B-PAIRS AND (φ, Γ) -MODULES

by

Laurent Berger

The goal of the talk was to present some of the results from my article [1]. Let K be a p-adic base field, for example some finite extension of \mathbf{Q}_p . One of the aims of p-adic Hodge theory is to describe some of the p-adic representations of $G_K = \operatorname{Gal}(\overline{K}/K)$, namely those which "come from geometry", in terms of some more amenable objects. The most satisfying result in this direction is Colmez-Fontaine's theorem which states that the functor $V \mapsto D_{\rm st}(V)$ gives rise to an equivalence of categories between the category of semistable p-adic representations and the category of admissible filtered (φ, N)-modules.

If D is a filtered (φ, N) -module coming from the cohomology of a scheme X, then the underlying (φ, N) -module only depends on the special fiber of X (it is its log-crystalline cohomology) and the filtration only depends on the generic fiber of X (it is its de Rham cohomology). If D_1 and D_2 are two filtered (φ, N) -modules and $\mathbf{B}_e = \mathbf{B}_{cris}^{\varphi=1}$ then the (φ, N) -modules D_1 and D_2 are isomorphic if and only if $(\mathbf{B}_{st} \otimes_{K_0} D_1)^{N=0,\varphi=1}$ and $(\mathbf{B}_{st} \otimes_{K_0} D_2)^{N=0,\varphi=1}$ are isomorphic as \mathbf{B}_e -representations of G_K . Similarly, the filtered modules $K \otimes_{K_0} D_1$ and $K \otimes_{K_0} D_2$ are isomorphic if and only if $\mathrm{Fil}^0(\mathbf{B}_{\mathrm{dR}} \otimes_{K_0} D_1)$ and $\mathrm{Fil}^0(\mathbf{B}_{\mathrm{dR}} \otimes_{K_0} D_2)$ are isomorphic as $\mathbf{B}_{\mathrm{dR}}^+$ -representations of G_K .

The main idea of [1] is to separate the phenomena related to the special fiber from those related to the generic fiber by considering not just *p*-adic representations but *B*-pairs $W = (W_e, W_{dR}^+)$ where W_e is a \mathbf{B}_e -representation of G_K and W_{dR}^+ is a \mathbf{B}_{dR}^+ -representation of G_K and $\mathbf{B}_{dR} \otimes_{\mathbf{B}_e} W_e = \mathbf{B}_{dR} \otimes_{\mathbf{B}_{dR}^+} W_{dR}^+$. If *V* is a *p*-adic representation, then one associates to it $W(V) = (\mathbf{B}_e \otimes_{\mathbf{Q}_p} V, \mathbf{B}_{dR}^+ \otimes_{\mathbf{Q}_p} V)$ and this defines a fully faithful functor from the category of *p*-adic representations to the category of *B*-pairs. One can extend the usual definitions of *p*-adic Hodge theory from *p*-adic representations to all *B*-pairs. For example, we say that a *B*-pair *W* is semistable if $\mathbf{B}_{st} \otimes_{\mathbf{B}_e} W_e$ is trivial and it is easy to see that the functor $D \mapsto W(D)$ which to a filtered (φ, N) -module *D* assigns the semistable *B*-pair $W(D) = ((\mathbf{B}_{st} \otimes_{K_0} D)^{N=0,\varphi=1}, \operatorname{Fil}^0(\mathbf{B}_{dR} \otimes_{K_0} D))$ is an equivalence of categories.

LAURENT BERGER

One of the main general purpose tools which we have for studying *p*-adic representations is the theory of (φ, Γ) -modules. There is an equivalence of categories between the category of *p*-adic representations and the category of étale (φ, Γ) -modules over the Robba ring. The main result of [1] is that one can associate to every *B*-pair *W* a (φ, Γ) -module D(W)over the Robba ring and that the resulting functor is then an equivalence of categories.

The article [1] includes some other results which were not discussed in the lecture, among which : a description of isoclinic (φ, Γ) -modules, an answer to a question of Fontaine regarding $\mathbf{B}_{cris}^{\varphi=1}$ -representations, and a description of finite height (φ, Γ) modules.

References

[1] L. Berger, *B*-paires et (φ, Γ) -modules, Preprint, avril 2007.

LAURENT BERGER