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2 LAURENT BERGER

1. p-adic numbers

The field R of real numbers is the completion of Q for the usual absolute value | · |.
This absolute value (norm) is not the only one that can be defined on Q. Let p be a
prime number. We have the p-adic valation valp(·) and the p-adic norm | · |p on Q. The
completion of Q for | · |p is the space Qp of p-adic numbers. It is a complete normed field
which contains Q as a dense subset. If x, y ∈ Qp then |x+ y|p ≤ max(|x|p, |y|p). The set
Zp = {x ∈ Qp such that |x|p ≤ 1} of integers of Qp is therefore a ring, and Qp = Zp[1/p].

Proposition 1.1. — The ring Zp is the completion of Z for | · |p.

Proof. — Take x ∈ Zp, x = lim xn with xn ∈ Q. Assume that |x− xn|p ≤ p−n for n ≥ 1.
We have |xn|p ≤ 1 for n ≥ 1 so that xn = an/bn with p - bn. Let cn ∈ Z be such that
bncn ≡ 1 mod pn. We have |x− ancn|p ≤ p−n.

The ring Zp contains Z, as well as any rational number a/b with p - b. If n ∈ Z and
k ≥ 1, we have

(
n
k

)
∈ Z and n 7→

(
n
k

)
is uniformly continuous (it is a polynomial) hence

it extends to a map a 7→
(
a
k

)
from Zp → Zp. If p - d, a = 1/d and 1 + px ∈ 1 + pZp,

then ∑k≥0

(
a
k

)
(px)k converges in Zp, to the unique dth root of 1 + px that is congruent

to 1 mod p. For example,
√
−5 ∈ Z3.

The field Qp is an example of a complete normed field. We will study the general
properties of these objects. Before we do that, let us mention the following result of
Ostrowski. We say that a norm is ultrametric if |x+ y| ≤ max(|x|, |y|).

Theorem 1.2. — If | · | is a nontrivial ultrametric norm on Q, then | · | is equivalent to
| · |p for some prime number p.

Proof. — By induction, we see that |m| ≤ 1 for all m ∈ Z. If the norm is nontrivial,
there is a prime number p such that |p| < 1. If m∧p = 1, then we can write px+my = 1
and hence |m| = 1. This implies that |pnm0| = |p|n if p - m0, so that there exists c such
that | · | = | · |cp.

2. Complete normed fields

Let K be a field and let | · | be a nontrivial ultrametric norm on K, for which K is
complete. If a > 1 and if we let val(x) = − loga |x|, then val(·) is a valuation on K, so we
can talk interchangeably about either norms or valuations. Given a space endowed with
an ultrametric norm, note that (1) if x = x1 + · · · + xn and |xi| 6= |xj| whenever i 6= j,
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then |x| = max |xi|, (2) if x 6= 0 and x = lim xn, then |xn| = |x| for n � 0, (3) if the
space is moreover complete, then a series ∑n≥1 xn converges if and only if xn → 0,

Let OK = {x ∈ K such that |x| ≤ 1} be the ring of integers ofK, and let mK = {x ∈ K
such that |x| < 1}. If |x| = 1, then |x−1| = 1 so that OK = O×K t mK and therefore OK
is a local ring whose maximal ideal is mK . Let kK = OK/mK be the residue field of K.

There exists π ∈ mK such that mK = πOK if and only if val(K×) is a discrete subgroup
of R, ie if val(K×) = c · Z. We can then take for π any π such that val(π) = c. Such an
element is called a uniformizer of OK . We then let valK be normalized by valK(π) = 1.

We say that a complete discretely valued field is a local field. For example if K = Qp

we can take π = p; in this case, mQp = pZp and kQp = Z/pZ. If K = k((X)) and
val = valX , we can take π = X. If K = ∪n≥1C((X1/n!)) (Puiseux series), and val = valX ,
then K is not discretely valued.

Proposition 2.1. — Let K be a local field, let S be a system of representatives of k in
OK and let {πn}n≥0 be a sequence of elements of OK with valK(πn) = n. Every x ∈ OK
can be written as x = ∑

n≥0 xnπn with xn ∈ S, in one and only one way.

Proof. — Let s : OK → S be the map such that s(x) = x. Let x0 = s(x/π0). We have
x = x0π0 + y1π1. Assume that we can write x = x0π0 + · · · + xnπn + yn+1πn+1. We can
take xn+1 = s(yn+1) and then x = ∑

n≥0 xnπn. At each step, xn is determined.

Every element of Zp can therefore be written as ∑n≥0 xnp
n with xn ∈ {0, . . . , p− 1}.

Proposition 2.2. — The map OK → lim←−OK/π
nOK is an isomorphism.

Proof. — It is injective because if x 7→ 0, then |x| = 0. If (xn)n≥1 ∈ lim←−OK/π
nOK and

xn ∈ OK lifts xn, then (xn)n≥1 is Cauchy, and hence converges to x ∈ OK , which lifts
(xn)n≥1.

Corollary 2.3. — If K is a local field and k is finite, then OK is compact.

This is the case for K = Qp and for K = k((X)) if k is finite. In general, K is a totally
disconnected topological space.

3. Hensel’s lemma

Let A be a ring and consider P (X) = adX
d + · · ·+ a0 ∈ A[X]. For i ≥ 0, let

P [i](X) =
(
d

i

)
adX

d−i + · · ·+
(
i

i

)
ai ∈ A[X].
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The following formula holds

P (X + Y ) = P (X) + Y · P [1](X) + Y 2 · P [2](X) + · · ·+ Y d · P [d](X).

Note that if i! is invertible in A, then P [i](X) = P (i)(X)/i!. Let K be a complete normed
field. The following result is (one of many results) known as Hensel’s lemma.

Theorem 3.1. — If P (X) ∈ OK [X] and λ < 1 and α0 ∈ OK is such that |P (α0)| ≤
λ|P ′(α0)|2, there exists a unique α ∈ OK such that P (α) = 0 and |α− α0| ≤ λ|P ′(α0)|.

Proof. — Let C = {x such that |x − α0| ≤ λ|P ′(α0)|}. We have P ′(α0 + h) ∈ P ′(α0) +
hOK so that |P ′(x)| = |P ′(α0)| if x ∈ C. Define a sequence {αn}n≥0 by αn+1 = αn −
P (αn)/P ′(αn). We claim that |P (αn)| ≤ λ2n|P ′(α0)|2. It is true for n = 0 and

P (αn+1) = P (αn)− P (αn)
P ′(αn)P

[1](αn) +
(
P (αn)
P ′(αn)

)2

P [2](αn)− · · · ±
(
P (αn)
P ′(αn)

)d
P [d](αn)

∈
(
P (αn)
P ′(αn)

)2

OK ,

which implies the claim. This implies that {αn}n≥1 is a Cauchy sequence in C and its
limit α has the required properties.

If α, β satisfy the conclusion of the theorem, then P (β) = P (α)+(β−α)P ′(α)+(β−α)2h

with h ∈ OK so that if α 6= β, then P ′(α) ∈ (β−α)OK ⊂ (α−α0)OK , contradiction.

The theorem applies in particular when |P ′(α0)| = 1, ie when α0 is a simple root of
P (X) in kK [X]. For instance P (X) = Xp −X has p simple roots in Fp so that it has p
roots in Zp. We therefore have µp−1 ⊂ Zp.

Theorem 3.2. — If K is a local field of characteristic p with uniformizer π and finite
residue field k, then K = k((π)).

Proof. — Let q = card(k). By theorem 3.1, Xq −X = 0 has q solutions in OK so that
the map OK → k has a canonical lift. The theorem now follows from proposition 2.1.

If K is of mixed characteristic and k is finite, then in proposition 2.1 we can take for
S the solutions of Xq −X, but the addition laws are very complicated.

4. Extending the norm

Let K be a complete normed field. If | · |1 and | · |2 are two norms on K, we say that
they are equivalent if they define the same topology on K.
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Proposition 4.1. — If | · |1 and | · |2 are two norms on K, they are equivalent if and
only if there exists α > 0 such that | · |2 = | · |α1 .

Proof. — If there is α > 0 such that | · |2 = | · |α1 , then | · |1 and | · |2 are clearly equivalent.
Assume that | · |1 and | · |2 are equivalent. If y ∈ K, then yn → 0 if and only if |y| < 1
and hence |y|1 < 1 if and only if |y|2 < 1. Fix y ∈ K such that |y|1 6= 1; if x ∈ K,
then |xmy−n|1 < 1 if and only if |xmy−n|2 < 1 and hence |x|1 < |y|n/m1 if and only if
|x|2 < |y|n/m2 . We find that if s ∈ R, then |x|1 = |y|s1 if and only if |x|2 = |y|s2 so that if
|y|2 = |y|α1 , then |x|2 = |x|α1 for all x ∈ K.

Theorem 4.2. — If V is a finite dimensional K-vector space, then all norms on V are
equivalent, and V is complete for any of them.

Proof. — Let e1, . . . , ed be a basis of V and let ‖ · ‖∞ be the corresponding sup norm (for
which V is indeed complete). We’ll show by induction on dim(V ) that any norm ‖ · ‖ on
V is equivalent to ‖ · ‖∞. If d = 1, this is obvious. We also have ‖x1e1 + · · · + xded‖ ≤
sup |xi| · (

∑ ‖ei‖) so that ‖x‖ ≤ C‖x‖∞ with C = ∑ ‖ei‖.
Let us show that there exists D such that ‖x‖∞ ≤ D‖x‖ for all x. If not, there is

a sequence {un}n≥1 with ‖un‖∞ ≥ 1 but ‖un‖ → 0. Write un = x
(n)
1 e1 + · · · + x

(n)
d ed.

