MULTIVARIABLE (φ, Γ) -MODULES FOR THE LUBIN-TATE EXTENSION

by

Laurent Berger

1. Introduction

The goal of my talk was to explain some recent progress concerning (φ, Γ) -modules in the "Lubin-Tate" setting. This work was motivated by the p-adic local Langlands correspondence for $GL_2(\mathbf{Q}_p)$. This correspondence is a bijection between the set of irreducible 2-dimensional p-adic representations of $Gal(\overline{\mathbf{Q}}_p/\mathbf{Q}_p)$ and the set of some \mathbf{Q}_p -Banach representations of $GL_2(\mathbf{Q}_p)$.

The construction of the p-adic local Langlands correspondence for $\operatorname{GL}_2(\mathbf{Q}_p)$ (see for instance [**Bre10**], [**Col10**] and [**Ber11**]) uses the theory of (cyclotomic) (φ, Γ) -modules in an essential way. Consider the ring $\mathbf{Z}_p[\![X]\!]$, and endow it with a Frobenius map φ given by $(\varphi f)(X) = f((1+X)^p - 1)$ and with an action of the group $\Gamma = \operatorname{Gal}(\mathbf{Q}_p(\mu_{p^{\infty}})/\mathbf{Q}_p) \simeq \mathbf{Z}_p^{\times}$ given by $([a]f)(X) = f((1+X)^a - 1)$ if $a \in \mathbf{Z}_p^{\times}$. A (cyclotomic) (φ, Γ) -module is a module D over a ring which contains $\mathbf{Z}_p[\![X]\!]$, and endowed with a semilinear Frobenius map φ and a compatible semilinear action of Γ .

We can package this data into an action of the monoid $\begin{pmatrix} \mathbf{Z}_p \setminus \{0\} & \mathbf{Z}_p \\ 0 & 1 \end{pmatrix}$ on D, with φ given by $\begin{pmatrix} p \\ 1 \end{pmatrix}$, [a] given by $\begin{pmatrix} a \\ 1 \end{pmatrix}$, and multiplication by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ given by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Colmez makes a similar definition and then extends the action of $\begin{pmatrix} \mathbf{Z}_p \setminus \{0\} & \mathbf{Z}_p \\ 0 & 1 \end{pmatrix}$ on D to an action of $\mathrm{GL}_2(\mathbf{Q}_p)$ on a bigger space.

If we are interested in a p-adic local Langlands correspondence for $GL_2(F)$, with F a finite extension of \mathbb{Q}_p , then the above construction shows that it is possible that we will need (φ, Γ) -modules with $\Gamma \simeq \mathcal{O}_F^{\times}$, so that instead of working with the cyclotomic extension, we should work with Lubin-Tate extensions.

2. Fontaine's (φ, Γ) -modules

Let F be a finite Galois extension of \mathbf{Q}_p of degree h, let π_F be a uniformizer of \mathcal{O}_F , let q be the cardinality of k_F , let $G_F = \operatorname{Gal}(\overline{\mathbf{Q}}_p/F)$, and let $E = \operatorname{Emb}(F, \overline{\mathbf{Q}}_p)$ be the set of embeddings of F into $\overline{\mathbf{Q}}_p$. Let LT be the Lubin-Tate formal group attached to π_F and choose some variable T for the formal group law. We then have for every $a \in \mathcal{O}_F$ a power series $[a](T) = a \cdot T + \deg \geq 2$ giving the multiplication-by-a map. Let $\chi_F : G_F \to \mathcal{O}_F^{\times}$ be the Lubin-Tate character and let $H_F = \ker \chi_F$ and $\Gamma_F = G_F/H_F$. If $F = \mathbf{Q}_p$ and $\pi_F = p$, all of this is the usual cyclotomic data.

