EXAM

ADVANCED ALGEBRA

Course notes allowed. If you are a native French speaker, give your answers in French. In all of the midterm, A is a commutative ring.

1. Automorphisms

1.1. Let P be the **Z**-module $\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ and consider the two submodules $M = 2 \cdot \mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ and $N = \mathbf{Z} \times \{0\}$ of P. Prove that P/M and P/N are isomorphic but that M and N are not isomorphic.

Let A be a PID and let r be an integer ≥ 1 . Let M and N be two submodules of A^r .

1.2. Prove that there exists an automorphism f of A^r such that f(M) = N if and only if A^r/M and A^r/N are isomorphic A-modules.

2. Faithfully flat localizations

We say that an A-module P is faithfully flat if and only if for every map $M' \to M$ between two A-modules, $P \otimes_A M' \to P \otimes_A M$ is injective if and only if $M' \to M$ is injective.

- **2.1.** Prove that P is faithfully flat if and only if P is flat, and for every A-module N, $P \otimes_A N = 0$ implies that N = 0.
- **2.2.** Let B be an A-algebra, via a ring homomorphism $f: A \to B$, and take $x \in A$ such that $f(x) \in B^{\times}$. Compute $A/xA \otimes_A B$.
- **2.3.** Let S be a multiplicative subset of A containing 1. Prove that $S^{-1}A$ is faithfully flat over A if and only if $S^{-1}A = A$.

3. Kähler differentials

Let A be a subring of a ring B. Give the A-algebra $B \otimes_A B$ a B-module structure by $b \cdot (s \otimes t) = bs \otimes t$. Multiplication in B gives rise to a ring homomorphism $m : B \otimes_A B \to B$. Let $I = \ker(m)$ and let $\Omega_{B/A} = I/I^2$. If $s \in B$, let ds be the class of $1 \otimes s - s \otimes 1$ in $\Omega_{B/A}$.

3.1. Prove that I is a B-module, and that $\{1 \otimes s - s \otimes 1\}_{s \in B}$ generates I as a B-module.

Date: January 9.

3.2. Prove that $d: B \to \Omega_{B/A}$ is an A-linear map, that $d(st) = s \cdot dt + t \cdot ds$, and that da = 0 if $a \in A$.

Let B = A[X] and identify $B \otimes_A B$ with A[X, Y]. Let H = Y - X.

- **3.3.** Prove that A[X,Y] = A[X,H] and that $I = H \cdot A[X,H]$.
- **3.4.** Prove that $\Omega_{B/A}$ is the free *B*-module of rank 1 generated by dX. What is the map $d: B \to \Omega_{B/A}$?

We stop assuming that B = A[X]. Let M be a B-module. An A-linear derivation from B to M is an A-linear map $d_M : B \to M$ such that $d_M(st) = s \cdot d_M t + t \cdot d_M s$ and $d_M a = 0$ if $a \in A$. Let $Der_A(B, M)$ denote the set of A-linear derivations from B to M.

3.5. Prove that $h \mapsto h \circ d$ from $\operatorname{Hom}_B(\Omega_{B/A}, M)$ to $\operatorname{Der}_A(B, M)$ is injective.

Recall that if N is an A-module, there is an isomorphism between $\operatorname{Hom}_A(N, M)$ and $\operatorname{Hom}_B(B \otimes_A N, M)$. If $d_M \in \operatorname{Der}_A(B, M) \subset \operatorname{Hom}_A(B, M)$, we can therefore view d_M as an element $h \in \operatorname{Hom}_B(B \otimes_A B, M)$.

- **3.6.** Prove that h = 0 on $I^2 \subset B \otimes_A B$, that h gives rise to a map $h \in \text{Hom}_B(\Omega_{B/A}, M)$, and that $d_M = h \circ d$.
- **3.7.** Prove that $h \mapsto h \circ d$ from $\operatorname{Hom}_B(\Omega_{B/A}, M)$ to $\operatorname{Der}_A(B, M)$ is bijective.

4. NOETHER NORMALIZATION

Let K be a field and let T, U, V be some variables. Carry out an explicit Noether normalization for the following K-algebras A (i.e. find algebraically independent elements x_1, \ldots, x_n in A such that A is a finitely generated $K[x_1, \ldots, x_n]$ -module)

- **4.1.** $A = K[T, T^{-1}].$
- **4.2.** A = K[T, U, V]/(TU).

5. Kähler differentials II

- **5.1.** (More difficult) Let B = A[X]/P(X). Prove that $\Omega_{B/A} = A[X]/(P(X), P'(X)) \cdot dX$ Hint: use the method of question 3.3.
- **5.2.** Let L/K be a finite separable extension of fields. Show that $\Omega_{L/K} = 0$.
- **5.3.** Let $K = \mathbf{F}_p(T)$ and L = K(X) with $X^p = T$. Compute $\Omega_{L/K}$.