For each n, one of the |x(n)
i | is ≥ 1 and we can assume that |x(n)

1 | ≥ 1 for all n. Let
vn = un/x

(n)
1 = e1 + · · · and let W = Span(e2, . . . , ed). We have ‖vn‖ → 0 so that the

sequence {vn − e1}n≥1 is Cauchy in W . By induction, W is complete for ‖ · ‖, so there
exists w ∈ W such that vn → e1 + w, so that e1 ∈ W , impossible.

Corollary 4.3. — If K is a complete normed field, and L is a finite extension of K,
then the norm on K has at most one extension to L.

Proof. — Let | · | be one such norm. The field L is a finite dimensional K-vector space,
so by theorem 4.2 all the norms on L are equivalent to | · |. By proposition 4.1 applied
to L, they are of the form | · |α and since they coincide on K, they are equal.

Theorem 4.4. — If K is a local field and L/K is a finite extension, the norm on K

extends to a norm on L. The normed field L is also a local field.

Proof. — Assume first that L/K is separable. Let A be the integral closure of OK in
L. By the same reasoning as in the number field case, A is a finite OK-module, hence a
Dedekind domain. Let π be a uniformizer of OK . The ideal πA is a product P e1

1 · · ·P er
r .

Let valK denote the valuation normalized by valK(π) = 1. For each i, let vali(·) be the
function on A defined by xA = P

val1(x)
1 · · ·P valr(x)

r . The function vali(·)/ei extends valK .
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If L/K is purely inseparable, then there exists q such that if x ∈ L, then xq ∈ K and
then we can set |x| = |xq|1/q. This finishes the extension of the norm.

The field L is complete by theorem 4.2.

Corollary 4.5. — If L/K is finite Galois and g ∈ Gal(L/K), then g is an isometry.

If Kalg denotes an algebraic closure of K, the norm on K extends uniquely to Kalg.

5. Finite extensions

By the preceding section, if K is a local field and L/K is a finite extension, then L is
also a complete normed field. If x ∈ L×, then NL/K(x) ∈ K× and |NL/K(x)| = |x|[L:K] so
that e(L/K) = [val(L×) : val(K×)] divides [L : K], and L is a local field.

Theorem 5.1. — Let {ui}i∈I be elements of OL whose images give a basis of kL over
kK and let π be a uniformizer of OL. We have OL = ⊕i∈I,0≤j≤e−1uiπ

j · OK.

Proof. — Let SK be a set of representatives of kK in OK and let SL = ti∈IuiSK , which
is a set of representatives of kL in OL. Let πK be a uniformizer of OK . If n ≥ 0, write
n = qe+ r. The theorem follows from applying proposition 2.1 with πn = πrπqK .

Let f(L/K) = [kL : kK ].

Corollary 5.2. — We have e(L/K)f(L/K) = [L : K].

Note that e(L/F ) = e(L/K)e(K/F ) and f(L/F ) = f(L/K)f(K/F ).

Corollary 5.3. — If kK is finite, then there exists x ∈ OL such that OL = OK [x].

Proof. — Let q = card(kL). Take y ∈ OL whose image is a primitive element for kL/kK
and such that yq = y. Theorem 5.1 implies that OL = OK [y, πL]. Let x = y + πL. We
have xqn → y so that y ∈ OK [x] and therefore πL ∈ OK [x] as well.

We say that L/K is unramified if e(L/K) = 1, and totally ramified if f(L/K) = 1.

Proposition 5.4. — If L/K is totally ramified and πL is a uniformizer of OL, then
OL = OK [πL] and πL satisfies an Eisenstein polynomial over OK.

Proof. — If L/K is totally ramified, then kL = kK and theorem 5.1 implies that OL =
OK [πL]. Let val = valK so that val(πL) = 1/e. If x = a0 + a1πL + · · · + ae−1π

e−1
L , then

val(x) = min val(aiπiL) as the vals are pairwise distinct. Hence if πeL = a0 + a1πL + · · ·+
ae−1π

e−1
L , then val(a0) = val(πeL) = val(πK) so that πL satisfies an Eisenstein equation.
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Conversely, if P (X) ∈ OK [X] is an Eisenstein polynomial, and P (πL) = 0, then πL is
a uniformizer of L = K(πL), which is totally ramified over K.

Proposition 5.5. — If kL/kK is separable, there exists a unique subextension L0 such
that L0/K is unramified and L/L0 is totally ramified.

Proof. — Take y such that kL = kK(y), and let P (X) ∈ OK [X] be a monic lift of its
minimal polynomial. By Hensel’s lemma, there is a y ∈ OL that lifts y with P (y) = 0.
The extension K(y)/K is of degree ≤ deg(P ) and [kK(y) : kK ] = deg(P ) so that K(y)/K
is unramified, and L/K(y) is totally ramified. We can take L0 = K(y).

If L′0 is another such subextension, then the above contruction of y shows that y ∈ L′0
so that L′0 = L0.

Proposition 5.6. — If kK is finite and q = card(kK) and f ≥ 1, then K has exactly
one unramified extension of degree f , namely K(µqf−1).

Proof. — If L/K is unramified of degree f , then [kL : kK ] = f so that kL = Fqf and
L = K(µqf−1) by Hensel’s lemma.

6. Newton polygons

The theory of Newton polygons allows us to compute the valuations of the roots of a
polynomial from the valuations of its coefficients. Let K be a complete normed field, and
choose a valuation val(·).

If P (X) = a0 +a1X+ · · ·+adXd ∈ K[X], then the Newton polygon NP(P ) is the lower
convex hull of the points (0, val(a0)), (1, val(a1)), . . . , (d, val(ad)). The Newton polygon
NP(P ) is therefore a finite union of segments of increasing slopes, starting at (0, val(a0))
and finishing at (d, val(ad)). The first segment can possibly be of slope −∞ (if a0 = 0).
A slope of NP(P ) is the slope of one of these segments, and the length of a segment is
the length of its component along the x-axis.

Theorem 6.1. — If P (X) ∈ K[X], then the number of roots of P in Kalg with valuation
λ is equal to the length of the segment of NP(P ) with slope −λ.

Proof. — We can divide P (X) by ad and assume that P (X) is monic. Assume that P
has d1 roots of valuation λ1 and d2 roots of valuation λ2, etc, dk roots of valuation λk

with λ1 > · · · > λk. The coefficient ai is ± the sum of all possible products of d− i roots.
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In particular, ad1+···+ds−1 is the sum of a term of valuation dsλs + · · ·+ dkλk and of terms
which are all of valuation > dsλs + · · ·+ dkλk so that

val(ad1+···+ds−1) = dsλs + · · ·+ dkλk

Likewise, if 0 ≤ i ≤ ds, then

val(ad1+···+ds−1+i) ≥ (ds − i)λs + ds+1λs+1 + · · ·+ dkλk

with equality if i = 0 or if i = ds so that NP(P ) has a segment of slope −λs and length
ds.

Proposition 6.2. — If P (X) ∈ K[X] is irreducible, then all its roots have the same
valuation.

Proof. — Let P be irreducible and let L = K[X]/P . This is a field, which can be
embedded in Kalg by X 7→ α for each root α of P . If two roots had different norms, this
would give two different norms on L, which would contradict corollary 4.3.

Corollary 6.3. — If P (X) = Xd + ad−1X
d−1 + · · · + a0 is irreducible and a0 ∈ OK,

then ai ∈ OK for all i.

Proposition 6.4. — Assume that val(K×) ⊂ Z. If NP(P ) has only one slope, a/b in
lowest terms, then b divides deg(P ) and if b = deg(P ), then P is irreducible.

Proof. — We have λ = val(a0)/ deg(P ) so that b | deg(P ). If P = QR is reducible, all
the roots of Q and R have the same valuation so NP(Q) has one slope val(q0)/ deg(Q),
hence deg(Q) = deg(P ).

Corollary 6.5. — An Eisenstein polynomial is irreducible.

7. The field Cp

Let Qp denote an algebraic closure of Qp.

Theorem 7.1. — If d ≥ 1, then Qp has only finitely many extensions of degree d.

For example, if d = 2, then every quadratic extension of Qp is of the form Qp(
√
y) and

we need to show that Q×p /(Q×p )2 is finite, which is easy, given the following result.

Lemma 7.2. — If p 6= 2, then Q×p = pZ × µp−1 × (1 + pZp); for p = 2, Q×2 = 2Z ×
{±1} × (1 + 4Z2).

The result below is known as Krasner’s lemma.
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Theorem 7.3. — If F is a finite extension of Qp and if α, β ∈ Qp are such |α − β| <
|α− αi| for i = 2, . . . , n where the αi are the conjugates of α over F (with α1 = α), then
F (α) ⊂ F (β).

Proof. — Let K be a finite Galois extension of F containing α and β, and take σ ∈
Gal(K/F (β)). We have |σ(α)−α| ≤ max(|σ(α)− σ(β)|, |α− β|) = |α− β|. If σ(α) 6= α,
then |α−β| < |σ(α)−α|, a contradiction. Hence σ(α) = α for all σ ∈ Gal(K/F (β)) and
so α ∈ F (β).

If P (X) = a0 + · · ·+adX
d ∈ K[X], let |P |G = max |ai|. The lemma below follows from

the continuity of the roots of a polynomial in terms of the coefficients.

Lemma 7.4. — If P (X) ∈ F [X] is monic of degree d with no double root and ε > 0,
then there exists δ > 0 such that : if Q(X) ∈ F [X] is monic of degree d with |P−Q|G < δ,
then for each root x of P in Qp there exists a root y of Q such that |x− y| < ε.

Proof of theorem 7.1. — If K is an extension of Qp of degree d and K0 is the maximal
unramified subextension of K, then K0 = Qp(µpf−1) with f | d and so it is enough to
prove that if F is a finite extension of Qp and e ≥ 1, then F has only finitely many totally
ramified extensions of degree e.