Let Y be a variable and let $\mathcal{O}_{\mathcal{E}}(Y)$ be the set of power series $f(Y) = \sum_{i \in \mathbf{Z}} a_i Y^i$ such that $a_i \in \mathcal{O}_F$ for $i \in \mathbf{Z}$ and $a_i \to 0$ as $i \to -\infty$. Let $\mathcal{E}(Y) = \mathcal{O}_{\mathcal{E}}(Y)[1/\pi_F]$. This is a two-dimensional local field. We endow it with a relative Frobenius map φ_q by $(\varphi_q f)(Y) = f([\pi_F](Y))$, and an action of Γ_F by $(gf)(Y) = f([\chi_F(g)](Y))$.

A (φ, Γ) -module over $\mathcal{E}(Y)$ is a finite dimensional $\mathcal{E}(Y)$ -vector space endowed with a compatible Frobenius map φ_q and a compatible action of Γ_F . We say that it is étale if it admits a basis in which $\operatorname{Mat}(\varphi_q) \in \operatorname{GL}_d(\mathcal{O}_{\mathcal{E}}(Y))$. By a theorem of Kisin-Ren (theorem 1.6 of [KR09]), based on the constructions [Fon90] of Fontaine, there is an equivalence of categories between $\{F$ -linear representations of $G_F\}$ and $\{\text{\'etale }(\varphi,\Gamma)$ -modules over $\mathcal{E}(Y)\}$. Let $\operatorname{D}(V)$ denote the $\text{\'etale }(\varphi,\Gamma)$ -module over $\mathcal{E}(Y)$ attached to a representation V.

The (φ, Γ) -module D(V) is useful if one can relate it to p-adic Hodge theory, in particular the ring \mathbf{B}_{dR} and its subrings [Fon94]. This is possible if D(V) is overconvergent, that is if it admits a basis in which $\operatorname{Mat}(\varphi_q)$ and $\operatorname{Mat}(g)$, for $g \in \Gamma_F$, belong to $\operatorname{GL}_d(\mathcal{E}^{\dagger}(Y))$, where $\mathcal{E}^{\dagger}(Y)$ denotes the subfield of $\mathcal{E}(Y)$ consisting of those power series f(Y) that have a nonempty domain of convergence. We say that V is overconvergent if D(V) is.

Which representations are overconvergent? If $F = \mathbf{Q}_p$, then all of them are by a theorem of Cherbonnier and Colmez [CC98]. If $F \neq \mathbf{Q}_p$, then not all representations are overconvergent [FX13]. Let us say that an F-linear representation V of G_F is F-analytic if for all $\tau \in E \setminus \{\mathrm{Id}\}$, V is Hodge-Tate with weights 0 "at τ ", or in other words if $\mathbf{C}_p \otimes_F^{\tau} V$ is the trivial \mathbf{C}_p -semilinear representation of G_F . For example $F(\chi_F)$ is F-analytic but $F(\chi_{\mathrm{cyc}})$ is not if $F \neq \mathbf{Q}_p$. The following result (theorem 4.2 of [Ber13]) shows that most representations of G_F are not overconvergent if $F \neq \mathbf{Q}_p$: if V is absolutely irreducible and overconvergent, then there is a character $\delta : \Gamma_F \to \mathcal{O}_F^{\times}$ such that $V(\delta)$ is F-analytic.

Conversely, we have the following theorem [Ber14]: if V is F-analytic, then it is overconvergent. This theorem had been proved for crystalline representations by Kisin and Ren [KR09], and for some reducible representations by Fourquaux and Xie [FX13].

Kisin and Ren had further suggested that in order to have overconvergent (φ, Γ) -modules for all F-representations of G_F , we need rings of power series in $[F: \mathbf{Q}_p]$ variables, one for each $\tau \in E$. Later on we will see how to achieve this with the variables $\{Y_\tau\}_{\tau \in E}$ where $g(Y_\tau) = [\chi_F(g)]^\tau(Y_\tau)$ (if $f(T) = \sum a_i T^i$ with $a_i \in \mathcal{O}_F$, then $f^\tau(T) = \sum \tau(a_i) T^i$).

