kn L F) — (K, : F[FY : Fl)du.
By subtracting, we get
K, : F]val,(d, /) = / T([Kn L F[FY: F| — [K" : F])du.

There exists a constant u(K') such that if u > u(K), then K* = K. In this case, we have
K!'F, = K, as well as K} N F,, = F}* so that [K,, : F,,][F}Y : F] = [K} : F] and therefore

(Ko Flvaly i, m) = [ (1o BIES : F) = K Fl)du.
Since [K,, : F,,] < [K : F] and F C F|,), the integrand above is bounded independantly

of n which proves the theorem. O
Proposition 20.3. — If L/K is a finite extension, then Tr k(M) = mg .

Proof. — Take n > max(n(K),n(L)). Proposition 19.1 implies that Try_/x_(mz,) =
my  where ¢, = [valg,(mg, - 0z,/k,)| and theorem 20.2 implies that the sequence
{valk, (0, /K, ) }n>1 is bounded. This shows that there exists some constant ¢ such that
cn < c for all n and hence that Trp_ k. (mz,) D mg for all n>> 0.

If v € mg_ then x € m§ for n>> 0 so that v € Trp_ )k, (myz,). O
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Let Hg = Gal(Q,/K.). This result allows us to compute H'(Hg, C,).

Corollary 20.4. — If f : Hx — p"Oc, is a continuous cocycle, then there exists T €
p" ' Oc, such that the cohomologous cocyle g — f(g) — (z — g(x)) has values in p"'Oc, .

Proof. — Let L/K be a finite extension such that f(Hp) C p"*?*Oc,. Lemma 20.3 gives
us y € p~tOy such that Try_ k. (y) = 1. Let @ be a set of representatives of Hx/Hy,
and let g = Y0 h(y)f(h) so that if g € Hg then g(zg) = 74 — f(g) and hence
f(g) — (zg — 9(zq)) = x40) — vg. The cocyle relation and the choice of L tells us that
Tyq) — Tg € P Oc, so that we can take x = xq. ]

Theorem 20.5. — We have H'(Hy,C,) = {0}.

Proof. — Let f : Hx — C,, be a cocycle, and let k € Z be such that f(Hg) C p*Oc,. Set
fo = fsothat fj(Hg) C p*Oc, for j = 0. If j > 0, lemma 20.4 gives us z; € p 1O,
such that if we set fj11(g9) = fi(9) — (z; — g(x;)), then fj41(Hk) C p*H+1Og,. We then

have f(g) = > >0 %5 — Q(ijo ;). u

We finish by extending the construction of section 18 to K. If n > n(K), then
(K, :F,|=d=[Ky: Fyl]. Ifey,... eqis a basis of Ok, over Op,, then it is also a basis
of K, over F, ;. Furthermore if €], ..., e} denotes the dual basis, then e} € D}i/Fn SO

that if 0 > 0 is given and n > 0 then val,(ef) > —6. If 2 € Ok,,, then we can write
v =1 xef where v; = Tri, /5, (v€;) € OF,,,.
We then define R,(z) = Y%, Ry(z;)e* which gives a projection R, : Koo — K.

Proposition 20.6. — If ¢ > 0, there exists n(e) such that if n > n(e), then the maps
R, : Koo — K, defined above satisfy val,(R,(x)) > val,(z) —¢.
Proof. — 1If we write z = 30", x;e; where x; = Trg,,,/r,,.(z€;) € Op,,, then
val,(x;) > val,(x) — val,((nrre — 1) by F,yp-linearity,
val, (R, (z;)) > val,(z;) — val,({,» — 1) by corollary 18.2,
val,(ef) > —0 if 6 > 0 and n > 0.

The proposition follows. ]

LAURENT BERGER, UMPA, ENS de Lyon, UMR 5669 du CNRS, IUF
E-mail : laurent .berger@ens-lyon.fr e Url:http://perso.ens-lyon.fr/laurent.berger/