Given an e-tuple a = {a0, . . . , ae−1} ∈ Π = (mF \ m2
F ) × me−1

F , one can attach to it
the e extensions of F generated by the e roots of the Eisenstein polynomial P (X) =
Xe + ae−1X

e−1 + · · ·+ a0, and by proposition 5.4, all of them arise this way.
An Eisenstein polynomial is irreducible, and so has no double roots. We can therefore

apply lemma 7.4 with ε < min(αi − αj) where the {αi} are the roots of P (X). If b ∈ Π
is another e-tuple such that |ai − bi| < δ, then the polynomial Q(X) attached to b has
e roots {βi} that we can reorder so that |βi − αi| < ε. Theorem 7.3 now implies that
F (βi) = F (αi) and therefore that in an open neighborhood of a ∈ Π, the e extensions of
F attached to b are the same. Since Π is compact, the theorem follows.

Corollary 7.5. — The field Qp is not complete.

Proof. — The theorem implies that Qp is an extension of Qp of countable degree, and so
cannot be complete by Baire’s theorem.

We let Cp denote the p-adic completion of Qp.

Theorem 7.6. — The field Cp is algebraically closed.
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Proof. — We prove by induction on deg(P ) that every polynomial P (X) ∈ Cp[X] of
degree ≥ 1 has a root. We may assume that P (X) ∈ OCp [X] is monic. Write P (X) =
limPn(X) with Pn(X) ∈ Qp[X], and let αn ∈ Qp be a root of Pn(X) so that P (αn)→ 0.

If P ′(αn) does not converge to 0, then Hensel’s lemma implies that for n� 0, αn gives
rise to a root of P (X). If P ′(αn) → 0, then by induction P ′(X) decomposes in Cp[X]
and then αn converges to one of its roots, which is then also a root of P (X).

The field Cp is the smallest complete and algebraically closed field containing Qp. It
is known as the field of p-adic complex numbers. We have valp(C×p ) = Q. The ring OCp

is the p-adic unit disk and mCp is the p-adic open unit disk.

8. The ramification filtration

In this section, L/K is a finite Galois extension of local fields, with kK of characteristic
p and kL/kK separable (and hence Galois), and valL is the valuation on L× normalized by
valL(L×) = Z. If g ∈ Gal(L/K), let iL(g) = infa∈OL valL(g(a)− a). Note that if x ∈ OL
is such that OL = OK [x], then iL(g) = valL(g(x)− x).

Proposition 8.1. — If g, h ∈ Gal(L/K), then

1. iL(ghg−1) = iL(h);
2. iL(gh) ≥ min(iL(g), iL(h)) with equality if iL(g) 6= iL(h);
3. iL(g) = iL(g−1).

Proof. — If OL = OK [x], then OL = OK [g−1(x)] and hence

iL(ghg−1) = valL(ghg−1(x)− x) = valL(hg−1(x)− g−1(x)) = iL(h)

which shows (1). Next, iL(gh) = valL(gh(x)− x) = valL(gh(x)− h(x) + h(x)− x) which
implies (2), and (3) is clear.

If G = Gal(L/K) and u ∈ Z≥−1, then let Gu = {g ∈ G such that iL(g) ≥ u + 1}.
Proposition 8.1 implies that Gu is a normal subgroup of G. We have G−1 = G and if
u ≥ maxg 6=1 iL(g), then Gu = {1}. Let L0 be the maximal unramified subsextension of
L/K as in proposition 5.5.

Lemma 8.2. — The group G0 is the inertia subgroup I(L/K) of G, and L0 = LG0.

Proof. — By definition, I(L/K) = ker(Gal(L/K)→ Gal(kL/kK)) and it is therefore the
set of g ∈ G such that g(a)− a ∈ mL for all a ∈ OL, that is G0.
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In the notation of the proof of proposition 5.5, we have L0 = K(y) where y is the
unique root of P lifting y. If g ∈ G0, then g(y) is also a root of P lifting y, so that
g(y) = y and L0 ⊂ LG0 . By comparing degrees, we get L0 = LG0 .

If πL is a uniformizer of L, then L = L0[πL] so that iL(g) = valL(g(πL)/πL − 1) + 1 if
g ∈ G0. Hence if u ≥ 0, then Gu = {g ∈ G0 such that valL(g(πL)/πL − 1) ≥ u}.

Lemma 8.3. — If u ≥ 1 then Gp
u ⊂ Gu+1.

Proof. — If g ∈ Gu then we can write g(πL)/πL = 1 + α with α ∈ mu
L and

gp(πL)
πL

= g(πL)
πL

g2(πL)
g(πL) · · ·

gp(πL)
gp−1(πL) = (1 + α)(1 + g(α)) · · · (1 + gp−1(α))

Since g ∈ Gu we have g(α)− α ∈ mu+1
L and hence gp(πL)/πL ≡ 1 + pα ≡ 1 mod mu+1

L so
that gp ∈ Gu+1.

Proposition 8.4. — The group G1 is the unique p-Sylow subgroup of G0.

Proof. — Lemma 8.3 above shows that Gpn

1 ⊂ G1+n and hence that Gpn

1 = {1} if n� 0
which shows that G1 is a p-group. We now show that for each g ∈ G0 such that gp ∈ G1,
we have g ∈ G1. If g is such an element, we can write g(πL)/πL = α ∈ O×L and
since G0 is the inertia subgroup of G, we see that gp(πL)/πL ≡ 1 mod mL if and only if
αp ≡ 1 mod mL, that is if and only if α ≡ 1 mod mL.

If L/K is a totally ramified extension, we say that it is tamely ramified if p - e(L/K).

Proposition 8.5. — If L/K is a totally ramified Galois extension, and if we write e =
e(L/K) = pkn with p - n, then there is a unique subextension L1 such that [L1 : K] = n.

Proof. — By Galois theory, we have L1 = LG1 .

More generally, the ramification filtration on Gal(L/K) gives a tower of subextensions
K ⊂ L0 ⊂ L1 ⊂ · · · ⊂ L where ramification becomes increasingly complicated.

Proposition 8.6. — If u ≥ 0, then the map g 7→ g(πL)/πL induces an injective group
homomorphism Gu/Gu+1 → 1 + mu

L/1 + mu+1
L .

Proof. — If g(πL)/πL = 1 + αg and h(πL)/πL = 1 + αh, with αg, αh ∈ mu
L, then g(αh) =

αh mod mu+1
L , so that:

gh(πL)
πL

= (1 + g(αh))(1 + αg) = (1 + αg)(1 + αh) mod mu+1
L

so that the map is indeed a group homomorphism. It is clearly injective.

Corollary 8.7. — The group G0 is hyper-solvable.
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Proof. — The group G0/G1 injects into O×L/1+mL ' k×L by proposition 8.6, and if u ≥ 1,
then 1 +mu

L/1 +mu+1
L ' kL so that Gu/Gu+1 is a finite dimensional Fp-vector space.

Example 8.8. — LetK = Qp andKn = Qp(µpn) with n ≥ 1, which is a totally ramified
extension of K, of degree pn−1(p− 1), with uniformizer 1− ζpn .

If 1 ≤ j ≤ n and pj−1 ≤ u ≤ pj − 1, then Gal(Kn/K)u = Gal(Kn/Kj).

Define a function ϕL/K : R≥−1 → R≥−1 by ϕL/K(u) =
∫ u

0 [G0 : Gt]−1dt.

Proposition 8.9. — The function ϕL/K : R≥−1 → R≥−1 is piecewise linear, continu-
ous, increasing, concave, and a homeomorphism R≥−1 → R≥−1.

Let ψL/K : R≥−1 → R≥−1 denote the inverse of ϕL/K , and let Gu = GψL/K(u). This is
the upper ramification filtration of G. For example, if K = Qp and Kn = Qp(µpn) with
n ≥ 1, then Gi = Gal(Kn/Ki). The following is Herbrand’s theorem.

Theorem 8.10. — If G = Gal(L/K) and H is a distinguished subgroup of G, then
(G/H)u = GuH/H.

9. Infinite Galois extensions

Let K be a field and let L be an algebraic extension. We say that L/K is Galois if and
only if it is the union of finite Galois extensions of K. If σ is a K-automorphism of L
and E is a finite Galois extension of K contained in L, then σ(E) = E. Conversely, if L
is a union of Galois extensions E/K and {σE} is a compatible family of automorphisms,
then it gives rise to an automorphism σ of L. If Gal(L/K) denotes the group of K-
automorphisms of L, then we therefore have an isomorphism Gal(L/K) ' lim←−Gal(E/K).
We give Gal(L/K) the group topology, so that it is a compact topological group. Galois
theory extends to a bijection between closed subgroups of Gal(L/K) and Galois extensions
of K contained in L, given by H ↔ LH . The extension LH/K is then finite if and only if
H is an open subgroup of Gal(L/K). For example, we can consider Gal(Qp/Qp), which
is a large compact group.

For example, if K = Qp and Kn = Qp(µpn) then Kcyc = ∪n≥1Kn is the cyclotomic
extension of Qp, and Gal(Kcyc/K) = Z×p via the cyclotomic character. If K is a finite
extension of Qp, then every unramified extension of K is of the form K(µqf−1) for some
f ≥ 1. The union of these extensions is the maximal unramified extension Kunr of K.
We have Gal(K(µqf−1)/K) = Z/fZ so that Gal(Kunr/K) = Ẑ. The compositum of the
extensions Kcyc and Kunr is an abelian extension of K. When K = Qp, it is the maximal
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abelian extension of Qp, by a p-adic analogue of the Kronecker-Weber theorem. We’ll see
later on how to construct the maximal abelian extension of a finite extension of Qp.