3. Construction of overconvergent (φ, Γ) -modules

We start by reviewing overconvergent (φ, Γ) -modules in the cyclotomic setting. Let $F = \mathbf{Q}_p$ and $\pi_F = p$ and let X denote the variable Y above. The Robba ring $\mathcal{R}(X)$ is a ring of holomorphic power series, which contains $\mathcal{E}^{\dagger}(X)$. Let $\widetilde{\mathbf{B}} = \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}$ denote one of Fontaine's big rings of periods [**Ber02**]. It contains the element $\pi = [\varepsilon] - 1$ of p-adic Hodge theory, for which $g(\pi) = (1 + \pi)^{\chi_{\mathrm{cyc}}(g)} - 1$ and $\varphi(\pi) = (1 + \pi)^p - 1$. There is therefore a φ -and- $G_{\mathbf{Q}_p}$ compatible injection $\mathcal{R}(X) \to \widetilde{\mathbf{B}}$, sending X to π .

Let D(V) denote the (φ, Γ) -module $D_{rig}^{\dagger}(V)$ over the Robba ring attached to V, whose existence follows from the Cherbonnier-Colmez theorem (we drop the decorations to lighten the notation). In order to construct it, we first descend from $\overline{\mathbf{Q}}_p$ to $\mathbf{Q}_p(\mu_{p^{\infty}})$ by setting $\tilde{D}(V) = (\tilde{\mathbf{B}} \otimes_{\mathbf{Q}_p} V)^{H_{\mathbf{Q}_p}}$. There then exists some analogues of Tate's normalized trace maps $[\mathbf{Tat67}]$, $T_n : \tilde{D}(V) \to \varphi^{-n}(\mathcal{R}(\pi)) \otimes_{\mathcal{R}} D(V)$, which allow us to "decomplete" $\tilde{D}(V)$. This procedure is analogous to the construction of $D_{Sen}(V)$ in Sen theory $[\mathbf{Sen81}]$, where one decompletes $(\mathbf{C}_p \otimes_{\mathbf{Q}_p} V)^{H_{\mathbf{Q}_p}}$ using Tate's normalized trace maps. This procedure, descent and decompletion, is how the Cherbonnier-Colmez theorem is proved.

The main idea for our construction of multivariable (φ, Γ) -modules is that there is a different way of decompleting, which is still available in the cases when Tate's normalized trace maps no longer exist (which is the case as soon as $F \neq \mathbf{Q}_p$). If W is an LF space (i.e., an inductive limit of Fréchet spaces), that is endowed with a continuous action of a p-adic Lie group G, then following [ST03], we can consider the locally analytic vectors of W. We let W^{la} be the set of vectors of W such that the orbit map $g \mapsto g(w)$ is locally analytic on G.

Let $\widetilde{\mathbf{B}}_{\mathbf{Q}_p} = \widetilde{\mathbf{B}}^{H_{\mathbf{Q}_p}}$. This is an LF space, with an action of $\Gamma_{\mathbf{Q}_p} \simeq \mathbf{Z}_p^{\times}$. We have $[\mathbf{Ber14}]$ $(\widetilde{\mathbf{B}}_{\mathbf{Q}_p})^{\mathrm{la}} = \bigcup_{n \geq 0} \varphi^{-n}(\mathcal{R}(\pi))$ and $\widetilde{\mathrm{D}}(V)^{\mathrm{la}} = \bigcup_{n \geq 0} \varphi^{-n}(\mathcal{R}(\pi)) \otimes_{\mathcal{R}} \mathrm{D}(V)$. This gives a powerful alternate way of decompleting $\widetilde{\mathrm{D}}(V)$.

If $F \neq \mathbf{Q}_p$, we proceed in a similar way. Let $F_0 = F \cap \mathbf{Q}_p^{\mathrm{unr}}$, let $\widetilde{\mathbf{B}} = F \otimes_{F_0} \widetilde{\mathbf{B}}_{\mathrm{rig}}^{\dagger}$ and let $\widetilde{\mathbf{D}}(V) = (\widetilde{\mathbf{B}} \otimes_F V)^{H_F}$. Using almost étale descent, it is easy to show that $\widetilde{\mathbf{D}}(V)$ is a free $\widetilde{\mathbf{B}}_F$ -module of rank d, stable under φ_q and Γ_F . We then have the following theorem [**Ber14**]: $\widetilde{\mathbf{D}}(V)^{\mathrm{la}}$ is a free $\widetilde{\mathbf{B}}_F^{\mathrm{la}}$ -module of rank d. It is therefore a (φ, Γ) -module over $\widetilde{\mathbf{B}}_F^{\mathrm{la}}$.

