B-PAIRS AND (φ, Γ)-MODULES

by

Laurent Berger

The goal of the talk was to present some of the results from my article [1]. Let K be a p-adic base field, for example some finite extension of \mathbb{Q}_p. One of the aims of p-adic Hodge theory is to describe some of the p-adic representations of $G_K = \text{Gal}(\overline{K}/K)$, namely those which “come from geometry”, in terms of some more amenable objects. The most satisfying result in this direction is Colmez-Fontaine’s theorem which states that the functor $V \mapsto D_{st}(V)$ gives rise to an equivalence of categories between the category of semistable p-adic representations and the category of admissible filtered (φ, N)-modules.

If D is a filtered (φ, N)-module coming from the cohomology of a scheme X, then the underlying (φ, N)-module only depends on the special fiber of X (it is its log-crystalline cohomology) and the filtration only depends on the generic fiber of X (it is its de Rham cohomology). If D_1 and D_2 are two filtered (φ, N)-modules and $B_e = B_{\text{cris}}^1$ then the (φ, N)-modules D_1 and D_2 are isomorphic if and only if $(B_{\text{st}} \otimes_{K_0} D_1)^N = 0, \varphi = 1$ and $(B_{\text{st}} \otimes_{K_0} D_2)^N = 0, \varphi = 1$ are isomorphic as B_e-representations of G_K. Similarly, the filtered modules $K \otimes_{K_0} D_1$ and $K \otimes_{K_0} D_2$ are isomorphic if and only if $\text{Fil}^0(B_{\text{dR}} \otimes_{K_0} D_1)$ and $\text{Fil}^0(B_{\text{dR}} \otimes_{K_0} D_2)$ are isomorphic as B_{dR}^+-representations of G_K.

The main idea of [1] is to separate the phenomena related to the special fiber from those related to the generic fiber by considering not just p-adic representations but B-pairs $W = (W_e, W_{dR}^+)$ where W_e is a B_e-representation of G_K and W_{dR}^+ is a B_{dR}^+-representation of G_K and $B_{dR} \otimes_{B_e} W_e = B_{dR} \otimes_{B_{dR}^+} W_{dR}^+$. If V is a p-adic representation, then one associates to it $W(V) = (B_e \otimes_{\mathbb{Q}_p} V, B_{dR}^+ \otimes_{\mathbb{Q}_p} V)$ and this defines a fully faithful functor from the category of p-adic representations to the category of B-pairs. One can extend the usual definitions of p-adic Hodge theory from p-adic representations to all B-pairs. For example, we say that a B-pair W is semistable if $B_{\text{st}} \otimes_{B_e} W_e$ is trivial and it is easy to see that the functor $D \mapsto W(D)$ which to a filtered (φ, N)-module D assigns the semistable B-pair $W(D) = ((B_{\text{st}} \otimes_{K_0} D)^N, \varphi = 1, \text{Fil}^0(B_{\text{dR}} \otimes_{K_0} D))$ is an equivalence of categories.
One of the main general purpose tools which we have for studying p-adic representations is the theory of (φ, Γ)-modules. There is an equivalence of categories between the category of p-adic representations and the category of étale (φ, Γ)-modules over the Robba ring. The main result of [1] is that one can associate to every B-pair W a (φ, Γ)-module $D(W)$ over the Robba ring and that the resulting functor is then an equivalence of categories.

The article [1] includes some other results which were not discussed in the lecture, among which: a description of isoclinic (φ, Γ)-modules, an answer to a question of Fontaine regarding $B_{\text{cris}}^{\varphi=1}$-representations, and a description of finite height (φ, Γ)-modules.

References