The upper ramification filtration is compatible with quotients by theorem 8.10 and
can therefore be extended to the Galois groups of infinite extensions. If K = Qp and
Kn = Qp(µpn), then Gal(Kcyc/K) ' Z×p and Gal(Kcyc/K)i = Gal(Kcyc/Ki) ' 1 + piZp.

10. The Weierstrass preparation theorem

Let K be a finite extension of Qp, let π be a uniformizer of OK , and let OK [[X]] denote
the set of power series with coefficients in OK . If f(X) ∈ OK [[X]] and z ∈ mCp , we can
evaluate f(X) at z. What can we say about the zeroes of f(X)?

If f(X) = f0 + f1X + · · · , let wideg(f) be the smallest i such that fi ∈ O×K , so that
wideg(f) = +∞ if and only if f(X) ∈ π · OK [[X]]. A function f(X) ∈ OK [[X]] is a
unit if and only if f0 ∈ O×K , ie if and only if wideg(f) = 0. We also have wideg(fg) =
wideg(f) + wideg(g).

Proposition 10.1. — Take f(X) ∈ OK [[X]] such that wideg(f) = n is finite. If g(X) ∈
OK [[X]], then there exists a series q(X) ∈ OK [[X]] and a polynomial r(X) ∈ OK [X] of
degree ≤ n−1, such that g(X) = f(X)q(X)+r(X), and q and r are uniquely determined.

We prove the existence of q and r by applying a standard method, summarized in the
lemma below, whose variants are known as “Nakayama’s lemma”.

Lemma 10.2. — Let M and N be two OK-modules, such that

1. M is complete for the π-adic topology (ie ∑k≥0 π
kmk always converges in M)

2. N is separated for the π-adic topology (ie ∩k≥0π
kN = {0}).

If f ∈ HomOK (M,N) is such that f : M → N/πN is surjective, then f is surjective.

Proof. — Take n ∈ N . There exists m0 ∈ M and n1 ∈ N such that n = f(m0) + πn1.
We prove by induction that there exists mk ∈ M and nk ∈ N such that n = f(m0 +
πm1 + · · ·+ πkmk) + πk+1nk+1. This is true for k = 0 and the case k + 1 follows from k

by writing nk+1 = f(mk+1) + πnk+2.
Let m = ∑

k≥0 π
kmk. We have n− f(m) ∈ ∩k≥0π

kN = {0} so that n = f(m).

Proof of proposition 10.1. — Let M = OK [[X]] × OK [X]deg≤n−1 and N = OK [[X]] and
consider the map (q, r) 7→ qf + r. By lemma 10.2, it is enough to prove that this map is
surjective mod π. Take g(X) ∈ k[[X]]. We can write g(X) = g0+· · ·+gn−1X

n−1+Xnh(X)
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and f(X) = Xn × u(X) where u is a unit so that we can write g = fq + r with r =
g0 + · · ·+ gn−1X

n−1.
We now prove unicity. If qf + r = 0, then reducing mod π, we get that π divides r and

hence q. By induction, this shows that q = r = 0.

Corollary 10.3. — If α ∈ mK and f(α) = 0, then f(X) = (X − α)q(X) with q(X) ∈
OK [[X]].

A polynomial P (X) ∈ OK [X] is called distinguished if P (X) = Xn+an−1X
n−1+· · ·+a0

with ai ∈ mK for all 0 ≤ i ≤ n − 1. By theorem 6.1, a distinguished polynomial has
exactly deg(P ) roots in mCp .

Theorem 10.4. — If f(X) ∈ OK [[X]] and n = wideg(f) is finite, there exists a unique
distinguished polynomial p of degree n such that f(X) = p(X)u(X) where u is a unit.

Proof. — If we apply proposition 10.1 to g(X) = Xn, we find q and r such that Xn =
f(X)q(X)+r(X). We see that r ≡ 0 mod π, so that p(X) = Xn−r(X) is distinguished,
and f(X)q(X) = p(X). We have wideg(q) = 0 so that q is a unit and f(X) = p(X)u(X)
with u(X) = q(X)−1.

The series f therefore has precisely wideg(f) roots in mCp . If f = p1u1 = p2u2, then
p1 and p2 are distinguished and have the same roots, so that they are equal.

Corollary 10.5. — If f(X) ∈ OK [[X]], then

1. we can write f(X) = πµp(X)u(X) where p is distinguished and u is a unit;
2. if f(X) 6= 0, then f(X) has finitely many zeroes in mCp.

Furthermore, the theory of Newton polygons extends to OK [[X]].

Theorem 10.6. — The ring OK [[X]] is a noetherian local ring, with maximal ideal
(π,X), whose other prime ideals are (0), (π), and (p(X)) with p distinguished and irre-
ducible.

Proof. — Let us prove thatOK [[X]] is noetherian. If I = ({fi}i), we can write fi = πµipiui

and I = ({πµipi}i). The ring OK [X] is noetherian, and therefore so is OK [[X]].
Let I be a prime ideal and take f = πµpu ∈ I with p of least degree. Since I is prime,

either π ∈ I or p ∈ I. If both are in I, then I = (π, p) = (π,Xn) so that I = (π,X).
If π ∈ I and I 6= (π), then by the above I = (π,X). If p ∈ I and π /∈ I and

g = πνqv ∈ I, then q ∈ I, and q ∈ (p) by euclidean division so that I = (p).
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11. p-adic Banach spaces

Let K be a finite extension of Qp, with residue field k. A p-adic Banach space is a
topological K-vector space E whose topology comes from an ultrametric norm ‖·‖ : E →
R, for which it is complete. We say that E satisfies condition (N) if ‖E‖ = |K|. If E
does not satisfy condition (N), then the norm ‖ · ‖′ defined by ‖x‖′ = |π|−bvalπ(‖x‖)c is
equivalent to ‖ · ‖ and satisfies condition (N). The unit ball OE of E is an OK-module,
and kE = OE/mE is a k-vector space.

The following are p-adic Banach spaces:

1. any finite dimensional K-vector space;
2. Cp, for which kCp = Fp;
3. C0(X,E), where X is a compact metric space and E is a Banach space;
4. If I is a set and `0

∞(I) = {ai}i∈I where ai ∈ K and for every ε > 0, the set of i such
that |ai| > ε is finite, then `0

∞(I) is a Banach space with ‖a‖ = supi∈I |ai|.

If E is a Banach space and {ei}i∈I is a bounded family of elements, then there is a
continuous map s : `0

∞(I)→ E given by a 7→ ∑
i∈I aiei. We say that {ei}i∈I is a Banach

basis if s is an isometry. If s is merely an isomorphism of Banach spaces, we say that
{ei}i∈I is a pseudo Banach basis.

Proposition 11.1. — If E satisfies condition (N), then a family {ei}i∈I of OE is a
Banach basis if and only if {ei}i∈I is a basis of the k-vector space kE.

Proof. — One implication is clear, so take a family {ei}i∈I that gives a basis of the k-
vector space kE. The map s : O`0∞(I) → OE given by a 7→ ∑

i∈I aiei is surjective modulo
π, so by lemma 10.2, it is surjective. If s(a) = 0, then π divides ai for all i, and by
iterating this, we get a = 0. If ‖a‖ = 1, then s(a) 6= 0, so that ‖s(a)‖ = 1. This shows
that s is an isometry, since E satisfies condition (N).

Example 11.2. — The set {
(
x
n

)
}n≥0 is a Banach basis of the Banach space C0(Zp, K).

Proof. — We show that {
(
x
n

)
}n≥0 is a basis of C0(Zp, k). If f(x) = a0

(
x
0

)
+· · ·+an

(
x
n

)
= 0,

then f(0) = a0 = 0, and then f(1) = a1 = 0, . . . , f(n) = an = 0. Hence the set {
(
x
n

)
}n≥0

is linearly independent over k.
We now show that the {

(
x
n

)
}n≥0 generate C0(Zp, k) over k. If f ∈ C0(Zp, k), then f is

locally constant so that there exists m ≥ 1 such that f(x) = ∑pm−1
a=0 f(a) Ida+pmZp(x). It

is therefore enough to show that if a ∈ Zp and m ≥ 1, then in C0(Zp,Zp), we can write
Ida+pmZp(x) = ∑

n≥0 an
(
x
n

)
with an ∈ Z and an → 0. Let us work in L = Qp(µpm).
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If x ∈ Zp, then
∑
ηpm=1 η

x = pm if pm | x and 0 otherwise. Therefore,

Ida+pmZp(x) = 1
pm

∑
η

ηx−a = 1
pm

∑
η

η−a(1 + (η − 1))x

= 1
pm

∑
η

η−a
∑
n≥0

(
x

n

)
(η − 1)n =

∑
n≥0

(
x

n

)
1
pm

∑
η

η−a(η − 1)n.

It remains to check that p−m∑η η
−a(η − 1)n belongs to Z and → 0 as n→ +∞.

The following properties of (real and complex) Banach spaces also hold for p-adic
Banach spaces: the open mapping theorem (a continuous bijection between two Banach
spaces is a homeomorphism) and the Banach-Steinhaus theorem. The next two results
are specific to the p-adic situation.

Proposition 11.3. — If F is a closed subspace of a p-adic Banach space E, then F has
a closed complement.

Proof. — We can change the norm so that it satisfies condition (N). In this case, kE has
basis of the form BF t C, where BF gives rise to a Banach basis of F . The set C then
gives rise to a Banach basis of a closed complement of F in E.

Corollary 11.4. — If f : E → F is a continuous and surjective map of Banach spaces,
then it has a continuous splitting s : F → E.