4. The structure of $\widetilde{\mathbf{B}}_F^{\mathrm{la}}$

The above theorem is meaningful if we understand the structure of $\tilde{\mathbf{B}}_F^{la}$. Using the theory of p-adic periods, we can construct $[\mathbf{Col02}]$ for each $\tau \in \mathbf{E}$ an element $y_{\tau} \in \tilde{\mathbf{B}}_F$ such that $g(y_{\tau}) = [\chi_F(g)]^{\tau}(y_{\tau})$ if $g \in \Gamma_F$ and $\varphi_q(y_{\tau}) = [\pi_F]^{\tau}(y_{\tau})$. This way, we get a (φ, Γ) -equivariant map from the Robba ring $\mathcal{R}(\{Y_{\tau}\}_{\tau \in E})$ in the h variables alluded to at the end of §2 to $\tilde{\mathbf{B}}_F$, by sending Y_{τ} to y_{τ} . This map is injective. In addition, it extends to a map $\bigcup_{n\geq 0} \varphi_q^{-n}(\mathcal{R}(\{Y_{\tau}\}_{\tau \in E})) \to \tilde{\mathbf{B}}_F$, whose image is then dense in $\tilde{\mathbf{B}}_F$ for the locally analytic topology $[\mathbf{Ber14}]$. This is why we call (φ, Γ) -modules over $\tilde{\mathbf{B}}_F^{la}$ multivariable (φ, Γ) -modules.

We can ask whether $\tilde{D}(V)^{la}$ descends to a nice subring of $\tilde{\mathbf{B}}_F^{la}$. The main result of [**Ber13**] shows that if V is crystalline, then $\tilde{D}(V)^{la}$ descends to a reflexive coadmissible module over the ring $\mathcal{R}^+(\{Y_\tau\}_{\tau\in E})$ of power series that converge on the open unit polydisk.

In general, since the action of Γ_F on $\tilde{D}(V)^{la}$ is locally analytic, it extends to an action of $\text{Lie}(\Gamma_F)$. For each $\tau \in E$, there is an element $\nabla_{\tau} \in F \otimes \text{Lie}(\Gamma_F)$ that is the "derivative in the direction of τ ". Let $t_{\tau} = \log_{\text{LT}}^{\tau}(y_{\tau})$, so that $g(t_{\tau}) = \chi_F^{\tau}(g) \cdot t_{\tau}$. If $f((Y_{\sigma})_{\sigma}) \in \mathcal{R}(\{Y_{\tau}\}_{\tau \in E})$, then we have $\nabla_{\tau} f((y_{\sigma})_{\sigma}) = t_{\tau} \cdot v_{\tau} \cdot \partial f((y_{\sigma})_{\sigma})/\partial Y_{\tau}$ where v_{τ} is a unit. Using these operators, we can prove the theorem to the effect that F-analytic representations are overconvergent. First, we can relate Sen theory and (φ, Γ) -modules as in the cyclotomic case $[\mathbf{Ber02}]$, and we get $[\mathbf{Ber14}]$ that V is Hodge-Tate with weights 0 at τ if and only if $\nabla_{\tau}(\tilde{D}(V)^{la}) \subset t_{\tau} \cdot \tilde{D}(V)^{la}$. If this is the case, and if $\partial_{\tau} = t_{\tau}^{-1} \nabla_{\tau}$, then $\partial_{\tau}(\tilde{D}(V)^{la}) \subset \tilde{D}(V)^{la}$, so that if V is F-analytic, then $\tilde{D}(V)^{la}$ is endowed with a system $\{\partial_{\tau}\}_{\tau \in E \setminus \{Id\}}$ of p-adic partial differential operators, as well as a compatible Frobenius map φ_q . A monodromy theorem $[\mathbf{Ber14}]$ then allows us to show that $(\tilde{D}(V)^{la})^{\partial_{\tau}=0}$ for $\tau \in E \setminus \{Id\}$ is free of rank d over $(\tilde{B}_F^{la})^{\partial_{\tau}=0}$ for $\tau \in E \setminus \{Id\}$. Finally, we show that $(\tilde{B}_F^{la})^{\partial_{\tau}=0}$ for $\tau \in E \setminus \{Id\}$ is free of rank d over $(\tilde{B}_F^{la})^{\partial_{\tau}=0}$ for $\tau \in E \setminus \{Id\}$. Finally, we show that $(\tilde{B}_F^{la})^{\partial_{\tau}=0}$ for $\tau \in E \setminus \{Id\} = \bigcup_{n \geq 0} \varphi_q^{-n}(\mathcal{R}(y_{Id}))$. This way, we can descend $\tilde{D}(V)^{la}$ to $\mathcal{R}(Y)$ and then finally prove our theorem, using Kedlaya's theory of Frobenius slopes $[\mathbf{Ked05}]$.