Proof. — Let S be a closed complement of ker(f). The map f : S → F is a continuous
bijection, hence a homeomorphism. Its inverse s : F → S ⊂ E is a splitting of f .

12. Formal groups

Let R be a ring, such as k or OK or K where K is a finite extension of Qp. A formal
group (law) over R is a power series F (X, Y ) ∈ R[[X, Y ]] such that

1. F (X, Y ) = X + Y + deg ≥ 2;
2. F (X,F (Y, Z)) = F (F (X, Y ), Z);
3. F (X, Y ) = F (Y,X);
4. there exists i(X) ∈ R[[X]] such that F (X, i(X)) = 0.

A formal group law over OK can be used to define a new commutative group structure
over mL for any extension L of K, by x ⊕ y = F (x, y). Examples of formal groups are
GA given by F (X, Y ) = X + Y and Gm given by F (X, Y ) = X + Y +XY .

Lemma 12.1. — Item (4) follows from (1).
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Proof. — If i1(X) = −X, then F (X, i1(X)) = O(X2) by (1). Assume that we have
in(X) such that F (X, in(X)) = cXn+1 + O(Xn+2). We have F (X, in(X) − cXn+1) =
F (X, in(X))− cXn+1FY (X, in(X)) + O(X2(n+1)) = O(Xn+2) and i(X) = lim in(X).

Note that (1) and (2) imply that F (X, 0) = X and F (0, Y ) = Y . Indeed if A(X) =
F (X, 0), then A(X) = X + O(X2) by (1) and A(A(X)) = A(X) so that A(X) = X by
lemma 12.2 below.

Lemma 12.2. — If f(X) ∈ X ·R[[X]] and f ′(0) ∈ R×, then there exists g(X) ∈ X ·R[[X]]
such that f ◦ g(X) = g ◦ f(X) = X.

A homomorphism h : F → G between two formal groups is a power series h(X) ∈
X · R[[X]] such that h(F (X, Y )) = G(h(X), h(Y )). By lemma 12.2, it is an isomorphism
if and only if h′(0) ∈ R×. For example, let F be a formal group and let [n](X) be defined
by [1](X) = X and [n + 1](X) = F (X, [n](X)) for n ≥ 1 and [−1](X) = i(X) and
[n− 1](X) = F (i(X), [n](X)) for n ≤ −1. These are endomorphisms of F .

A differential form on F is an element ω(X) = p(X)dX of R[[X]]dX. If f(X) ∈ XR[[X]],
then ω(f(X)) = p(f(X))f ′(X)dX. It is invariant if ω ◦ f = ω where f(X) = F (X, Y )
with Y seen as a constant, ie if p(F (X, Y )) · FX(X, Y ) = p(X). By setting X = 0, we
get p(Y ) = p(0)/FX(0, Y ) so that if ω is invariant, then ω(X) = a · dX/FX(0, X). Let
ωF (X) = dX/FX(0, X) be the normalized invariant differential form. If F are G formal
groups and h ∈ Hom(F,G), then ωG ◦ h = h′(0) · ωF .

If R = K, let logF (X) =
∫
ωF (X) (with logF (0) = 0). This is the logarithm of F .

Proposition 12.3. — We have logF (F (X, Y )) = logF (X) + logF (Y ), so that logF :
F → Ga is an isomorphism over K.

Proof. — Let E(X) = logF (F (X, Y ))− logF (X). We have d/dX(E(X)) = 0 since ωF is
invariant, so that E(X) = E(0) = logF (Y ).

For example, logGm
= log(1 + X). Over K, any two formal groups are therefore

isomorphic. Over OK , this is not the case. For example, mCp with the law coming from
Ga is torsion free, but not mCp with the law coming from Gm.

13. The Tate module

Let k be a field of characteristic p, and let F , G be formal groups over k. If f ∈
Hom(F,G), then the height ht(f) of f is the largest integer h such that f(X) = g(Xph).

Proposition 13.1. — If f(X) = g(Xph) with h = ht(f), then g′(0) 6= 0.
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Proof. — We first show that if f ∈ Hom(F,G) and f ′(0) = 0, then f(X) is of the form
g(Xp). We have ωG ◦ f = f ′(0) · ωF = 0 so that f ′(X) = 0. Since k is of char p, this
implies that f(X) = g(Xp).

Write F (X, Y ) = ∑
aijX

iY j and let F (h)(X, Y ) = ∑
ap

h

ij X
iY j. This is a new formal

group, since x 7→ xp is a ring homomorphism of k, and if f ∈ Hom(F,G) and f(X) =
g(Xph), then g ∈ Hom(F (h), G). The proposition now follows from the above claim.

Let K be a finite extension of Qp and let F be a formal group over OK . The height of
F is the height of [p](X) ∈ Hom(F , F ). If F comes from an elliptic curve, then it is of
height 1 or 2. If h = ht(F ) is finite, then wideg([p](X)) = ph. If y ∈ mCp , the equation
[p](z) = y then has ph solutions. Since ωF ◦ [p] = p · ωF , we have [p](X)′ = p(1 + O(X)),
and the solutions of [p](z) = y are distinct.

Let Mn = {z ∈ mCp such that [pn](z) = 0}. This set has phn elements, it is a Z/pnZ-
module, and [p] : Mn+1 →Mn is surjective. Let M = lim←−nMn. This is a Zp-module, and
since M → M1 is onto, M is generated by h elements. We have M/pnM = Mn for all
n ≥ 1, so that M is free of rank h over Zp. This is the Tate module of F , also denoted
by TpF . Let VpF = Qp ⊗Zp TpF . This is a Qp-vector space of dimension h. The group
Gal(Qp/K) acts on VpF : this is the p-adic representation attached to F . If we choose
a basis of TpF , we get a map Gal(Qp/K) → GLh(Zp). For example, if F = Gm, then
ht(F ) = 1 and the resulting map Gal(Qp/Qp)→ Z×p is the cyclotomic character.

14. Lubin-Tate theory

Let K be a finite extension of Qp, with residue field k of cardinality q. A formal OK-
module is a formal group F over OK along with a ring homomorphism OK → EndOK (F ),
a 7→ [a](X), such that [a](X) = aX + O(X2). The space mCp is then equipped with an
OK-module structure. Fix a uniformizer π of OK and let Lπ be the set of power series
ϕ(X) such that ϕ(X) = πX + O(X2) and ϕ(X) ≡ Xq mod π.

Theorem 14.1. — If ϕ ∈ Lπ, then there exists a formal OK-module F such that
[π](X) = ϕ(X). The isomorphism class of F only depends on π, not on ϕ ∈ Lπ.

For example, if K = Qp and π = p and ϕ(X) = (1 +X)p − 1, then F = Gm. In order
to prove the theorem, we need a general lemma.

Lemma 14.2. — If ϕ, ψ ∈ Lπ and α = (α1, . . . , αn) ∈ OnK, then there exists a unique
Hϕ,ψ
α ∈ OK [[X1, . . . , Xn]] such that

1. Hϕ,ψ
α (X1, . . . , Xn) = α1X1 + · · ·+ αnXn + deg ≥ 2;
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2. ϕ ◦Hϕ,ψ
α (X1, . . . , Xn) = Hϕ,ψ

α (ψ(X1), . . . , ψ(Xn)).

Proof. — Take anyH1(X1, . . . , Xn) ≡ α1X1+· · ·+αnXn+O(X2). Note that ϕ◦H1−H1◦ψ
only has terms of degree ≥ 2. We construct a sequence {Hi}i of power series with
coefficients in OK such that ϕ ◦Hi −Hi ◦ ψ only has terms of degree ≥ i + 1 and such
that Hi ≡ Hi+1 modulo terms of degree ≥ i+ 1. Given Hi, let

Hi+1 = Hi + 1
πi+1 − π

(ϕ ◦Hi −Hi ◦ ψ) .

We have ϕ ◦Hi −Hi ◦ ψ ≡ Hi(X1, . . . , Xn)q −Hi(Xq
1 , . . . , X

q
n) ≡ 0 mod π, so that Hi+1

has coefficients in OK . Write ϕ ◦Hi −Hi ◦ ψ = cX i+1. We have

ϕ ◦Hi+1 −Hi+1 ◦ ψ = ϕ

(
Hi + cX i+1

πi+1 − π

)
−Hi ◦ ψ −

cψi+1

πi+1 − π
+ O(X i+2)

= ϕ ◦Hi + π
cX i+1

πi+1 − π
−Hi ◦ ψ − πi+1 cX i+1

πi+1 − π
+ O(X i+2)

= O(X i+2).

The power series {Hi}i then converge to a series Hϕ,ψ
α satisying (1) and (2). Furthermore,

Hi+1 mod X i+2 is uniquely determined by Hi mod X i+1, so that Hϕ,ψ
α is unique.

Proof of theorem 14.1. — Let F (X, Y ) = Hϕ,ϕ
1,1 (X, Y ). It is easy to check (1)–(4) in the

definition of a formal group. For instance, F (X,F (Y, Z)) = Hϕ,ϕ
1,1,1 = F (F (X, Y ), Z) and

i(X) = Hϕ,ϕ
−1 (X). For a ∈ OK let [a](X) = Hϕ,ϕ

a (X). We show the same way that they
are endomorphisms of F . Finally if ϕ, ψ ∈ Lπ, then Hϕ,ψ

1,1 gives an isomorphism between
Fϕ and Fψ.

Remark 14.3. — The group F is of height [K : Qp].