References

- [Ber02] L. Berger "Représentations p-adiques et équations différentielles", Invent. Math. 148 (2002), no. 2, p. 219–284.
- [Ber11] L. Berger "La correspondance de Langlands locale p-adique pour $\mathrm{GL}_2(\mathbf{Q}_p)$ ", Ast'erisque (2011), no. 339, p. Exp. No. 1017, viii, 157–180, Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012–1026.
- [Ber13] L. BERGER "Multivariable (φ, Γ) -modules and filtered φ -modules", Math. Res. Lett. **20** (2013), no. 3, p. 409–428.

- [Ber14] L. Berger "Multivariable (φ, Γ) -modules and locally analytic vectors", preprint, 2014.
- [Bre10] C. Breuil "The emerging p-adic Langlands programme", in Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, p. 203–230.
- [CC98] F. Cherbonnier & P. Colmez "Représentations p-adiques surconvergentes", Invent. Math. 133 (1998), no. 3, p. 581–611.
- [Col02] P. Colmez "Espaces de Banach de dimension finie", J. Inst. Math. Jussieu 1 (2002), no. 3, p. 331–439.
- [Col10] P. Colmez "Représentations de $GL_2(\mathbf{Q}_p)$ et (φ, Γ) -modules", Astérisque (2010), no. 330, p. 281–509.
- [Fon90] J.-M. FONTAINE "Représentations p-adiques des corps locaux. I", in *The Grothendieck Festschrift, Vol. II*, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249–309.
- [Fon94] J.-M. FONTAINE "Le corps des périodes *p*-adiques", *Astérisque* (1994), no. 223, p. 59–111, With an appendix by Pierre Colmez, Périodes *p*-adiques (Bures-sur-Yvette, 1988).
- [FX13] L. FOURQUAUX & B. XIE "Triangulable \mathcal{O}_F -analytic (φ_q, Γ)-modules of rank 2", Algebra Number Theory 7 (2013), no. 10, p. 2545–2592.
- [Ked05] K. S. Kedlaya "Slope filtrations revisited", *Doc. Math.* **10** (2005), p. 447–525 (electronic).
- [KR09] M. Kisin & W. Ren "Galois representations and Lubin-Tate groups", *Doc. Math.* **14** (2009), p. 441–461.
- [ST03] P. Schneider & J. Teitelbaum "Algebras of *p*-adic distributions and admissible representations", *Invent. Math.* **153** (2003), no. 1, p. 145–196.
- [Sen81] S. Sen "Continuous cohomology and p-adic Galois representations", Invent. Math. **62** (1980/81), no. 1, p. 89–116.
- [Tat67] J. T. TATE "p-divisible groups", in Proc. Conf. Local Fields (Driebergen, 1966), Springer, Berlin, 1967, p. 158–183.

July 2014

Laurent Berger