We are interested in the field Kϕ
n generated by the πn-torsion points of Fϕ. Note that

if z ∈ Fϕ[πn], then Hϕ,ψ
1 (z) ∈ Fψ[πn]. The field Kϕ

n is therefore independent of the choice
of ϕ, so we can take ϕ(X) = πX +Xq. Note that ϕ′(X) = qXq−1 + π so that if z ∈ mCp ,
the roots of ϕ(X)−z are all simple. The set F [πn] is a finite subgroup of (mCp ,⊕). Since
[π](X) = ϕ(X), the theory of Newton polygons tells us that F [πn] has qn elements. Let
Kn = K(F [πn]) and K∞ = ∪n≥0Kn.

Theorem 14.4. — The extension K∞/K is totally ramified, and Gal(K∞/K) ' O×K.

Proof. — Let Λ0 = {0} and for n ≥ 1, let Λn be the set of z ∈ mCp such that [πn](z) = 0
and [πn−1](z) 6= 0. We have F [πn] = Λ0 t · · · t Λn, and Λn has qn−1(q − 1) elements. If
y ∈ Λk and [π](z) = y, then z ∈ Λk+1, so that Kn = K(Λn).
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The groupO×K acts on Λn by α·z = [α](z). We have α·z = z if and only if [α−1](z) = 0,
that is if α ∈ 1 + πnOK . Since O×K/1 + πnOK has qn−1(q− 1) elements, it acts freely and
transitively on Λn. HenceKn = K(z) for any z ∈ Λn. Let Q(X) = Xq−1+π. The element
z is a root of Q ◦ ϕ◦(n−1)(X), which is an Eisenstein polynomial of degree qn−1(q − 1), so
that Kn is totally ramified, z is a uniformizer of OKn , and Gal(Kn/K) ' O×K/1 + πnOK
via the map g 7→ χπ(g) determined by g(z) = [χπ(g)](z).

The extension K∞/K is therefore totally ramified, and Gal(K∞/K) ' O×K , via the
map g 7→ χπ(g) determined by g(z) = [χπ(g)](z) for all z ∈ F [π∞].

Remark 14.5. — The Tate module TpF is isomorphic to lim←−n F [πn], and the corre-
sponding Galois representation is given by Gal(Qp/K) χπ−→ O×K ↪→ GL[K:Qp](Zp).

Remark 14.6. — The element z above is a root of Q ◦ ϕ◦(n−1)(X) whose constant
coefficient is π, so that π is the norm of an element of Kn for all n ≥ 1.

Remark 14.7. — If 1 ≤ j ≤ n and qj−1 ≤ u ≤ qj−1, then Gal(Kn/K)u = Gal(Kn/Kj).
If n ≥ 0, then Gal(K∞/K)n = 1 + πnOK .

15. Local class field theory

Let Kπ
∞ denote the extension of K constructed above. It is an abelian totally ramified

extension of K. The extension Kunr/K is also abelian, with Gal(Kunr/K) = Gal(Fp/k)
We have Gal(Fp/k) = Ẑ, generated by Frq : x 7→ xq. Let Frq denote the corresponding
element of Gal(Kunr/K).

Let Art : K× → Gal(Kπ
∞ ·Kunr/K) = Gal(Kπ

∞/K) × Gal(Kunr/K) be the map given
by π 7→ Frq and u 7→ χ−1

π (u−1) where χπ : Gal(Kπ
∞/K)→ O×K is the above isomorphism.

Theorem 15.1. — 1. The extension Kπ
∞ ·Kunr is the maximal abelian extension Kab

of K, and the map Art : K× → Gal(Kab/K) is independent of all the choices.
2. If L/K is a finite abelian extension, then Art gives rise to an isomorphism between

Gal(L/K) and K×/NL/K(L×).
3. This gives a bijection between the set of closed (resp. open) subgroups of K× and the

set of (resp. finite) abelian extensions of K.
4. If L/K is any finite extension, then the following diagram commutes

L×
ArtL−−−→ Gal(Lab/L)

NL/K

y yres

K×
ArtK−−−→ Gal(Kab/K).
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16. Galois cohomology

Let G and M be topological groups, with a continuous action of G on M . We define
H0(G,M) = MG, the set of fixed points in M under the action of G.

A cocyle on G with values in M is a continuous map c : G → M such that c(gh) =
c(g) · g(c(h)). If c is a cocyle and m ∈ M , then g 7→ m−1 · c(g) · g(m) is another cocycle
which is said to be cohomologous to c. This defines an equivalence relation on the set of
cocyles, and H1(G,M) is the set of equivalence classes of cocyles under this equivalence
relation. An element of H1(G,M) is trivial if it is in the class of the cocycle g 7→ 1, that
is if it can be represented by a cocyle of the form g 7→ m · g(m)−1 for some m ∈M . If M
is abelian, then H1(G,M) is a group, otherwise it is a pointed set.

Suppose that R is a topological ring with a continuous action of G, that X is a free
R-module of finite rank d with a semilinear action of G and that e = {e1, . . . , ed} is a
basis of X. If we denote by Mate(g) the matrix of g ∈ G in the basis e, then g 7→ Mate(g)
is a cocyle on G with values in GLd(R). Furthermore, if f is another basis of X and if
P is the matrix of f in e, then Matf (g) = P−1 · Mate(g) · g(P ). In this way, one can
associate to the semilinear representation X a well-defined class [X] ∈ H1(G,GLd(R)).
This way, we get a natural bijection between H1(G,GLd(R)) and the set of isomorphism
classes of semilinear representations of G on free R-modules of rank d.

Suppose that M is an R-module with a linear action of G, and that E is an extension
of R by M , that is an R-module with an action of G that sits in an exact sequence
0→M → E → R→ 0. If e ∈ E is an element of E that maps to 1 ∈ R and g ∈ G, then
e− g(e) ∈M and the map g 7→ e− g(e) is a cocyle on G with values in M . If we choose
a different e, then we get a cohomologous cocyle, and therefore we can associate to E a
class [E] ∈ H1(G,M). This way, we get a natural bijection between H1(G,M) and the
set of isomorphism classes of extensions R by M .

Other examples are: if M is abelian and G acts trivially on M , then H1(G,M) =
Hom(G,M). If G is finite cyclic generated by g and M is abelian, then H1(G,M) =
ker(N)/(1 − g)M where N(x) = ∑

g g(x). If G is infinite topologically generated by g,
and M is abelian and finite, then H1(G,M) = M/(1− g)M .

If 0 → X → E → Y → 0 is an exact sequence of R-modules with a continuous
action of G, then we have a long exact sequence 0 → XG → EG → Y G δ−→ H1(G,X) →
H1(G,E) → H1(G, Y ), where the map δ : Y G → H1(G,X) is defined as follows : if
y ∈ Y G is the image of e ∈ E, then δ(y)(g) = e− g(e).
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Finally, note that ifM is an abelian group, we can define cohomology groups H i(G,M)
for all i ≥ 0. They are spaces of cocycles, which are certain maps c : Gi → M , modulo
an equivalence relation.

Let G and M be topological groups as above and let H be a closed normal subgroup of
G. We then have a restriction map res : H1(G,M) → H1(H,M) defined by res(c)(h) =
c(h) and an inflation map inf : H1(G/H,MH)→ H1(G,M) defined by inf(c)(g) = c(g).
Note that G acts on H1(H,M) by g(c)(h) = g(c(g−1hg) and that the action of H ⊂ G

on H1(H,M) is trivial so that G/H acts on H1(H,M).

Theorem 16.1. — If G, M and H are as above, then :

1. res(H1(G,M)) ⊂ H1(H,M)G/H ;
2. res(c) = 0 if and only if c ∈ inf(H1(G/H,MH));
3. if inf(c) = 0, then c = 0.

In other words, there is an exact sequence of pointed sets :

0→ H1(G/H,MH) inf−→ H1(G,M) res−→ H1(H,M)G/H .

Proof. — If c ∈ H1(G,M) and g ∈ G, then g(c)(h) = c(g)−1c(h)h(c(g)) so that g(c)
is cohomologous to c and therefore c(g) ∈ H1(H,M)G/H which proves (1). We have
(res ◦ inf)(c)(h) = c(1) = 1 so that res ◦ inf = 0, and conversely if res(c) = 0 then we can
assume that c is actually trivial on H and then c(gh) = c(g) so that c is inflated from
G/H and h(c(g)) = c(h)−1c(hg) = c(g) so that c ∈ inf(H1(G/H,MH)).

Theorem 16.2. — If L/K is a finite Galois extension and G = Gal(L/K), then :

1. H1(G,GLd(L)) = {1};
2. H1(G,L) = {0}.

Lemma 16.3. — If L is an infinite field and if σ1, . . . , σn are the elements of a finite
group of automorphisms of L, then σ1, . . . , σn are algebraically independant over L.

Proof. — This is Artin’s theorem on the algebraic independance of characters. See for
instance Lang’s Algebra, chapter VI, theorem 12.2 for a proof.

Proof of theorem 16.2. — Choose some U ∈ H1(G,GLd(L)). For α ∈ L, define P (α) =∑
h∈G h(α)U(h). The cocyle relation gives us U(g) · g(P (α)) = P (α) so that in order to

prove (1), it is enough to show that there exists some α ∈ L such that P (α) is invertible.
We do this in the case when L is infinite (the case of a finite field is an exercise). Let
{Xg}g∈G be a set of variables indexed by the elements of G, and consider the multivariable
polynomial Q({Xg}g∈G) = det(∑g∈GXgU(g)). This polynomial is nonzero because the
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U(g)’s are invertible, and lemma 16.3 then gives us the existence of an α ∈ L such that
Q({g(α)}g∈G) 6= 0 so that P (α) is invertible, which proves (1).

In order to prove (2), choose some f ∈ H1(G,L) and consider the cocyle [U : g 7→(
1 f(g)
0 1

)
] ∈ H1(G,GL2(L)). Item (1) gives us a matrixM = ( a bc d ) such that U(g)·g(M) =

M . Since M is invertible, either c or d is 6= 0, say c. The relation U(g) · g(M) = M tells
us that g(c) = c for all g ∈ G so that c ∈ K and also that g(a) + f(g)g(c) = a so that
f(g) = a/c− g(a/c) and f is indeed trivial.

Corollary 16.4. — Let L/K be a Galois extension with G = Gal(L/K) and give L the
discrete topology. If we consider only continuous cocycles, then H1(G,GLd(L)) = {1}
and H1(G,L) = {0}.

Proof. — In both cases, such a cocyle factors through a finite quotient Gal(M/K) of
Gal(L/K) and the field generated over K by all the possible values of the cocycle is also
a finite extension of K so that we are in the situation of theorem 16.2.

Example 16.5. — Let L = Kalg and G = Gal(L/K). We have an exact sequence
0 → µn → L×

x 7→xn−−−→ L× → 0. The resulting long exact sequence and theorem 16.2 give
us H1(G, µn) = K×/(K×)n.

LetK be a finite extension of Qp, with uniformizer π, and letG = Gal(Kunr/K). Recall
that G = Gal(Fp/k). Let K̂unr denote the p-adic completion of Kunr, so that K̂unr ⊂ Cp.
The group G acts on K̂unr by continuous automorphisms. Let H1(G,GLd(OK̂unr)) denote
the set of continuous cocycles modulo equivalence.

Proposition 16.6. — The set H1(G,GLd(OK̂unr)) is trivial.

Proof. — Let A = O
K̂unr so that there is a map x 7→ x from A to Fp. Since Fp is a field,

GLd(Fp) is generated by transvections and diagonal matrices, so that the map GLd(A)→
GLd(Fp) is surjective. If U ∈ H1(G,GLd(A)) then U ∈ H1(G,GLd(Fp)) so that by the
triviality of H1(G,GLd(Fp)) and the surjectivity of the map GLd(A) → GLd(Fp), there
exists a matrix M0 ∈ GLd(A) with M−1

0 · U(g) · g(M0) ∈ Id +πMd(A). Assume that we
have constructed matrices M0, . . . ,Mk−1 with Mj ∈ Id +πj Md(A) such that

M−1
k−1 · · ·M−1

0 · U(g) · g(M0 · · ·Mk−1) = Id +πkC(g) ∈ Id +πk Md(A),

and note that C ∈ H1(G,Md(Fp)). If we write Mk = Id +πkRk, then

M−1
k · · ·M−1

0 · U(g) · g(M0 · · ·Mk) = Id +πk(C(g) +Rk − g(Rk)) + O(πk+1),
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and the triviality of H1(G,Fp) allows us to find Rk such that

M−1
k · · ·M−1

0 · U(g) · g(M0 · · ·Mk) ∈ Id +πk+1 Md(A).

The infinite product ∏+∞
k=0 Mk converges to a matrix M such that M−1 ·U(g) ·g(M) = Id,

which proves that H1(G,GLd(A)) is indeed trivial. The proof of the triviality of H1(G,A)
is similar (and easier).

Corollary 16.7. — If η : Gal(Qp/K) → Z×p is an unramified character, then there
exists x ∈ O×

K̂unr such that g(x) = η(g) · x for all g ∈ Gal(Qp/K).

Such an element is called a period of the character η. One motivating question for what
follows is: is there a period in Cp for the cyclotomic character χ : Gal(Qp/Qp)→ Z×p ?

17. The Ax-Sen-Tate theorem

Let K be an extension of Qp contained in Qp, and let GK = Gal(Qp/K). By Galois
theory, we have K = QGK

p . What can we say about CGK
p ?

Theorem 17.1. — We have CGK
p = K̂.

Before we prove this theorem, we need to establish two lemmas.

Lemma 17.2. — Let P (X) ∈ Qp[X] be a monic polynomial of degree n, all of whose
roots satisfy valp(α) ≥ c for some constant c.

1. If n = pkd with d ≥ 2 and p - d and q = pk, then P (q)(X) has a root β satisfying
valp(β) ≥ c.

2. If n = pk+1 and q = pk, then P (q)(X) has a root β satisfying

valp(β) ≥ c− 1
pk(p− 1) .

Proof. — If we write P (X) = Xn + an−1X
n−1 + · · · + a0 then valp(ai) ≥ (n − i) · c and

1/q! · P (q)(X) = ∑n−q
i=0

(
n−i
q

)
an−iX

n−i−q. The product of the roots of P (q)(X) is then
±aq/

(
n
q

)
so that there is at least one root β satisfying

valp(β) ≥ 1
n− q

(
(n− q)c− valp

(
n

q

))
.

The lemma follows from the fact that in case (1), we have valp(
(
n
q

)
) = 0 while in case (2),

we have valp(
(
n
q

)
) = 1.

If α ∈ Qp, let ∆K(α) = infg∈GK valp(g(α)− α).
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Lemma 17.3. — If α ∈ Qp, then there exists δ ∈ K such that valp(α − δ) ≥ ∆K(α)−
p/(p− 1)2.

Proof. — We prove by induction on n = [K(α) : K] that we can find such a δ with

valp(α− δ) ≥ ∆K(α)−
m∑
k=0

1
pk(p− 1)

where pm+1 is the largest power of p which is ≤ n.
Let Q(X) be the minimal polynomial of α over K. Lemma 17.2 applied to P (X) =

Q(X + α) gives us an element α′ = β + α such that valp(α′ − α) ≥ c or valp(α′ − α) ≥
c − 1/pk(p − 1) depending on the nature of n. We then have [K(α′) : K] < [K(α) : K]
while either ∆K(α′) ≥ ∆K(α) or ∆K(α′) ≥ ∆K(α)− 1/pk(p− 1). This allows us to finish
the proof by induction.

Proof of theorem 17.1. — If α ∈ Cp then we can write α = limαn with αn ∈ Qp. We
then have ∆K(αn)→ +∞ and lemma 17.3 gives us a sequence {δn}n≥1 with δn ∈ K and
valp(αn − δn)→ +∞ so that α is a limit of elements of K.

18. Tate’s normalized traces

Let F = Qp and Fn = Qp(µpn) and F∞ = ∪n≥1Fn. If x ∈ F∞ and n ≥ 1, then x ∈ Fn+k

for k � 0 and Rn(x) = p−k TrFn+k/Fn(x) does not depend on such a k. This defines a
Fn-linear projection Rn : F∞ → Fn which commutes with the action of GF . Note also
that Rn ◦Rm = Rmin(m,n).

Lemma 18.1. — If k ≥ 0 and n ≥ 1, then

Rn(ζjpn+k) =

1 if j = 0,
0 if 1 ≤ j ≤ pk − 1.

Proof. — The formula follows from the fact that TrFn+k/Fn(ζjpn+k) = ζjpn+k
∑
ηpk=1 η

j.

The above lemma along with the fact that OFn+k = OFn [ζpn+k ] implies that Rn(OF∞) ⊂
OFn and that Rn(πjnOF∞) ⊂ πjnOFn (where πn = ζpn − 1 is a uniformizer of Fn) so that
we have the following continuity estimate for the Rn’s.

Corollary 18.2. — If x ∈ F∞ then valp(Rn(x)) > valp(x)− valp(ζpn − 1).

In particular, the maps Rn extend by uniform continuity to maps Rn : F̂∞ → Fn

satisfying the above properties. If x ∈ F∞ then Rn(x) = x if n � 0 so that if x ∈ F̂∞
then Rn(x)→ x as n→∞.
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Theorem 18.3. — If ψ : Gal(F∞/F ) → Z×p is of infinite order, and if x ∈ Cp is such
that g(x) = ψ(g) · x for all g ∈ GF , then x = 0.

Proof. — If h ∈ Gal(Qp/F∞), then h(x) = x, so that x ∈ CGal(Qp/F∞)
p . By theorem

17.1, this implies that x ∈ F̂∞. If g ∈ GF , then g(x) = ψ(g) · x so that if n ≥ 1, then
g(Rn(x)) = ψ(g) · Rn(x). If Rn(x) 6= 0, then ψ is trivial on GFn . Since ψ is of infinite
order, we have Rn(x) = 0 for all n ≥ 0 and hence x = limRn(x) = 0.

19. The different

Let K be a finite extension of Qp and let L be a finite extension of K. The bilinear
form L × L → K given by (x, y) 7→ TrL/K(xy) is non-degenerate and if I is a fractional
ideal of L, we set Ǐ = {y ∈ L such that TrL/K(xy) ∈ OK for all x ∈ I}. The different of
the extension L/K is the ideal dL/K = (ǑL)−1. Note that ǑL contains OL, so that dL/K
is an ideal of OL. Let valK(·) and valL(·) denote the normalized valuations on K and L.

Proposition 19.1. — 1. If I is an ideal of OL, then Ǐ = I−1d−1
L/K;

2. If IK and IL are ideals of OK and OL, then TrL/K(IL) ⊂ IK iff IL ⊂ IKd
−1
L/K;

3. valK(TrL/K(I)) = bvalK(I · dL/K)c.

Proof. — If I = πrLOL, then Ǐ = π−rL ǑL = I−1ǑL. This proves (1). We have TrL/K(IL) ⊂
IK iff TrL/K(I−1

K IL) ⊂ OK iff I−1
K IL ⊂ d−1

L/K , which proves (2). In particular, TrL/K(I) is
the smallest ideal J of OK such that J · OL contains I · dL/K , which implies (3).

Corollary 19.2. — If L/K/F is a tower of extensions, then dL/F = dL/K · dK/F .

Proof. — If x ∈ OL, then x ∈ d−1
L/F iff TrL/F (xOL) ⊂ OF iff TrK/F TrL/K(xOL) ⊂ OF iff

TrL/K(xOL) ⊂ d−1
K/F iff xOL ⊂ d−1

L/Kd
−1
K/F .

Theorem 19.3. — If OL = OK [α], then dL/K = P ′min,α(α) · OL.

Proof. — Let P = Pmin,α and let α1 = α, α2, . . . , αd be the roots of P . We have

1
P (T ) =

d∑
i=1

1
P ′(αi)(T − αi)

.

Write P (T ) = T d + pd−1T
d−1 + · · ·+ p0 = T d(1 + pd−1/T + · · ·+ p0/T

d). We have
1

P (T ) = 1
T d(1 + pd−1/T + · · ·+ p0/T d)

= 1
T d

(1− pd−1

T
+ · · · ) ∈ OK [ 1

T
],
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so that
d∑
i=1

1
P ′(αi)T (1− αi/T ) =

∑
k≥1

1
T k

d∑
i=1

αk−1
i

P ′(αi)

=
∑
k≥1

1
T k

TrL/K
(
αk−1

P ′(α)

)
= 1
T d

(1− pd−1

T
+ · · · ) ∈ OK [ 1

T
].

This tells us that TrL/K(αk−1/P ′(α)) = 0 if k = 1, . . . , d− 1 and TrL/K(αk−1/P ′(α)) = 1
if k = d and TrL/K(αk−1/P ′(α)) ∈ OK for all k ≥ 1, so that P ′(α)−1OL ⊂ ǑL.

Take y ∈ ǑL and write y = y0/P
′(α) + y1α/P

′(α) + · · · + yd−1α
d−1/P ′(α) with

yi ∈ K. We have TrL/K(y) = yd−1 so that yd−1 ∈ OK , and then TrL/K(αy) = yd−2 +
TrL/K(yd−1α

d/P ′(α)) so that yd−2 ∈ OK , and by induction yi ∈ OK for all i. This shows
that ǑL ⊂ P ′(α)−1OL.

Corollary 19.4. — If L/K is a Galois extension and G = Gal(L/K), then valL(dL/K) =∑
g 6=1∈G iL(g) =

∫∞
−1(|Gt| − 1)dt.

Proof. — We have valL(dL/K) = valL(P ′(α)) = ∑
g 6=1∈G valL(g(α) − α) = ∑

g 6=1∈G iL(g).
Next, note that iL(g) = i+ 1 if and only if g ∈ Gi \Gi+1, and the second formula follows,
by integrating by parts.

Corollary 19.5. — We have valK(dL/K) =
∫∞
−1(1− 1/|Gu|)du.

Proof. — By the previous corollary, valL(dL/K) =
∫∞
−1(|Gt|−1)dt. Let t = ψL/K(u) where

ψL/K is the function defined after proposition 8.9. We have ψ′L/K(u) = [G0 : Gu], so that
valL(dL/K) =

∫∞
−1(|Gu| − 1)|G0|/|Gu|du. The corollary follows, since |G0| = e(L/K) and

valL(·) = e(L/K) valK(·).

If L/K is a Galois extension, let Lu = LGal(L/K)u . If L/K is not Galois, and L is
contained in some Galois extension M of K, then Lu = Mu ∩ L does not depend on M
by Herbrand’s theorem. Corollaries 19.2 and 19.5 then imply the following.

Theorem 19.6. — We have

valK(dL/K) =
∫ ∞
−1

(
1− 1

[L : Lu]

)
du.

20. Ramification in cyclotomic extensions

Let F = Qp and Fn = Qp(ζpn) for n ≥ 1. We know that Fn is a totally ramified
extension of F of degree pn−1(p− 1) and that OFn = Zp[ζpn ]. If K is a finite extension of
Qp and Kn = K(ζpn) for n ≥ 1, the above properties are no longer necessarily true.
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Proposition 20.1. — If K is a finite extension of Qp, there exists n(K) ≥ 1 such that
if n ≥ n(K), then

1. [Kn+1 : Fn+1] = [Kn : Fn];
2. Kn+1/Kn is totally ramified of degree p;
3. χ : Gal(K∞/Kn)→ 1 + pnZp is an isomorphism.

Proof. — Since Kn+1 = KnFn+1, the sequence {[Kn : Fn]}n≥1 is decreasing, and therefore
equal to d = [K∞ : F∞] for n ≥ n0(K). Since Fn ⊂ Kn, we have f(Kn/F ) = f(Kn/Fn) ≤
[Kn : Fn], so that f(Kn/F ) ≤ d and f(Kn/F ) is equal to f(K∞/F ) for n ≥ n1(K).

Take n ≥ max(n0(K), n1(K)). We have [Kn+1 : Fn+1] = [Kn : Fn] so that [Kn+1 :
Kn] = [Fn+1 : Fn] = p. In addition, f(Kn+1/Kn) = f(Kn+1/F )/f(Kn/F ) = 1 so that
Kn+1/Kn is totally ramified. The extensionK∞/Fn is then the compositum of the disjoint
extensions F∞/Fn and Kn/Fn so that Gal(K∞/Kn) = Gal(F∞/Fn).

Theorem 20.2. — If K is a finite extension of F = Qp, then {pn valp(dKn/Fn)}n≥1 is
bounded.

Proof. — Applying theorem 19.6, we get

[Kn : F ] valp(dKn/F ) =
∫ ∞
−1

([Kn : F ]− [Ku
n : F ])du,

[Kn : F ] valp(dFn/F ) =
∫ ∞
−1

([Kn : F ]− [Kn : Fn][F u
n : F ])du.

By subtracting, we get

[Kn : F ] valp(dKn/Fn) =
∫ ∞
−1

([Kn : Fn][F u
n : F ]− [Ku

n : F ])du.

There exists a constant u(K) such that if u > u(K), then Ku = K. In this case, we have
Ku
nFn = Kn as well as Ku

n ∩ Fn = F u
n so that [Kn : Fn][F u

n : F ] = [Ku
n : F ] and therefore

[Kn : F ] valp(dKn/Fn) =
∫ u(K)

−1
([Kn : Fn][F u

n : F ]− [Ku
n : F ])du.

Since [Kn : Fn] ≤ [K : F ] and F u
n ⊂ Fbuc, the integrand above is bounded independantly

of n which proves the theorem.

Proposition 20.3. — If L/K is a finite extension, then TrL∞/K∞(mL∞) = mK∞.

Proof. — Take n ≥ max(n(K), n(L)). Proposition 19.1 implies that TrL∞/K∞(mLn) =
mcn
Kn where cn = bvalKn(mLn · dLn/Kn)c and theorem 20.2 implies that the sequence
{valKn(dLn/Kn)}n≥1 is bounded. This shows that there exists some constant c such that
cn ≤ c for all n and hence that TrL∞/K∞(mLn) ⊃ mc

Kn for all n� 0.
If x ∈ mK∞ then x ∈ mc

Kn for n� 0 so that x ∈ TrL∞/K∞(mLn).
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Let HK = Gal(Qp/K∞). This result allows us to compute H1(HK ,Cp).

Corollary 20.4. — If f : HK → pnOCp is a continuous cocycle, then there exists x ∈
pn−1OCp such that the cohomologous cocyle g 7→ f(g)− (x−g(x)) has values in pn+1OCp.

Proof. — Let L/K be a finite extension such that f(HL) ⊂ pn+2OCp . Lemma 20.3 gives
us y ∈ p−1OL∞ such that TrL∞/K∞(y) = 1. Let Q be a set of representatives of HK/HL

and let xQ = ∑
h∈Q h(y)f(h) so that if g ∈ HK then g(xQ) = xg(Q) − f(g) and hence

f(g) − (xQ − g(xQ)) = xg(Q) − xQ. The cocyle relation and the choice of L tells us that
xg(Q) − xQ ∈ pn+1OCp so that we can take x = xQ.

Theorem 20.5. — We have H1(HK ,Cp) = {0}.

Proof. — Let f : HK → Cp be a cocycle, and let k ∈ Z be such that f(HK) ⊂ pkOCp . Set
f0 = f so that fj(HK) ⊂ pk+jOCp for j = 0. If j ≥ 0, lemma 20.4 gives us xj ∈ pk+j−1OCp

such that if we set fj+1(g) = fj(g)− (xj − g(xj)), then fj+1(HK) ⊂ pk+j+1OCp . We then
have f(g) = ∑

j≥0 xj − g(∑j≥0 xj).

We finish by extending the construction of section 18 to K̂∞. If n ≥ n(K), then
[Kn : Fn] = d = [K∞ : F∞]. If e1, . . . , ed is a basis of OKn over OFn , then it is also a basis
of Kn+k over Fn+k. Furthermore if e∗1, . . . , e∗d denotes the dual basis, then e∗i ∈ d−1

Kn/Fn
so

that if δ > 0 is given and n � 0 then valp(e∗i ) ≥ −δ. If x ∈ OKn+k then we can write
x = ∑d

i=1 xie
∗
i where xi = TrKn+k/Fn+k(xei) ∈ OFn+k .

We then define Rn(x) = ∑d
i=1 Rn(xi)e∗i which gives a projection Rn : K̂∞ → Kn.

Proposition 20.6. — If ε > 0, there exists n(ε) such that if n ≥ n(ε), then the maps
Rn : K̂∞ → Kn defined above satisfy valp(Rn(x)) ≥ valp(x)− ε.

Proof. — If we write x = ∑d
i=1 xie

∗
i where xi = TrKn+k/Fn+k(xei) ∈ OFn+k then

valp(xi) > valp(x)− valp(ζpn+k − 1) by Fn+k-linearity,

valp(Rn(xi)) > valp(xi)− valp(ζpn − 1) by corollary 18.2,

valp(e∗i ) ≥ −δ if δ > 0 and n� 0.

The proposition follows.
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